# CS 3313: <br> Foundations of Computing 

## Lab 1: Proof Techniques

http://gw-cs3313.github.io

## Outline

- Math preliminaries - this should all be review
- Proof techniques
- Exercises


## Sets and set operations

- Set: Collection of non-repeating items $S=\{1, a,\{c, d\}\},|S|=3$


## Sets and set operations

- Set: Collection of non-repeating items $S=\{1, a,\{c, d\}\},|S|=3$
- Common sets:
$\mathbb{Z}$ - set of integers $\quad \mathbb{Z}^{+}$- set of positive integers
$\mathbb{N}$ - natural numbers $\quad \mathbb{R}$ - Reals
$\mathbb{N}$ - natural numbers
$\varnothing$ or $\}$ - empty set
$\mathbb{Z}$ - set of integers $\quad \mathbb{Z}^{+}$- set of positive integers


## Sets and set operations

- Set: Collection of non-repeating items $S=\{1, a,\{c, d\}\},|S|=3$
- Common sets:
$\mathbb{Z}$ - set of integers
$\mathbb{N}$ - natural numbers $\quad \mathbb{R}$ - Reals
$\emptyset$ or $\}$ - empty set
- Set relations:
- Membership: $5 \in \mathbb{Z}, 3.1 \notin \mathbb{Z},\{c, d\} \in\{1, a,\{c, d\}\}$
- Subset: $\{1,2\} \subset\{1,2,3\}$
- Union: $A \cup B \quad$ Intersection: $A \cap B \quad$ Complement: $\bar{A}$
- De Morgan's Laws: $\overline{A \cup B}=\bar{A} \cap \bar{B}, \quad \overline{A \cap B}=\bar{A} \cup \bar{B}$
- Cartesian product: If $A=\{1,2,3\}, B=\{a, b\}$

$$
A \times B=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}
$$

## Strings

- Alphabet $\Sigma$ : set of symbols
- Ex: $\Sigma=\{a, b\}, \Sigma=\{0,1\}$
- String: finite sequence of symbols from $\Sigma$,
- ex: $v=a b a$ and $w=a b a a a$
- ex: $v=001$ and $w=11001$
- Empty string ( $\lambda$ )
- Substring, prefix, suffix


## Strings

- Alphabet $\Sigma$ : set of symbols
- Ex: $\Sigma=\{a, b\}, \Sigma=\{0,1\}$
- String: finite sequence of symbols from $\Sigma$,
- ex: $v=a b a$ and $w=a b a a a$
- ex: $v=001$ and $w=11001$
- Empty string ( $\lambda$ )
- Substring, prefix, suffix
- Operations on strings:
- Concatenation: $v w=a b a a b a a a$
- Reverse: $w^{R}=a a a b a$
- Repetition: $v^{2}=a b a a b a$ and $v^{0}=\lambda$
- Length of a string: $|v|=3$ and $|\lambda|=0$


## Languages

- Language L: Set of strings
- $\Sigma^{*}=$ set of all strings formed by concatenating zero or more symbols in $\Sigma$
- Ex: if $\Sigma=\{0,1\}$ then $\Sigma^{*}=\{$ all binary strings, including empty string\}
- A language is any subset of $\Sigma^{*}$

Examples: $L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ and $L_{2}=\{a b, a a\}$

- A string in a language is also called a sentence of the language


## Graphs

- A graph G consists of a
- vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots\right\}$ and
- edge set $E(G) \subset\{(x, y) \mid x, y \in V(G)\}$ i.e., an edge connects a pair of vertices
- Directed vs. undirected graphs
- Degree of a vertex - number of edges coming out of the vertex
e.g. $\operatorname{deg}\left(v_{1}\right)=2$



## Outline

- Math preliminaries - this should all be review
- Proof techniques
- Exercises


## Proofs

This class will involve a lot of proofs.
General proof procedure:

1. Understand the statement - without the math lingo
2. Build up an intuition - in English or by picture, work through examples

- This gets easier with practice

3. Construct proof

- This part is procedural
- Use facts and theorems you already know
- Proof techniques will guide you


## Writing proofs

- Be concise - no multi-paragraph explanations
- Be precise - use mathematic notation and logical reasoning
- Follow proof techniques - this will give you a structure for the proof


## Proof techniques

- Direct proof
- Proof by contradiction
- Proof by induction


## Direct Proof

- Produce a chain of logically sound deductions that justify the expected conclusion


## Example

- Theorem: $\overline{A \cup B}=\bar{A} \cap \bar{B}$


## Example

- Theorem: $\overline{A \cup B}=\bar{A} \cap \bar{B}$
- Intuition: Any element not in the union of $A$ and $B$ must be outside of both $A$ and $B$


## Example

- Theorem: $\overline{A \cup B}=\bar{A} \cap \bar{B}$
- Intuition: Any element not in the union of $A$ and $B$ must be outside of both $A$ and $B$
- Proof: Important, there are two directions to prove!

1. Suppose $x \in \overline{A \cup B}$, then $x \in \bar{A} \cap \bar{B}$

If $x \in \overline{A \cup B}$, then $x \notin A \cup B$ (by definition of complement)
So, $x \notin A$ and $x \notin B$ (by definition of union)
Thus, $x \in \bar{A}$ and $x \in \bar{B}$ (by definition of complement)
Therefore, $x \in \bar{A} \cap \bar{B}$ (by definition of intersection)

## Example

- Theorem: $\overline{A \cup B}=\bar{A} \cap \bar{B}$
- Intuition: Any element not in the union of $A$ and $B$ must be outside of both $A$ and $B$
- Proof: Important, there are two directions to prove!

1. Suppose $x \in \overline{A \cup B}$, then $x \in \bar{A} \cap \bar{B}$

If $x \in \overline{A \cup B}$, then $x \notin A \cup B$ (by definition of complement)
So, $x \notin A$ and $x \notin B$ (by definition of union)
Thus, $x \in \bar{A}$ and $x \in \bar{B}$ (by definition of complement)
Therefore, $x \in \bar{A} \cap \bar{B}$ (by definition of intersection)
2. Suppose $x \in \bar{A} \cap \bar{B}$, then $x \in \overline{A \cup B}$

If $x \in \bar{A} \cap \bar{B}$, then $x \in \bar{A}$ and $x \in \bar{B}$ (by definition of intersection)
So, $x \notin A$ and $x \notin B$ (by definition of complement)
thus, $x \notin A \cup B$ (by definition of union)
implying that $x \in \overline{A \cup B}$ (by definition of complement)

## Proof by contradiction

## Proof Outline:

1. Assume the opposite of what you want to try to prove
2. Show that it leads to a contradiction
3. Thus, the original assumption must be false

## Example

- Theorem: For any integer $n$, if $n^{2}$ is odd then $n$ is odd


## Example

- Theorem: For any integer $n$, if $\mathrm{n}^{2}$ is odd then n is odd
- Intuition: The product of two odd numbers has no factors of 2, so it will be odd


## Example

- Theorem: For any integer $n$, if $n^{2}$ is odd then $n$ is odd
- Intuition: The product of two odd numbers has no factors of 2, so it will be odd
- Proof:

1. Assume there exists an even n s.t. $\mathrm{n}^{2}$ is odd (very important to get the negation of the statement correct!)
Then, $n=2 m$ for some integer $m$ (by definition of even)
So, $n^{2}=4 m^{2}=2\left(2 m^{2}\right)$ which is even

Contradiction!!!

## Proof by induction

Proof Outline:

1. Base case: Verify that statement holds for base case (e.g., true for $i=1$ )
2. Inductive hypothesis: Assume that if the statement holds for $\mathrm{i}=\mathrm{n}$ for some value n
3. Induction step: Prove that the statement holds for $i=n+1$

Why this works:
$P(1)$ is true implies $P(2)$ is true $P(2)$ is true implies $P(3)$ is true
$\mathrm{P}(\mathrm{n}-1)$ is true implies $\mathrm{P}(\mathrm{n})$ is true
Therefore, $P(n)$ is true

## Example

- Theorem: $1+2+\cdots+n=\sum_{i=1}^{n} i=\frac{(n+1) n}{2}$


## Example

- Theorem: $1+2+\cdots+n=\sum_{i=1}^{n} i=\frac{(n+1) n}{2}$
- Intuition: Test it for some small values of n


## Example

- Theorem: $1+2+\cdots+n=\sum_{i=1}^{n} i=\frac{(n+1) n}{2}$
- Intuition: Test it for some small values of $n$
- Proof:

Base case: $\mathrm{n}=1-1=(1+1) * 1 / 2=2 / 2=1$
Hypothesis: Assume $\sum_{i=1}^{k} i=\frac{(k+1) k}{2}$ for some k
Induction: Show that $\sum_{i=1}^{k+1} i=\frac{((k+1)+1)(k+1)}{2}$

- $\sum_{i=1}^{k+1} i=k+1+\sum_{i=1}^{k} i=(k+1)+\frac{(k+1)(k)}{2}$ (by hypothesis)
$=\frac{k^{2}+3 k+2}{2}=\frac{(k+2)(k+1)}{2}$


## Outline

- Math preliminaries - this should all be review
- Proof techniques
$\square$ - Exercises


## Exercises

- Prove each of the following statements
- Work in groups - make sure you put down all the names
- Scan your solutions and submit on GradeScope by end of day


## Exercises

1. Prove that in any graph $G$, the sum of degrees of the nodes of $G$ is an even number
2. Prove that $\sqrt{2}$ is irrational
3. Prove that

$$
1^{2}+2^{2}+\cdots n^{2}=\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

