CS 3313 Foundations of Computing:

Lab 4: Regular Expessions Review and the Pumping Lemma

Outline

- Regular Expressions
 - NFA to Regular Expressions Conversion
 - NFA/DFA Pumping Lemma

Languages Associated with Regular Expressions

- A regular expression (RE) r denotes a language L(r)
- Basis: Assuming that r₁ and r₂ are regular expressions:
 - 1. The regular expression Ø denotes the empty set
 - 2. The regular expression ϵ denotes the set { ϵ }
 - For any a in the alphabet, the regular expression a denotes the set { a }
 - Inductive step: if r₁ and r₂ are regular expressions, denoting languages L(r₁) and L(r₂) respectively, then
 - 1. $r_1 \cup r_2$ is a RE denoting the language $L(r_1) \cup L(r_2)$
 - 2. r_1r_2 is a RE denoting the language $L(r_1)\circ L(r_2)$
 - 3. (r_1) is a RE denoting the language $L(r_1)$
 - 4. $(r_1)^*$ is a RE denoting the language $(L(r_1))^*$

Deriving Regular Expressions

- "map" property in the language to a Reg.Expr. Pattern
- Break down the properties into union, concatenation, star
- Start with smallest reg expression (simplest property)
- Ex: all strings in alphabet $\{a,b\} = (a \cup b)^*$
- Two consecutive a's = aa

•

• Ends with a pattern aba: $(a \cup b)^*aba$

Regular Expressions Examples

 L₁= { all strings over alphabet {a,b,c} that contain no more than three a's }

2. $L_2 = \{ all binary strings ending in 01 \}$

Regular Expressions Examples

- L₁= { all strings over alphabet {a,b,c} that contain no more than three a's }
 - Can contain zero a's or 1 a or 2 a's or 3 a's; and can have any number of b,c before and after
 - = $(b \cup c)^* \cup ((b \cup c)^* a(b \cup c)^*) \cup ((b \cup c)^* a(b \cup c)^* a(b \cup c)^* a(b \cup c)^*) \cup ((b \cup c)^* a(b \cup c)^* a(b \cup c)^* a(b \cup c)^*)$

2. $L_2 = \{ all binary strings ending in 01 \}$

Regular Expressions Examples

- L₁= { all strings over alphabet {a,b,c} that contain no more than three a's }
 - Can contain zero a's or 1 a or 2 a's or 3 a's; and can have any number of b,c before and after
 - = $(b \cup c)^* \cup ((b \cup c)^* a(b \cup c)^*) \cup ((b \cup c)^* a(b \cup c)^* a(b \cup c)^* a(b \cup c)^*) \cup ((b \cup c)^* a(b \cup c)^* a(b \cup c)^* a(b \cup c)^*)$

- 2. $L_2 = \{ all binary strings ending in 01 \}$
 - Any string w in $\{0,1\}^*$ followed by $01 = (0 \cup 1)^* 01$

Exercise 1: Regular Expressions – Work in groups

- $L_3 = \{ all binary strings that do not end in 01 \}$
 - Hint: you can have strings of length 0 or length 1 what are they ?
 - If string has length two or more, then what substrings can it end in (i.e., what can the rightmost two symbols be ?)
 - It cannot end in 01

Outline

- Regular Expressions
- NFA to Regular Expressions Conversion
 - NFA/DFA Pumping Lemma

DFA/NFA to Regular Expression

- 1. State Elimination
 - We outlined a procedure in the lecture based on state elimination
 - You will need to do this on the homework
- 2. Alternate approach
 - Examine the automaton and figure out the expressions for paths from start to a final state
 - This works well for simple DFA/NFA, but may be hard for more complicated examples

DFA/NFA to Regular Expression – Alternate Approach

- language accepted by a DFA/NFA = { w | there is a path labelled w from start state to a final state}
- To find regular expression for the language accepted by a DFA/NFA, find the labels (and reg. expr.) of the paths from start state to each final state
 - •Concatenate labels on the path the label is the regular expression
 - -Concatenate labels on the subpaths
 - If we have two choices of paths with labels w₁ and w₂ then "or" the paths to get (w₁ ∪ w₂)
 - If there is a cycle, with path labelled w, then w*

NFA to Regular Expression – Example 1

• Find a regular expression corresponding to below NFA:

Example 1 by Node Elimination

Example 1 by Node Elimination

5. Read off answer

L=b*ab*ab*a

NFA to Regular Expression – Alternate Approach

- Find expression for paths from q₀ to q₃:
 - Paths from q_0 to q_1 followed by q_1 to q_2 followed by q_2 to q_3
 - b* a followed by b*a followed by b*a
- Reg expr= b * a b * a b * a

Exercise 2: NFA to Reg. Exp. – Work in groups

• You can use either approach here, but on the homework must use node elimination

Outline

- Regular Expressions
- NFA to Regular Expressions Conversion
- NFA/DFA Pumping Lemma

How to prove a language is not regular... The Pumping Lemma for Regular Languages

For every regular language L

There is an integer p, such that (note; you cannot fix p) For every string w in L of length $\geq p$ (you can choose w)

We can write w = xyz such that:

- 1. $|xy| \le p$ (this lets you focus on pumping within first p symbols)
- 2. |y| > 0 (y cannot be empty)
- 3. For all $i \ge 0$, $xy^i z$ is in L. (to get contradiction find one

value of i where pumped string is not in L)

Pumping Lemma as an Adversarial Game

- 1. Player 1 (me) picks language L to be proved nonregular • Prove $L = \{ss^R \mid s \in \{a, b\}^*\}$ is not regular.
- 2. Player 2 picks p, but doesn't tell me what p is, player 1 must win for all values of p
- 3. Player 1 picks a string w, which may depend on p, and must be of <u>length at least p</u>

Assume *L* is regular. Let $w = a^p b^1 b^1 a^p \in L$, i.e., $s = a^p b^1$; as well as $|s| \ge p$.

<u>Note</u>: Words in purple are the example wordings we use in this type of proofs.

Pumping Lemma as an Adversarial Game

- 4. Player 2 divides w into xyz s.t. |y|>0 and |xy|<=p
 - He does not tell player 1 this division, player 1's strategy must work for all choices

➤ Then by the Pumping Lemma, *w* can be divided into three parts w = xyz, such that $x = a^{\alpha}$, $y = a^{\beta}$, $z = a^{p-\alpha-\beta}b^1b^1a^p$, where $\beta \ge 1$, $(\alpha + \beta) \le p$.

5. Player 1 "wins" by picking an integer k>=0, which may be a function of p,x,y, and z, such that $xy^kz \notin L$

Now, consider k = 0. Then the string after the pumping becomes $w' = xy^0z = xz = a^{p-\beta}b^1b^1a^p$. Note that since $\beta \ge 1$, there's no way for w' to be in the form of a string followed by its reverse; hence $w' \notin L$. *Contradiction*. $\Rightarrow L$ not regular.

Pumping Lemma Remarks

- How do we know what string we need to choose?
 - Trial and Error and some eureka
 - $L = \{ww^R \mid w \in \{a, b\}^*\}$, if we'd chosen $s = a^n a^n$, then for $s' = a^{n-\beta} a^n$, then adversary can just choose $\beta \ge 1$ to be of even length, such that $s' = w'w'^R$. So, choosing such an *s* has no use for us.
 - L = {aⁿb^m | m ≠ n, n, m ≥ 1}, by choose s = a^pb^{p+1} or s = a^pb^{2p}, can we find some integer k such for s' = xy^kz, number of a's equals to number of b's.
 [We saw this in class]

Exercise 3: Pumping Lemma

Exercise: Prove that $L = \{a^m b^n \mid m < n\}$ is not regular.

- 1. What string s should we choose?
- 2. What does the pumping lemma tell us?
- 3. How to complete the proof?