CS 3313
Foundations of Computing:

Lab 3: NFA and Regular
Expessions Review



Outline

= Building NFAs
= NFA to DFA Conversion
 Regular Expressions

 NFA to Regular Expressions Conversion



NFA vs. DFA

NFAs have 2 critical differences from DFAs
= Allow state-to-state transitions on empty string input €

= These transitions are done spontaneously, without looking at the
input string.
= Allow more than one outgoing transition on same symbol
* Allows the NFA to choose which path to take
* Still need to verify that path taken leads to an accept state

3

Important: Still need to make sure that only strings 1n desired
language are accepted



Exercise 1: work in groups

= Provide an NFA M that accepts the language L over alphabet
{0,1,2} where L = { w | (a) w has two consecutive 0’s or (b) w has
a substring 101 and ends with two 2’s }
= Ex: 0120012 1sin L 0102101222 1sin L

02010220 1snotin L

Property (a): build NFA M1 that recognizes substring 00

Property (b): build NFA M2 that recognizes two properties in
sequence — substring 101 and then ends with two 2’s.

Note: We built a reg. exp. for this in class



Outline

= Building NFAs
D= NFA to DFA Conversion
 Regular Expressions

 NFA to Regular Expressions Conversion



Converting NFA to DFA

= We proved in class that NFAs and DFAs recognize the
same languages

= So, for every NFA N, we can construct equivalent DFA M

» In class, we gave a procedure for converting an NFA to an
equivalent DFA

Let's review



NFA N=(Q,%,58,90,F)
Q — set of states
Z — alphabet
qo — start state

F — accept state(s)

6 — transition function

DFA M= (Q',¥",6",q0.F’)
Q' = P(Q) — powerset of Q
Y =3
do = E(q) — set of states reachable from
g via € edges
F’ = Set of nodes in Q' that contain an
accept state from Q
6’ = Use the “finger trick”:
i.e., set of all possible states that
can be reached from current set

q,EQ’



Exercise: NFA to DFA — Work in groups

Construct a DFA equivalent to the following NFA




Outline

= Building NFAs
= NFA to DFA Conversion
P+ Regular Expressions

 NFA to Regular Expressions Conversion



Languages Associated with Regular Expressions

= A regular expression (RE) r denotes a language L(r)
= Basis: Assuming that r; and r, are regular expressions:
1. The regular expression @ denotes the empty set
2. The regular expression € denotes the set { € }
3. Forany ain the alphabet, the regular expression a denotes the set
{a}
= Inductive step: if r; and r, are regular expressions, denoting
languages L(r,) and L(r,) respectively, then
r, Ur, is a RE denoting the language L(r;) U L(r,)
rir, is a RE denoting the language L(ry)oL(r,)
(r;) is a RE denoting the language L(r,)

N e

(r, )* is a RE denoting the language (L(r,))*



Deriving Regular Expressions

= "map” property in the language to a Reg.Expr. Pattern
= Break down the properties into union, concatenation, star

= Start with smallest reg expression (simplest property)

= Ex: all strings in alphabet {a,b}=(a U b)*
» Two consecutive a’s = aa

= Ends with a pattern aba: (a U b)*aba



Regular Expressions - Examples

1. L,={all strings over alphabet {a,b,c} that contain no more than
three a’s }

2. L, ={all binary strings ending in 01 }



Regular expressions Examples

1. L,={allstrings over alphabet {a,b,c} that contain no more than
three a’s }

e (Cancontainzeroa’sorlaor2a’sor3a’s;and can have any
number of b,c before and after

e =(bUc)*U ((b Uc)*a(b U c)*) U ((b Uc)*a(buUc)*a(bu
c)*) U(uc)albuc)albuc)albuc))

2. L,==/{all binary strings ending in 01 }
- Any string win {0,1}* followed by 01= (0 U 1)*01



Exercise 3: Regular Expressions — Work in groups

L; = { all binary strings that do not end in 01 }
e Hint: you can have strings of length 0 or length 1 —what are
they ?
e If string has length two or more, then what substrings can it
end in (i.e., what can the rightmost two symbols be ?)

- Jtcannotend in 01



Outline

= Building NFAs
= NFA to DFA Conversion
 Regular Expressions

= NFA to Regular Expressions Conversion



DFA/NFA to Regular Expression

= We outlined a procedure in the lecture based on state elimination
= Can be tedious to do by hand for a small-ish DFA/NFA

= Alternate approach: by examining the automaton and figuring out
the expressions for paths to a final state

= This works well for simple DFA/NFA, but may be hard for more
complicated examples



DFA/NFA to Regular Expression

* language accepted by a DFA/NFA = { w | there is a path labelled w

from start state to a final state}

* To find regular expression for the language accepted by a
DFA/NFA, find the labels (and reg. expr.) of the paths from start
state to each final state
eConcatenate labels on the path — the label is the regular

expression
—Concatenate labels on the subpaths
|f we have two choices of paths with labels w; and w, then “or”
the paths to get w;+w,

o|f there is a cycle, with path labelled w, then w*



DFA to Reg.Expression — Example 1

= Find expression for paths from q, to qs:

* Paths from q, to q; followed by q; to g, followed by q, to g,
= b* a followed by a*a followed by b*a

= Regexpr=b*aa*ab*a




Automaton to Reg. Expression — Example 2

* Find expression for all paths from start state to a final state
= Example: paths from g, to q,
*Qotoqtoqy =
*qotoq;toqyto qp =
* But: can repeat cycle from q, to q

* (o to 1tself on empty string A

= Therefore: Reg. Exp.=



Automaton to Reg. Expression — Example 2

* Find expression for all paths from start state to a final state
= Example: paths from g, to q,

*qoto q;to gy =(ab)

* qp to q; to g, to g, = (aba)

* But: can repeat cycle from q, to q

* (o to 1tself on empty string A

» Therefore: Reg. Exp.= (ab U aba)*



NFA to Reg. Expression — Example 3

= Direct edge label a from start to the final state ¢,

= Cycles/path from ¢, to ¢, : consider the two paths —
eecither utilizationthe e : eb*a = (b"a)
eor not (ha*(aU b)b*a)

= Therefore cycle is: ((ba*(a Ub)b*a) U (b*a))*

* Therefore reg. expr. Is a((ba*(a U b)b*a) U a(b*a))




Exercise 4: DFA to Reg. Exp. — Work in groups




