
CS 3313
Foundations of Computing:

Lab 4: Regular Expessions
Review and the Pumping Lemma

Outline

▪ Regular Expressions
▪ NFA to Regular Expressions Conversion
▪ NFA/DFA Pumping Lemma

Languages Associated with Regular Expressions

▪ A regular expression (RE) r denotes a language L(r)
▪ Basis: Assuming that r1 and r2 are regular expressions:

1. The regular expression ∅ denotes the empty set
2. The regular expression 𝜖 denotes the set { 𝜖 }
3. For any a in the alphabet, the regular expression a denotes the set

{ a }
▪ Inductive step: if r1 and r2 are regular expressions, denoting

languages L(r1) and L(r2) respectively, then
1. r1 ∪ r2 is a RE denoting the language L(r1) ∪ L(r2)
2. r1r2 is a RE denoting the language L(r1)∘L(r2)
3. (r1) is a RE denoting the language L(r1)
4. (r1)* is a RE denoting the language (L(r1))*

Deriving Regular Expressions

▪ ”map” property in the language to a Reg.Expr. Pattern

▪ Break down the properties into union, concatenation, star

▪ Start with smallest reg expression (simplest property)

▪ Ex: all strings in alphabet {a,b} = 𝑎 ∪ 𝑏 ∗

▪ Two consecutive a’s = aa

▪ Ends with a pattern aba: 𝑎 ∪ 𝑏 ∗𝑎𝑏𝑎
▪ ….

Regular Expressions Examples

1. L1= { all strings over alphabet {a,b,c} that contain no more than
three a’s }

2. L2 = { all binary strings ending in 01 }

Regular Expressions Examples

1. L1= { all strings over alphabet {a,b,c} that contain no more than
three a’s }
• Can contain zero a’s or 1 a or 2 a’s or 3 a’s; and can have any

number of b,c before and after
• = 𝑏 ∪ 𝑐 ∗ ∪ 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗ ∪ %

&
𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗𝑎(

)
𝑏

∪ 𝑐 ∗ ∪ 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗

2. L2 = { all binary strings ending in 01 }

Regular Expressions Examples

1. L1= { all strings over alphabet {a,b,c} that contain no more than
three a’s }
• Can contain zero a’s or 1 a or 2 a’s or 3 a’s; and can have any

number of b,c before and after
• = 𝑏 ∪ 𝑐 ∗ ∪ 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗ ∪ %

&
𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗𝑎(

)
𝑏

∪ 𝑐 ∗ ∪ 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗𝑎 𝑏 ∪ 𝑐 ∗

2. L2 = { all binary strings ending in 01 }
• Any string w in {0,1}* followed by 01 = 0 ∪ 1 ∗01

Exercise 1: Regular Expressions – Work in groups

L3 = { all binary strings that do not end in 01 }
• Hint: you can have strings of length 0 or length 1 – what are

they ?
• If string has length two or more, then what substrings can it

end in (i.e., what can the rightmost two symbols be ?)
- It cannot end in 01

Outline

▪ Regular Expressions
▪ NFA to Regular Expressions Conversion
▪ NFA/DFA Pumping Lemma

DFA/NFA to Regular Expression

1. State Elimination
• We outlined a procedure in the lecture based on state

elimination
• You will need to do this on the homework

2. Alternate approach
• Examine the automaton and figure out the expressions for

paths from start to a final state
• This works well for simple DFA/NFA, but may be hard for

more complicated examples

DFA/NFA to Regular Expression – Alternate Approach

▪ language accepted by a DFA/NFA = { w | there is a path labelled w
from start state to a final state}

▪ To find regular expression for the language accepted by a
DFA/NFA, find the labels (and reg. expr.) of the paths from start
state to each final state

•Concatenate labels on the path – the label is the regular
expression
-Concatenate labels on the subpaths

•If we have two choices of paths with labels w1 and w2 then “or”
the paths to get 𝑤" ∪ 𝑤#

•If there is a cycle, with path labelled w, then w*

▪ Find a regular expression corresponding to below NFA:

NFA to Regular Expression – Example 1

Example 1 by Node Elimination

Original DFA

1. Add start state to
avoid incoming edges

2. Remove q0

Example 1 by Node Elimination

3. Remove q1

4. Remove q2

5. Read off answer L=b*ab*ab*a

▪ Find expression for paths from q0 to q3:
▪ Paths from q0 to q1 followed by q1 to q2 followed by q2 to q3

▪ b* a followed by b*a followed by b*a
▪ Reg expr= b*a b* a b* a

NFA to Regular Expression – Alternate Approach

Exercise 2: NFA to Reg. Exp. – Work in groups

▪ You can use either approach here, but on the homework must use
node elimination

Outline

▪ Regular Expressions
▪ NFA to Regular Expressions Conversion
▪ NFA/DFA Pumping Lemma

18

How to prove a language is not regular…
The Pumping Lemma for Regular Languages

For every regular language L
There is an integer p, such that (note; you cannot fix p)

For every string w in L of length > p (you can choose w)

We can write w = xyz such that:
1. |xy| < p (this lets you focus on pumping within first p symbols)

2. |y| > 0 (y cannot be empty)

3. For all i > 0, xyiz is in L. (to get contradiction find one

value of i where pumped string is not
in L)

Pumping Lemma as an Adversarial Game

1. Player 1 (me) picks language L to be proved nonregular

2. Player 2 picks p, but doesn’t tell me what p is, player 1
must win for all values of p

3. Player 1 picks a string w, which may depend on p, and
must be of length at least p

v Prove 𝐿 = 𝑠𝑠$ 𝑠 ∈ {𝑎, 𝑏}∗} is not regular.

Ø Assume 𝐿 is regular. Let w = 𝑎%𝑏"𝑏"𝑎% ∈ 𝐿,
i.e., s = 𝑎%𝑏"; as well as 𝑠 ≥ 𝑝.

Note: Words in purple are the example wordings we use in this type of proofs.

Pumping Lemma as an Adversarial Game

4. Player 2 divides w into xyz s.t. |y|>0 and |xy|<=p
• He does not tell player 1 this division, player 1’s

strategy must work for all choices

5. Player 1 “wins” by picking an integer k>=0, which may be a
function of p,x,y, and z, such that 𝑥𝑦&𝑧 ∉ 𝐿

Ø Then by the Pumping Lemma, 𝑤 can be divided into three parts
𝑤 = 𝑥𝑦𝑧, such that 𝑥 = 𝑎!, 𝑦 = 𝑎", 𝑧 = 𝑎#$!$"𝑏%𝑏%𝑎#, where
𝛽 ≥ 1, 𝛼 + 𝛽 ≤ 𝑝.

Ø Now, consider 𝑘 = 0. Then the string after the pumping
becomes 𝑤& = 𝑥𝑦'𝑧 = 𝑥𝑧 = 𝑎#$"𝑏%𝑏%𝑎#. Note that since 𝛽 ≥ 1,
there’s no way for 𝑤′ to be in the form of a string followed by its
reverse; hence 𝑤′ ∉ 𝐿. Contradiction. ⟹ 𝐿 not regular.

Pumping Lemma Remarks

▪ How do we know what string we need to choose?
• Trial and Error and some eureka
• 𝐿 = 𝑤𝑤$ 𝑤 ∈ {𝑎, 𝑏}∗}, if we’d chosen 𝑠 = 𝑎'𝑎', then

for 𝑠(= 𝑎')*𝑎', then adversary can just choose 𝛽 ≥ 1
to be of even length, such that 𝑠(= 𝑤′𝑤′$. So, choosing
such an 𝑠 has no use for us.

• 𝐿 = 𝑎'𝑏+ 𝑚 ≠ 𝑛, 𝑛,𝑚 ≥ 1}, by choose 𝑠 = 𝑎%𝑏%," or
𝑠 = 𝑎%𝑏#%, can we find some integer 𝑘 such for 𝑠(
= 𝑥𝑦&𝑧, number of a’s equals to number of b’s.
[We saw this in class]

Exercise 3: Pumping Lemma

Exercise: Prove that 𝐿 = 𝑎+𝑏' 𝑚 < 𝑛} is not regular.
1. What string s should we choose?
2. What does the pumping lemma tell us?
3. How to complete the proof?

