CS3313 Lab
 10 April 2024

Outline

Review the definition of NP
Recall the SAT problem
Example of reduction to show that a new problem is NP-complete (Vertex Cover)
Reduction exercise (Independent Set)

Verifiability

A verifier for a language L is an algorithm V, where

$$
L=\{x \mid V \text { accepts }\langle x, w\rangle \text { for some string } w\}
$$

- Runtime of V is measured as a function of $|x|$
- V is a polynomial time verifier if it runs in time poly $(|x|)$
- L is polynomially verfiable if it has a polynomial time verifier
- String w is called a witness that $x \in L$

The class NP

Definition

$\mathcal{N} \mathcal{P}$ is the class of languages that have polynomial time verifiers.

How to show that a problem A is NP-Complete

1. Show that A is in NP
a. Provide a poly-time verification algorithm for A
2. Reduce some other NP-hard problem to A

The SAT Problem

Satisfiability Problem

$$
S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula }\}
$$

Example: $\phi=(\bar{x} \wedge y) \vee(x \wedge \bar{z})$

Can you think of some expressions that are not satisfiable?

Fact: SAT is NP-complete

A common case of SAT: The 3-SAT Problem

Definition 15.5. A propositional formula is in 3 -clausal form if it is in clausal form and has exactly 3 literals per clause. For example, $(x \vee y \vee z) \wedge$ ($\bar{y} \vee z \vee \bar{w}$) is in 3-clausal form. A propositional formula in 3-clausal form is called a 3-clausal propositional formula.

Definition 15.6. 3 -SAT is the following decision problem.
Input. A 3-clausal propositional formula ϕ.
Question. Is ϕ satisfiable?

Fact: 3-SAT is NP-complete

Remark about the Fact: in 7 minutes, you'll want to remember the Fact :-)

Vertex Covers

For a simple graph $G=(V, E)$ a k-vertex cover is a set $C \subseteq V$ with $|C|=k$ such that every edge in E has an endpoint in C.

Find a vertex cover.
Find the smallest possible vertex cover.

The Vertex Cover Problem

Input. A simple graph G and a positive integer k. Question. Does there exist a vertex cover C of G where $|C| \leq k$?

Exercise: Prove that the Vertex Cover Problem is in P or is NP-Complete.
Hint: It's not in P.

Solution

Reduce 3-SAT to Vertex Cover

Example: Create graph G as shown; for a 3-clausal formula with v variables and c clauses, the vertex cover problem with $\mathrm{k}=\mathrm{v}+2 \mathrm{c}$ solves the 3-SAT problem.
$\phi=(x \vee \bar{y} \vee z) \wedge(\bar{y} \vee \bar{z} \vee w)$.

First make the pairs X and $\sim X$ here:

Finally connect the nodes in the triangles to their corresponding nodes in the pairs above.
Then make all the clauses into triangles:

Solution

 Continued; we need to show If $x \notin A, f(x) \notin B$,If there is a satisfying assignment of truth values, there is a vertex cover.

- If x is assigned true, add node labeled by x from the pairs to the cover. Then any adjacent x in a triangle need not be added; so add the other two nodes from that triplet. Same for $\sim x$. (Since the truth assignment satisfies the equation, there will be at least one value in the triangle which is true and thus need not be added to the cover.)

$$
\phi=(x \vee \bar{y} \vee z) \wedge(\bar{y} \vee \bar{z} \vee w)
$$

Solution

For the second part, we can show the contrapositive
If there is a vertex cover, there is a satisfying assignment of truth values:

- For each variable X, assign true if the node labeled X in a pair is in the cover and false if the node labeled $\sim X$ in a pair is in the cover. Now, for each triangle there is some node not in the cover; well this one is adjacent to one in a pair which is necessarily in the cover then: this means the clause represented by the triangle is true.

$$
\phi=(x \vee \bar{y} \vee z) \wedge(\bar{y} \vee \bar{z} \vee w)
$$

Definition 15.7. Suppose $G=(V, E)$ is a simple graph. An independent set of G is a set $S \subseteq V$ such that no two members of S are connected by an edge. That is, if u and v are different members of S, then $\{u, v\} \notin E$.

Definition 15.8. The Independent Set Problem (ISP) is the following decision problem.

Input. A simple graph $G=(V, E)$ and a positive integer k.
Question. Does G have an independent set of size at least k ?

Either (1) find a poly-time algorithm for ISP or (2) prove that ISP is NP-complete.

