CS 3313
 Foundations of Computing:

Lab 4: Regular Expessions Review and the Pumping Lemma

Outline

D: Regular Expressions

- NFA to Regular Expressions Conversion
- NFA/DFA Pumping Lemma

Languages Associated with Regular Expressions

- A regular expression (RE) \mathbf{r} denotes a language $\mathbf{L}(\mathbf{r})$
- Basis: Assuming that r_{1} and r_{2} are regular expressions:

1. The regular expression \emptyset denotes the empty set
2. The regular expression ϵ denotes the set $\{\epsilon\}$
3. For any a in the alphabet, the regular expression a denotes the set \{a\}

- Inductive step: if r_{1} and r_{2} are regular expressions, denoting languages $L\left(r_{1}\right)$ and $L\left(r_{2}\right)$ respectively, then

1. $r_{1} \cup r_{2}$ is a RE denoting the language $L\left(r_{1}\right) \cup L\left(r_{2}\right)$
2. $r_{1} r_{2}$ is a RE denoting the language $L\left(r_{1}\right) \circ L\left(r_{2}\right)$
3. $\left(r_{1}\right)$ is a RE denoting the language $L\left(r_{1}\right)$
4. $\left(r_{1}\right)^{*}$ is a RE denoting the language $\left(L\left(r_{1}\right)\right)^{*}$

Deriving Regular Expressions

- "map" property in the language to a Reg.Expr. Pattern
- Break down the properties into union, concatenation, star
- Start with smallest reg expression (simplest property)
- Ex: all strings in alphabet $\{\mathrm{a}, \mathrm{b}\}=(a \cup b)^{*}$
- Two consecutive a's = aa
- Ends with a pattern aba: $(a \cup b)^{*} a b a$
-

Regular Expressions Examples

1. $L_{1}=\{$ all strings over alphabet $\{a, b, c\}$ that contain no more than three a's \}
2. $L_{2}=\{$ all binary strings ending in 01$\}$

Regular Expressions Examples

1. $L_{1}=\{$ all strings over alphabet $\{a, b, c\}$ that contain no more than three a's \}

- Can contain zero a's or 1 a or 2 a's or 3 a's; and can have any number of b, c before and after
- $=(b \cup c)^{*} \cup\left((b \cup c)^{*} a(b \cup c)^{*}\right) \cup\left((b \cup c)^{*} a(b \cup c)^{*} a(b\right.$ $\left.\cup c)^{*}\right) \cup\left((b \cup c)^{*} a(b \cup c)^{*} a(b \cup c)^{*} a(b \cup c)^{*}\right)$

2. $L_{2}=\{$ all binary strings ending in 01$\}$

Regular Expressions Examples

1. $L_{1}=\{$ all strings over alphabet $\{a, b, c\}$ that contain no more than three a's \}

- Can contain zero a's or 1 a or 2 a's or 3 a's; and can have any number of b, c before and after
- $=(b \cup c)^{*} \cup\left((b \cup c)^{*} a(b \cup c)^{*}\right) \cup\left((b \cup c)^{*} a(b \cup c)^{*} a(b\right.$ $\left.\cup c)^{*}\right) \cup\left((b \cup c)^{*} a(b \cup c)^{*} a(b \cup c)^{*} a(b \cup c)^{*}\right)$

2. $L_{2}=\{$ all binary strings ending in 01$\}$

- Any string win $\{0,1\}^{*}$ followed by $01=(0 \cup 1)^{*} 01$

Exercise 1: Regular Expressions - Work in groups

$\mathrm{L}_{3}=\{$ all binary strings that do not end in 01$\}$

- Hint: you can have strings of length 0 or length 1 - what are they ?
- If string has length two or more, then what substrings can it end in (i.e., what can the rightmost two symbols be ?)
- It cannot end in 01

Outline

- Regular Expressions

NFA to Regular Expressions Conversion

- NFA/DFA Pumping Lemma

DFA/NFA to Regular Expression

1. State Elimination

- We outlined a procedure in the lecture based on state elimination
- You will need to do this on the homework

2. Alternate approach

- Examine the automaton and figure out the expressions for paths from start to a final state
- This works well for simple DFA/NFA, but may be hard for more complicated examples

DFA/NFA to Regular Expression - Alternate Approach

- language accepted by a DFA/NFA $=\{\mathrm{w} \mid$ there is a path labelled w from start state to a final state $\}$
- To find regular expression for the language accepted by a DFA/NFA, find the labels (and reg. expr.) of the paths from start state to each final state
- Concatenate labels on the path - the label is the regular expression
-Concatenate labels on the subpaths
- If we have two choices of paths with labels w_{1} and w_{2} then "or" the paths to get $\left(w_{1} \cup w_{2}\right)$
- If there is a cycle, with path labelled w, then w^{*}

NFA to Regular Expression - Example 1

- Find a regular expression corresponding to below NFA:

Example 1 by Node Elimination

Original DFA

1. Add start state to avoid incoming edges

2. Remove q_{0}

Example 1 by Node Elimination

3. Remove q_{1}

4. Remove q_{2}

5. Read off answer

L=b*ab*ab*a

NFA to Regular Expression - Alternate Approach

- Find expression for paths from q_{0} to q_{3} :
- Paths from q_{0} to q_{1} followed by q_{1} to q_{2} followed by q_{2} to q_{3}
- b^{*} a followed by b^{*} a followed by $b^{*} \mathrm{a}$
- Reg expr= $b^{*} a b^{*} a b^{*} a$

Exercise 2: NFA to Reg. Exp. - Work in groups

- You can use either approach here, but on the homework must use node elimination

Outline

- Regular Expressions
- NFA to Regular Expressions Conversion NFA/DFA Pumping Lemma

How to prove a language is not regular... The Pumping Lemma for Regular Languages

For every regular language L
There is an integer p, such that (note; you cannot fix p)
For every string w in L of length $\geq p$ (you can choose w)
We can write $w=x y z$ such that:

1. $\quad|x y| \leq p$ (this lets you focus on pumping within first p symbols)
2. $|y|>0 \quad$ (y cannot be empty)
3. For all $i \geq 0, x y^{i} z$ is in L. (to get contradiction find one value of i where pumped string is not in L)

Pumping Lemma as an Adversarial Game

1. Player 1 (me) picks language L to be proved nonregular * Prove $L=\left\{s s^{R} \mid s \in\{a, b\}^{*}\right\}$ is not regular.
2. Player 2 picks p, but doesn't tell me what p is, player 1 must win for all values of p
3. Player 1 picks a string w, which may depend on p, and must be of length at least p
> Assume L is regular. Let $\mathrm{w}=a^{p} b^{1} b^{1} a^{p} \in L$,
i.e., $s=a^{p} b^{1}$; as well as $|s| \geq p$.

Note: Words in purple are the example wordings we use in this type of proofs.

Pumping Lemma as an Adversarial Game

4. Player 2 divides w into $x y z$ s.t. $|y|>0$ and $|x y|<=p$

- He does not tell player 1 this division, player 1's strategy must work for all choices
> Then by the Pumping Lemma, w can be divided into three parts $w=x y z$, such that $x=a^{\alpha}, y=a^{\beta}, z=a^{p-\alpha-\beta} b^{1} b^{1} a^{p}$, where $\beta \geq 1,(\alpha+\beta) \leq p$.

5. Player 1 "wins" by picking an integer $k>=0$, which may be a function of $\mathrm{p}, \mathrm{x}, \mathrm{y}$, and z , such that $x y^{k} z \notin L$
$>$ Now, consider $k=0$. Then the string after the pumping becomes $w^{\prime}=x y^{0} z=x z=a^{p-\beta} b^{1} b^{1} a^{p}$. Note that since $\beta \geq 1$, there's no way for w^{\prime} to be in the form of a string followed by its reverse; hence $w^{\prime} \notin L$. Contradiction. $\Rightarrow L$ not regular.

Pumping Lemma Remarks

- How do we know what string we need to choose?
- Trial and Error and some eureka
- $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$, if we'd chosen $s=a^{n} a^{n}$, then for $s^{\prime}=a^{n-\beta} a^{n}$, then adversary can just choose $\beta \geq 1$ to be of even length, such that $s^{\prime}=w^{\prime} w^{\prime R}$. So, choosing such an s has no use for us.
- $L=\left\{a^{n} b^{m} \mid m \neq n, n, m \geq 1\right\}$, by choose $s=a^{p} b^{p+1}$ or $s=a^{p} b^{2 p}$, can we find some integer k such for s^{\prime} $=x y^{k} z$, number of a's equals to number of b's.
[We saw this in class]

Exercise 3: Pumping Lemma

Exercise: Prove that $L=\left\{a^{m} b^{n} \mid m<n\right\}$ is not regular.

1. What string s should we choose?
2. What does the pumping lemma tell us?
3. How to complete the proof?
