CS 3313 Foundations of Computing:

Lab 3: NFA and Regular Expessions Review

Outline

Building NFAs

- NFA to DFA Conversion
- Regular Expressions
- NFA to Regular Expressions Conversion

NFA vs. DFA

NFAs have 2 critical differences from DFAs

- Allow state-to-state transitions on empty string input ϵ
 - These transitions are done spontaneously, without looking at the input string.

3

- Allow more than one outgoing transition on same symbol
 - Allows the NFA to choose which path to take
 - Still need to verify that path taken leads to an accept state

Important: Still need to make sure that only strings in desired language are accepted

Exercise 1: work in groups

- Provide an NFA M that accepts the language L over alphabet
 {0,1,2} where L = { w | (a) w has two consecutive 0's or (b) w has a substring 101 and ends with two 2's }
 - Ex: 0120012 is in L 0102101222 is in L
 02010220 is not in L

Property (a): build NFA M1 that recognizes substring 00 Property (b): build NFA M2 that recognizes two properties in sequence – substring 101 and then ends with two 2's.

Note: We built a reg. exp. for this in class

Outline

- Building NFAs
- NFA to DFA Conversion
 - Regular Expressions
 - NFA to Regular Expressions Conversion

Converting NFA to DFA

- We proved in class that NFAs and DFAs recognize the same languages
- So, for every NFA N, we can construct equivalent DFA M
- In class, we gave a procedure for converting an NFA to an equivalent DFA

Let's review

<u>NFA N=(Q, Σ , δ ,q₀,F)</u>

- Q set of states
- Σ alphabet
- q₀ start state
- F accept state(s)
- δ transition function

<u>DFA M= (Q',Σ',δ',q₀',F')</u>

- Q' = P(Q) powerset of Q
- $\Sigma' = \Sigma$
- q₀' = E(q) set of states reachable from q via ε edges
- F' = Set of nodes in Q' that contain an accept state from Q
- δ' = Use the "finger trick":

i.e., set of all possible states that can be reached from current set $q' \in Q'$

Exercise: NFA to DFA – Work in groups

Construct a DFA equivalent to the following NFA

Outline

- Building NFAs
- NFA to DFA Conversion
- Regular Expressions
 - NFA to Regular Expressions Conversion

Languages Associated with Regular Expressions

- A regular expression (RE) r denotes a language L(r)
- Basis: Assuming that r₁ and r₂ are regular expressions:
 - 1. The regular expression Ø denotes the empty set
 - 2. The regular expression ϵ denotes the set { ϵ }
 - For any a in the alphabet, the regular expression a denotes the set { a }
 - Inductive step: if r₁ and r₂ are regular expressions, denoting languages L(r₁) and L(r₂) respectively, then
 - 1. $r_1 \cup r_2$ is a RE denoting the language $L(r_1) \cup L(r_2)$
 - 2. r_1r_2 is a RE denoting the language $L(r_1)\circ L(r_2)$
 - 3. (r_1) is a RE denoting the language $L(r_1)$
 - 4. $(r_1)^*$ is a RE denoting the language $(L(r_1))^*$

Deriving Regular Expressions

- "map" property in the language to a Reg.Expr. Pattern
- Break down the properties into union, concatenation, star
- Start with smallest reg expression (simplest property)
- Ex: all strings in alphabet $\{a,b\} = (a \cup b)^*$
- Two consecutive a's = aa

•

• Ends with a pattern aba: $(a \cup b)^*aba$

Regular Expressions - Examples

- L₁= { all strings over alphabet {a,b,c} that contain no more than three a's }
- 2. $L_2 = \{ all binary strings ending in 01 \}$

Regular expressions Examples

- L₁= { all strings over alphabet {a,b,c} that contain no more than three a's }
 - Can contain zero a's or 1 a or 2 a's or 3 a's; and can have any number of b,c before and after
 - = $(b \cup c)^* \cup ((b \cup c)^* a(b \cup c)^*) \cup ((b \cup c)^* a(b \cup c)^* a(b \cup c)^* a(b \cup c)^*)$ $c)^* \cup ((b \cup c)^* a(b \cup c)^* a(b \cup c)^* a(b \cup c)^*)$
 - 2. $L_2 = = \{ all binary strings ending in 01 \}$
 - Any string w in $\{0,1\}^*$ followed by $01 = (0 \cup 1)^* 01$

Exercise 3: Regular Expressions – Work in groups

- $L_3 = \{ all binary strings that do not end in 01 \}$
 - Hint: you can have strings of length 0 or length 1 what are they ?
 - If string has length two or more, then what substrings can it end in (i.e., what can the rightmost two symbols be ?)
 - It cannot end in 01

Outline

- Building NFAs
- NFA to DFA Conversion
- Regular Expressions
- NFA to Regular Expressions Conversion

DFA/NFA to Regular Expression

We outlined a procedure in the lecture based on state elimination
Can be tedious to do by hand for a small-ish DFA/NFA

- Alternate approach: by examining the automaton and figuring out the expressions for paths to a final state
 - This works well for simple DFA/NFA, but may be hard for more complicated examples

DFA/NFA to Regular Expression

- language accepted by a DFA/NFA = { w | there is a path labelled w from start state to a final state}
- To find regular expression for the language accepted by a DFA/NFA, find the labels (and reg. expr.) of the paths from start state to each final state
 - •Concatenate labels on the path the label is the regular expression
 - -Concatenate labels on the subpaths
 - If we have two choices of paths with labels w₁ and w₂ then "or" the paths to get w₁+w₂
 - If there is a cycle, with path labelled w, then w*

DFA to Reg.Expression – Example 1

- Find expression for paths from q_0 to q_3 :
 - Paths from q_0 to q_1 followed by q_1 to q_2 followed by q_2 to q_3
- b* a followed by a*a followed by b*a
- Reg expr= b * a a * a b * a

Automaton to Reg. Expression – Example 2

- Find expression for all paths from start state to a final state
- Example: paths from q₀ to q₀
 - \mathbf{q}_0 to \mathbf{q}_1 to \mathbf{q}_0 =
 - q_0 to q_1 to q_2 to $q_0 =$
 - But: can repeat cycle from q_0 to q_0
 - $\bullet\, q_0$ to itself on empty string λ
- Therefore: *Reg. Exp.* =

Automaton to Reg. Expression – Example 2

- Find expression for all paths from start state to a final state
- Example: paths from q₀ to q₀
 - \mathbf{q}_0 to \mathbf{q}_1 to $\mathbf{q}_0 = (\mathbf{ab})$
 - q_0 to q_1 to q_2 to $q_0 = (aba)$
 - But: can repeat cycle from q_0 to q_0
 - q_0 to itself on empty string λ
- Therefore: Reg. $Exp. = (ab \cup aba)^*$

NFA to Reg. Expression – Example 3

- Direct edge label a from start to the final state q_1
- Cycles/path from q_1 to q_1 : consider the two paths
 - •either utilization the $\epsilon : \epsilon b^* a = (b^* a)$
 - •or not $(ba^*(a \cup b)b^*a)$
- Therefore cycle is: $((ba^*(a \cup b)b^*a) \cup (b^*a))^*$
- Therefore reg. expr. Is $a((ba^*(a \cup b)b^*a) \cup a(b^*a))^*$

Exercise 4: DFA to Reg. Exp. – Work in groups

