CS 3313
 Foundations of Computing:

Lab 3: NFA and Regular Expessions Review

Outline

D: Building NFAs

- NFA to DFA Conversion
- Regular Expressions
- NFA to Regular Expressions Conversion

NFA vs. DFA

NFAs have 2 critical differences from DFAs

- Allow state-to-state transitions on empty string input ϵ
- These transitions are done spontaneously, without looking at the input string.
- Allow more than one outgoing transition on same symbol
- Allows the NFA to choose which path to take
- Still need to verify that path taken leads to an accept state

Important: Still need to make sure that only strings in desired language are accepted

Exercise 1: work in groups

- Provide an NFA M that accepts the language L over alphabet $\{0,1,2\}$ where $L=\{w \mid$ (a) w has two consecutive 0 's or (b) w has a substring 101 and ends with two 2 's \}
- Ex: 0120012 is in $\mathrm{L} \quad 0102101222$ is in L 02010220 is not in L

Property (a): build NFA M1 that recognizes substring 00
Property (b): build NFA M2 that recognizes two properties in sequence - substring 101 and then ends with two 2's.

Note: We built a reg. exp. for this in class

Outline

- Building NFAs

NFA to DFA Conversion

- Regular Expressions
- NFA to Regular Expressions Conversion

Converting NFA to DFA

- We proved in class that NFAs and DFAs recognize the same languages
- So, for every NFA N, we can construct equivalent DFA M
- In class, we gave a procedure for converting an NFA to an equivalent DFA

Let's review

NFA $N=\left(Q, \Sigma, \delta, \mathrm{q}_{0}, F\right)$

- Q - set of states
- Σ - alphabet
- q_{0} - start state
- F - accept state(s)
- δ - transition function

DFA M $=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, \mathrm{q}_{\underline{o^{\prime}},}, F^{\prime}\right)$

- $\quad Q^{\prime}=P(Q)-$ powerset of Q
- $\Sigma^{\prime}=\Sigma$
- $q_{0}{ }^{\prime}=E(q)-$ set of states reachable from q via ϵ edges
- $\mathrm{F}^{\prime}=$ Set of nodes in Q^{\prime} that contain an accept state from Q
- $\delta^{\prime}=$ Use the "finger trick":
i.e., set of all possible states that can be reached from current set $q^{\prime} \in Q^{\prime}$

Exercise: NFA to DFA - Work in groups

Construct a DFA equivalent to the following NFA

Outline

- Building NFAs
- NFA to DFA Conversion

Regular Expressions

- NFA to Regular Expressions Conversion

Languages Associated with Regular Expressions

- A regular expression (RE) \mathbf{r} denotes a language $\mathbf{L}(\mathbf{r})$
- Basis: Assuming that r_{1} and r_{2} are regular expressions:

1. The regular expression \emptyset denotes the empty set
2. The regular expression ϵ denotes the set $\{\epsilon\}$
3. For any a in the alphabet, the regular expression a denotes the set \{a\}

- Inductive step: if r_{1} and r_{2} are regular expressions, denoting languages $L\left(r_{1}\right)$ and $L\left(r_{2}\right)$ respectively, then

1. $r_{1} \cup r_{2}$ is a RE denoting the language $L\left(r_{1}\right) \cup L\left(r_{2}\right)$
2. $r_{1} r_{2}$ is a RE denoting the language $L\left(r_{1}\right) \circ L\left(r_{2}\right)$
3. $\left(r_{1}\right)$ is a RE denoting the language $L\left(r_{1}\right)$
4. $\left(r_{1}\right)^{*}$ is a RE denoting the language $\left(L\left(r_{1}\right)\right)^{*}$

Deriving Regular Expressions

- "map" property in the language to a Reg.Expr. Pattern
- Break down the properties into union, concatenation, star
- Start with smallest reg expression (simplest property)
- Ex: all strings in alphabet $\{\mathrm{a}, \mathrm{b}\}=(a \cup b)^{*}$
- Two consecutive a's = aa
- Ends with a pattern aba: $(a \cup b)^{*} a b a$
-

Regular Expressions - Examples

1. $L_{1}=\{$ all strings over alphabet $\{a, b, c\}$ that contain no more than three a's \}
2. $L_{2}=\{$ all binary strings ending in 01$\}$

Regular expressions Examples

1. $L_{1}=\{$ all strings over alphabet $\{a, b, c\}$ that contain no more than three a's \}

- Can contain zero a's or 1 a or 2 a's or 3 a's; and can have any number of b, c before and after
- $=(b \cup c)^{*} \cup\left((b \cup c)^{*} a(b \cup c)^{*}\right) \cup\left((b \cup c)^{*} a(b \cup c)^{*} a(b \cup\right.$
$\left.c)^{*}\right) \cup\left((b \cup c)^{*} a(b \cup c)^{*} a(b \cup c)^{*} a(b \cup c)^{*}\right)$

2. $L_{2}==\{$ all binary strings ending in 01$\}$

- Any string win $\{0,1\}^{*}$ followed by $01=(0 \cup 1)^{*} 01$

Exercise 3: Regular Expressions - Work in groups

$\mathrm{L}_{3}=\{$ all binary strings that do not end in 01$\}$

- Hint: you can have strings of length 0 or length 1 - what are they ?
- If string has length two or more, then what substrings can it end in (i.e., what can the rightmost two symbols be ?)
- It cannot end in 01

Outline

- Building NFAs
- NFA to DFA Conversion
- Regular Expressions

NFA to Regular Expressions Conversion

DFA/NFA to Regular Expression

- We outlined a procedure in the lecture based on state elimination
- Can be tedious to do by hand for a small-ish DFA/NFA
- Alternate approach: by examining the automaton and figuring out the expressions for paths to a final state
- This works well for simple DFA/NFA, but may be hard for more complicated examples

DFA/NFA to Regular Expression

- language accepted by a DFA/NFA $=\{\mathrm{w} \mid$ there is a path labelled w from start state to a final state $\}$
- To find regular expression for the language accepted by a DFA/NFA, find the labels (and reg. expr.) of the paths from start state to each final state
- Concatenate labels on the path - the label is the regular expression
-Concatenate labels on the subpaths
- If we have two choices of paths with labels w_{1} and w_{2} then "or" the paths to get $w_{1}+w_{2}$
- If there is a cycle, with path labelled w, then w^{*}

DFA to Reg.Expression - Example 1

- Find expression for paths from q_{0} to q_{3} :
- Paths from q_{0} to q_{1} followed by q_{1} to q_{2} followed by q_{2} to q_{3}
- b* a followed by a*a followed by b*a
- Reg expr= $b^{*} a a^{*} a b^{*} a$

Automaton to Reg. Expression - Example 2

- Find expression for all paths from start state to a final state
- Example: paths from q_{0} to q_{0}
- q_{0} to q_{1} to $\mathrm{q}_{0}=$
- q_{0} to q_{1} to q_{2} to $\mathrm{q}_{0}=$
- But: can repeat cycle from q_{0} to q_{0}
- q_{0} to itself on empty string λ
- Therefore: Reg. Exp. $=$

Automaton to Reg. Expression - Example 2

- Find expression for all paths from start state to a final state
- Example: paths from q_{0} to q_{0}
- q_{0} to q_{1} to $\mathrm{q}_{0}=(\mathrm{ab})$
- q_{0} to q_{1} to q_{2} to $\mathrm{q}_{0}=(\mathrm{aba})$
- But: can repeat cycle from q_{0} to q_{0}
- q_{0} to itself on empty string λ
- Therefore: Reg. Exp. $=(a b \cup a b a)^{*}$

NFA to Reg. Expression - Example 3

- Direct edge label a from start to the final state q_{1}
- Cycles/path from q_{1} to q_{1} : consider the two paths -
- either utilization the $\epsilon: \epsilon b^{*} a=\left(b^{*} a\right)$
- or not ($\left.b a^{*}(a \cup b) b^{*} a\right)$
- Therefore cycle is: $\left(\left(b a^{*}(a \cup b) b^{*} a\right) \cup\left(b^{*} a\right)\right)^{*}$
- Therefore reg. expr. Is $a\left(\left(b a^{*}(a \cup b) b^{*} a\right) \cup a\left(b^{*} a\right)\right)^{*}$

Exercise 4: DFA to Reg. Exp. - Work in groups

