
CS 3313

Foundations of Computing:

Lab 3: NFA and Regular

Expessions Review

Outline

▪ Building NFAs

▪ NFA to DFA Conversion

▪ Regular Expressions

▪ NFA to Regular Expressions Conversion

NFA vs. DFA

NFAs have 2 critical differences from DFAs

▪ Allow state-to-state transitions on empty string input ϵ

▪ These transitions are done spontaneously, without looking at the

input string.

▪ Allow more than one outgoing transition on same symbol

• Allows the NFA to choose which path to take

• Still need to verify that path taken leads to an accept state

Important: Still need to make sure that only strings in desired

language are accepted

Exercise 1: work in groups

▪ Provide an NFA M that accepts the language L over alphabet

{0,1,2} where L = { w | (a) w has two consecutive 0’s or (b) w has

a substring 101 and ends with two 2’s }

▪ Ex: 0120012 is in L 0102101222 is in L

02010220 is not in L

Property (a): build NFA M1 that recognizes substring 00

Property (b): build NFA M2 that recognizes two properties in

sequence – substring 101 and then ends with two 2’s.

Outline

▪ Building NFAs

▪ NFA to DFA Conversion

▪ Regular Expressions

▪ NFA to Regular Expressions Conversion

Converting NFA to DFA

▪ We proved in class that NFAs and DFAs recognize the

same languages

▪ So, for every NFA N, we can construct equivalent DFA M

▪ In class, we gave a procedure for converting an NFA to an

equivalent DFA

Let’s review

NFA N=(Q,Σ,𝛿,q0,F)

▪ Q – set of states

▪ Σ – alphabet

▪ q0 – start state

▪ F – accept state(s)

▪ 𝛿 – transition function

DFA M= (Q’,Σ’,𝛿’,q0’,F’)

▪ Q’ = P(Q) – powerset of Q

▪ Σ′ = Σ

▪ q0’ = E(q) – set of states reachable from

q via 𝜖 edges

▪ F’ = Set of nodes in Q’ that contain an

accept state from Q

▪ 𝛿’ = Use the “finger trick”:

i.e., set of all possible states that

can be reached from current set

𝑞′ ∈ 𝑄′

Exercise 2: NFA to DFA – Work in groups

Construct a DFA equivalent to the following NFA

Outline

▪ Building NFAs

▪ NFA to DFA Conversion

▪ Regular Expressions

▪ NFA to Regular Expressions Conversion

Languages Associated with Regular Expressions

▪ A regular expression (RE) r denotes a language L(r)

▪ Basis: Assuming that r1 and r2 are regular expressions:

1. The regular expression ∅ denotes the empty set

2. The regular expression 𝜖 denotes the set { 𝜖 }

3. For any a in the alphabet, the regular expression a denotes the set
{ a }

▪ Inductive step: if r1 and r2 are regular expressions, denoting

languages L(r1) and L(r2) respectively, then

1. r1 ∪ r2 is a RE denoting the language L(r1) ∪ L(r2)

2. r1r2 is a RE denoting the language L(r1)∘L(r2)

3. (r1) is a RE denoting the language L(r1)

4. (r1)* is a RE denoting the language (L(r1))*

Deriving Regular Expressions

▪ ”map” property in the language to a Reg.Expr. Pattern

▪ Break down the properties into union, concatenation, star

▪ Start with smallest reg expression (simplest property)

▪ Ex: all strings in alphabet {a,b} = 𝑎 ∪ 𝑏 ∗

▪ Two consecutive a’s = aa

▪ Ends with a pattern aba: 𝑎 ∪ 𝑏 ∗𝑎𝑏𝑎

▪ ….

Regular Expressions - Examples

1. L1= { all strings over alphabet {a,b,c} that contain no more than

three a’s }

2. L2 = { all binary strings ending in 01 }

Regular expressions Examples

1. L1= { all strings over alphabet {a,b,c} that contain no more than

three a’s }

2. L2 = = { all binary strings ending in 01 }

Regular expressions Examples

1. L1= { all strings over alphabet {a,b,c} that contain no more than

three a’s }

• Can contain zero a’s or 1 a or 2 a’s or 3 a’s; and can have any

number of b,c before and after

• = 𝑏 ∪ 𝑐 ∗ ∪ 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗ ∪ ൫

൯

𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗𝑎ሺ

ሻ

𝑏 ∪

𝑐 ∗ ∪ ሺ 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗ሻ

2. L2 = = { all binary strings ending in 01 }

Regular expressions Examples

1. L1= { all strings over alphabet {a,b,c} that contain no more than

three a’s }

• Can contain zero a’s or 1 a or 2 a’s or 3 a’s; and can have any

number of b,c before and after

• = 𝑏 ∪ 𝑐 ∗ ∪ 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗ ∪ ൫

൯

𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗𝑎ሺ

ሻ

𝑏 ∪

𝑐 ∗ ∪ ሺ 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗ሻ

2. L2 = = { all binary strings ending in 01 }

- Any string w in {0,1}* followed by 01 = 0 ∪ 1 ∗01

Exercise 3: Regular Expressions – Work in groups

L3 = { all binary strings that do not end in 01 }

• Hint: you can have strings of length 0 or length 1 – what are

they ?

• If string has length two or more, then what substrings can it

end in (i.e., what can the rightmost two symbols be ?)

- It cannot end in 01

Outline

▪ Building NFAs

▪ NFA to DFA Conversion

▪ Regular Expressions

▪ NFA to Regular Expressions Conversion

DFA/NFA to Regular Expression

▪ We outlined a procedure in the lecture based on state

elimination:

1. Start with generalized NFA
a. Start state has no incoming edges

b. Only one accept state with no outgoing edges

c. Edges labeled by regular expressions

2. One-by-one remove the states

3. When removing a state, add edges with regular expressions

corresponding to all paths through that state

4. When down to 2 states, we are done

1. Convert to generalized NFA

NFA to Reg.Expression – Example 1

q3q0 q1 q2Start
a a a

bab

1. Convert to generalized NFA

2. Eliminate q2

NFA to Reg.Expression – Example 1

q3q0 q1 q2Start
a a a

bab

s
𝜖

1. Convert to generalized NFA

2. Eliminate q2

3. Eliminate q1

NFA to Reg.Expression – Example 1

q3q0 q1Start
a ab*a

ab

s
𝜖

1. Convert to generalized NFA

2. Eliminate q2

3. Eliminate q1

4. Eliminate q0

5. Regular Expression =

NFA to Reg.Expression – Example 1

q3q0Start
aa*ab*a

b

s
𝜖

1. Convert to generalized NFA

2. Eliminate q2

3. Eliminate q1

4. Eliminate q0

5. Regular Expression = b*aa*ab*a

NFA to Reg.Expression – Example 1

q3Start
b*aa*ab*a

s

Automaton to Reg. Expression – Example 2

1. Convert to generalized NFA

2. Eliminate q2

3. Eliminate q1

4. Eliminate q0

5. Regular Expression = ሺ𝑎 𝑏 ∪ 𝑏𝑎 ሻ∗

Exercise 4: NFA to Reg. Exp. – Work in groups

q0
q1 q2

a

	Slide 1: CS 3313 Foundations of Computing: Lab 3: NFA and Regular Expessions Review
	Slide 2: Outline
	Slide 3: NFA vs. DFA
	Slide 4: Exercise 1: work in groups
	Slide 5: Outline
	Slide 6: Converting NFA to DFA
	Slide 7
	Slide 8: Exercise 2: NFA to DFA – Work in groups
	Slide 9: Outline
	Slide 10: Languages Associated with Regular Expressions
	Slide 11: Deriving Regular Expressions
	Slide 12: Regular Expressions - Examples
	Slide 13: Regular expressions Examples
	Slide 14: Regular expressions Examples
	Slide 15: Regular expressions Examples
	Slide 16: Exercise 3: Regular Expressions – Work in groups
	Slide 17: Outline
	Slide 18: DFA/NFA to Regular Expression
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Automaton to Reg. Expression – Example 2
	Slide 25: Exercise 4: NFA to Reg. Exp. – Work in groups
	Slide 26: Solutions
	Slide 27: Exercise 1
	Slide 28: Exercise 2
	Slide 29: Exercise 3
	Slide 30: Exercise 4: NFA to Reg. Exp. – Work in groups

