CS 3313:
 Foundations of Computing

Lab 2: JFLAP

http://gw-cs3313.github.io

CS 3313 Lab 2

- Using JFLAP
- Exercises/Examples

Recall Definitions

- DFA M=(Q, $\left.\Sigma, \delta, q_{0}, F\right)$
- Language accepted by DFA:

$$
L(M)=\left\{w \mid \delta\left(q_{0}, w\right) \in F\right\}
$$

In terms of transition graph, there is a path labeled w from start state to a final state.

State: summarizes properties of input processed thus far

Next: Using JFLAP to build and test your automata

- JFLAP is a simulation tool
- Specify your automaton
- Test behavior of automaton on test input
- Visualization of automaton
- Why use JFLAP
- To test/debug your design
- This means you need to come up with interesting test cases (including edge cases)

JFLAP Example

- Provide a DFA for $L=\left\{w \mid w\right.$ is a string in $\{0,1\}^{*}$ and w contains (a) the substring 101 or (b) substring 010 \}
- We did the first part of this in lecture
- Let's start with the DFA for property (a) only
- Then property (b) only
- Then, we will try to merge them
- First, we do it incorrectly - and identify test cases that reveal the error
- Finally, the correct solution

JFLAP Example: DFA that recognizes Substring

 101

Note: you can label the states with what they summarize! q 0 : not read first 1 in substring 101
q1: last input read was a 1 , could be start of substring 101
q2: last two inputs read were 10 which is part of substring 101
q3: last three inputs read were 101 which means substring 101 is in input
Test:

1. Run test case 0100: step through states
2. Run test case 011011

JFLAP Example: DFA that recognizes 010

Q: What do the states summarize?

Test:

1. Run test case 0100: step through states
2. Run test case 011011

JFLAP Example - combining the two

- Provide a DFA for $L=\left\{w \mid w\right.$ is a string in $\{0,1\}^{*}$ and w contains (a) the substring 101 or (b) substring 010$\}$
- A first attempt - just combine the DFA
- Run tests:

1. \quad Input $=1011$
2. \quad Input $=011011$
3. Input $=10010$

Does this accept L?

JFLAP Example

- $\mathrm{L}=\left\{\mathrm{w} \mid \mathrm{w}\right.$ is a string in $\{0,1\}^{*}$ and w contains (a) the substring 101 or (b) substring 010$\}$
- The correct answer...
- Run tests:

1. Input $=1011$
2. Input $=011011$
3. Input $=10010$
4. Input $=111000$

What do the states summarize?

Questions?

JFLAP Exercise: Work in breakout groups and submit one submission (JFLAP files) with all names at the table

- Ques 1: Provide a DFA for $L=\left\{w \mid w\right.$ is a string in $\{0,1\}^{*}$ and w contains (a) the substring 101 or (b) substring 100$\}$
- Ques 2a: Provide a DFA in JFLAP for $L=\{w \mid w$ is a string in $\{0,1\}^{*}$ and w contains the substring 101 with at most 1-bit of mis-match. \}
- Hint: If we allow one bit of mis-match then what are the substrings you need to match?
- Ques 2b (bonus): Provide an NFA for the same L as in 2a

