CS 3313: Foundations of Computing

Lab 1: JFLAP

http://gw-cs3313.github.io

CS 3313 Lab 2

- Using JFLAP
- Exercises/Examples

Recall Definitions

- DFA M= (Q, Σ, δ, q₀, F)
 - Q-states
 - Σ alphabet
 - δ transition function
 - q₀ start state
 - F accept states
- Language accepted by DFA:
 L(M) = { w | δ(q₀,w) ε F }

In terms of transition graph, there is a path labeled w from start state to a final state.

State: summarizes properties of input processed thus far

Next: Using JFLAP to build and test your automata

- JFLAP is a simulation tool
 - Specify your automaton
 - Test behavior of automaton on test input
 - Visualization of automaton
- Why use JFLAP
 - To test/debug your design
 - This means you need to come up with interesting test cases (including edge cases)

JFLAP Example

- Provide a DFA for L = { w | w is a string in {0,1}* and w contains (a) the substring 101 or (b) substring 010 }
- We did the first part of this in lecture
 - Let's start with the DFA for property (a) only
 - Then property (b) only
 - Then, we will try to merge them
 - First, we do it incorrectly and identify test cases that reveal the error
 - Finally, the correct solution

JFLAP Example: DFA that recognizes Substring

Note: you can label the states with what they summarize!

q0: not read first 1 in substring 101

q1: last input read was a 1, could be start of substring 101

q2: last two inputs read were 10 which is part of substring 101

q3: last three inputs read were 101 which means substring 101 is in input

Test:

- 1. Run test case 0100: step through states
- 2. Run test case 011011

JFLAP Example: DFA that recognizes 010

Q: What do the states summarize?

Test:

- 1. Run test case 0100: step through states
- 2. Run test case 011011

JFLAP Example – combining the two

- Provide a DFA for L = { w | w is a string in {0,1}* and w contains (a) the substring 101 or (b) substring 010 }
- A first attempt just combine the DFA
- Run tests:
- 1. Input = 1011
- 2. Input = 011011
- 3. Input = 10010

Does this accept L?

JFLAP Example

- L = { w | w is a string in {0,1}* and w contains (a) the substring 101 or (b) substring 010 }
- The correct answer...
- Run tests:
- 1. Input = 1011
- 2. Input = 011011
- 3. Input = 10010
- 4. Input = 111000

What do the states summarize?

Questions ?

JFLAP Exercise: Work in breakout groups and submit one submission (JFLAP files saved as an image) with all names at the table

- Ques 1: Provide a DFA for L = { w | w is a string in {0,1}* and w contains (a) the substring 101 or (b) substring 100 }
- Ques 2a: Provide a DFA in JFLAP for L = { w | w is a string in {0,1}* and w contains the substring 101 with at most 1-bit of mis-match. }
 - Hint: If we allow one bit of mis-match then what are the substrings you need to match ?
- Ques 2b (bonus): Provide an NFA for the same L as in 2a

You can submit solutions after lab (until midnight), but make sure you know the names of all of your teammates.