
CS 3313
Foundations of Computing:

Lab 3: NFA and Regular
Expessions Review

Outline

▪ Building NFAs
▪ NFA to DFA Conversion
▪ Regular Expressions
▪ NFA to Regular Expressions Conversion

3

NFA vs. DFA

NFAs have 2 critical differences from DFAs
▪ Allow state-to-state transitions on empty string input ϵ

▪ These transitions are done spontaneously, without looking at the
input string.

▪ Allow more than one outgoing transition on same symbol
• Allows the NFA to choose which path to take
• Still need to verify that path taken leads to an accept state

Important: Still need to make sure that only strings in desired
language are accepted

Exercise 1: work in groups

▪ Provide an NFA M that accepts the language L over alphabet
{0,1,2} where L = { w | (a) w has two consecutive 0’s or (b) w has
a substring 101 and ends with two 2’s }

▪ Ex: 0120012 is in L 0102101222 is in L
02010220 is not in L

Property (a): build NFA M1 that recognizes substring 00

Property (b): build NFA M2 that recognizes two properties in
sequence – substring 101 and then ends with two 2’s.

Note: We built a reg. exp. for this in class

Outline

▪ Building NFAs
▪ NFA to DFA Conversion
▪ Regular Expressions
▪ NFA to Regular Expressions Conversion

Converting NFA to DFA

▪ We proved in class that NFAs and DFAs recognize the
same languages

▪ So, for every NFA N, we can construct equivalent DFA M
▪ In class, we gave a procedure for converting an NFA to an

equivalent DFA

Let’s review

NFA N=(Q,Σ,𝛿,q0,F)
▪ Q – set of states
▪ Σ – alphabet
▪ q0 – start state

▪ F – accept state(s)

▪ 𝛿 – transition function

DFA M= (Q’,Σ’,𝛿’,q0’,F’)
▪ Q’ = P(Q) – powerset of Q
▪ Σ! = Σ
▪ q0’ = E(q) – set of states reachable from

q via 𝜖 edges
▪ F’ = Set of nodes in Q’ that contain an

accept state from Q
▪ 𝛿’ = Use the “finger trick”:

i.e., set of all possible states that
can be reached from current set
𝑞! ∈ 𝑄′

Exercise: NFA to DFA – Work in groups

Construct a DFA equivalent to the following NFA

Outline

▪ Building NFAs
▪ NFA to DFA Conversion
▪ Regular Expressions
▪ NFA to Regular Expressions Conversion

Languages Associated with Regular Expressions

▪ A regular expression (RE) r denotes a language L(r)
▪ Basis: Assuming that r1 and r2 are regular expressions:

1. The regular expression ∅ denotes the empty set
2. The regular expression 𝜖 denotes the set { 𝜖 }
3. For any a in the alphabet, the regular expression a denotes the set

{ a }
▪ Inductive step: if r1 and r2 are regular expressions, denoting

languages L(r1) and L(r2) respectively, then
1. r1 ∪ r2 is a RE denoting the language L(r1) ∪ L(r2)
2. r1r2 is a RE denoting the language L(r1)∘L(r2)
3. (r1) is a RE denoting the language L(r1)
4. (r1)* is a RE denoting the language (L(r1))*

Deriving Regular Expressions

▪ ”map” property in the language to a Reg.Expr. Pattern

▪ Break down the properties into union, concatenation, star

▪ Start with smallest reg expression (simplest property)

▪ Ex: all strings in alphabet {a,b} = 𝑎 ∪ 𝑏 ∗

▪ Two consecutive a’s = aa

▪ Ends with a pattern aba: 𝑎 ∪ 𝑏 ∗𝑎𝑏𝑎
▪ ….

Regular Expressions - Examples

1. L1= { all strings over alphabet {a,b,c} that contain no more than
three a’s }

2. L2 = { all binary strings ending in 01 }

Regular expressions Examples

1. L1= { all strings over alphabet {a,b,c} that contain no more than
three a’s }

• Can contain zero a’s or 1 a or 2 a’s or 3 a’s; and can have any
number of b,c before and after

• = 𝑏 ∪ 𝑐 ∗ ∪ 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗ ∪ %
&

𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗𝑎(
)

𝑏 ∪
𝑐 ∗ ∪ (𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗)

2. L2 = = { all binary strings ending in 01 }
- Any string w in {0,1}* followed by 01 = 0 ∪ 1 ∗01

Exercise 3: Regular Expressions – Work in groups

L3 = { all binary strings that do not end in 01 }
• Hint: you can have strings of length 0 or length 1 – what are

they ?
• If string has length two or more, then what substrings can it

end in (i.e., what can the rightmost two symbols be ?)
- It cannot end in 01

Outline

▪ Building NFAs
▪ NFA to DFA Conversion
▪ Regular Expressions
▪ NFA to Regular Expressions Conversion

DFA/NFA to Regular Expression

▪ We outlined a procedure in the lecture based on state elimination
▪ Can be tedious to do by hand for a small-ish DFA/NFA

▪ Alternate approach: by examining the automaton and figuring out
the expressions for paths to a final state

▪ This works well for simple DFA/NFA, but may be hard for more
complicated examples

DFA/NFA to Regular Expression

▪ language accepted by a DFA/NFA = { w | there is a path labelled w
from start state to a final state}

▪ To find regular expression for the language accepted by a
DFA/NFA, find the labels (and reg. expr.) of the paths from start
state to each final state

•Concatenate labels on the path – the label is the regular
expression
-Concatenate labels on the subpaths

•If we have two choices of paths with labels w1 and w2 then “or”
the paths to get w1+w2

•If there is a cycle, with path labelled w, then w*

▪ Find expression for paths from q0 to q3:
• Paths from q0 to q1 followed by q1 to q2 followed by q2 to q3

▪ b* a followed by a*a followed by b*a

▪ Reg expr= b*a a* a b* a

DFA to Reg.Expression – Example 1

q0 q1 q2 q3

Automaton to Reg. Expression – Example 2

▪ Find expression for all paths from start state to a final state

▪ Example: paths from q0 to q0

• q0 to q1 to q0 =
• q0 to q1 to q2 to q0 =
• But: can repeat cycle from q0 to q0

• q0 to itself on empty string λ
▪ Therefore: Reg. Exp.=

Automaton to Reg. Expression – Example 2

▪ Find expression for all paths from start state to a final state

▪ Example: paths from q0 to q0

• q0 to q1 to q0 = (ab)
• q0 to q1 to q2 to q0 = (aba)
• But: can repeat cycle from q0 to q0

• q0 to itself on empty string λ
▪ Therefore: Reg. Exp.= 𝑎𝑏 ∪ 𝑎𝑏𝑎 ∗

NFA to Reg. Expression – Example 3

▪ Direct edge label a from start to the final state q1

▪ Cycles/path from q1 to q1 : consider the two paths –
•either utilization the 𝜖 : 𝜖𝑏∗𝑎 = (𝑏∗𝑎)
•or not (𝑏𝑎∗ 𝑎 ∪ 𝑏 𝑏∗𝑎)

▪ Therefore cycle is: 𝑏𝑎∗ 𝑎 ∪ 𝑏 𝑏∗𝑎 ∪ 𝑏∗𝑎
∗

▪ Therefore reg. expr. Is 𝑎 𝑏𝑎∗ 𝑎 ∪ 𝑏 𝑏∗𝑎 ∪ 𝑎 𝑏∗𝑎
∗

Exercise 4: DFA to Reg. Exp. – Work in groups

q0 q1 q2

a

