CS 3313
Foundations of Computing:

Lab 4: Regular Expessions
Review and the Pumping Lemma

Outline

= Regular Expressions
 NFA to Regular Expressions Conversion
 NFA/DFA Pumping Lemma

Languages Associated with Regular Expressions

= A regular expression (RE) r denotes a language L(r)
= Basis: Assuming that r; and r, are regular expressions:
1. The regular expression @ denotes the empty set
2. The regular expression € denotes the set { € }
3. Forany ain the alphabet, the regular expression a denotes the set
{a}
= Inductive step: if r; and r, are regular expressions, denoting
languages L(r,) and L(r,) respectively, then
r, Ur, is a RE denoting the language L(r;) U L(r,)
rir, is a RE denoting the language L(ry)oL(r,)
(r;) is a RE denoting the language L(r,)

N e

(r,)* is a RE denoting the language (L(r,))*

Deriving Regular Expressions

= "map” property in the language to a Reg.Expr. Pattern
= Break down the properties into union, concatenation, star

= Start with smallest reg expression (simplest property)

= Ex: all strings in alphabet {a,b}=(a U b)*
» Two consecutive a’s = aa

= Ends with a pattern aba: (a U b)*aba

Regular Expressions Examples

1. L,={all strings over alphabet {a,b,c} that contain no more than
three a’s }

2. L,={all binary strings ending in 01 }

Regular Expressions Examples

1. L,={all strings over alphabet {a,b,c} that contain no more than
three a’s }

* Cancontainzeroa’sorlaor2a’sor3a’s;and can have any

number of b,c before and after
« =(bUuc)*uU ((b Uc)albu c)*) U ((b Uc)*a(bUc)*a(b
U c)*) U ((b Uc)*a(buUc)*a(bUc)*a(bu c)*)

2. L,={all binary strings ending in 01 }

Regular Expressions Examples

1.

L,={ all strings over alphabet {a,b,c} that contain no more than
three a’s }
* Cancontainzeroa’sorlaor2a’sor3a’s;and can have any

number of b,c before and after
« =(bUuc)*uU ((b Uc)albu c)*) U ((b Uc)*a(bUc)*a(b
U c)*) U ((b Uc)*a(buUc)*a(bUc)*a(bu c)*)

L, = { all binary strings ending in 01 }
* Anystring win {0,1}* followed by 01= (0U 1)*01

Exercise 1: Regular Expressions — Work in groups

L; = { all binary strings that do not end in 01 }
e Hint: you can have strings of length 0 or length 1 —what are
they ?
e If string has length two or more, then what substrings can it
end in (i.e., what can the rightmost two symbols be ?)

- Jtcannotend in 01

Outline

 Regular Expressions
P = NFA to Regular Expressions Conversion
 NFA/DFA Pumping Lemma

DFA/NFA to Regular Expression

1. State Elimination
* We outlined a procedure in the lecture based on state
elimination

e You will need to do this on the homework

2. Alternate approach
 Examine the automaton and figure out the expressions for
paths from start to a final state
* This works well for simple DFA/NFA, but may be hard for
more complicated examples

DFA/NFA to Regular Expression — Alternate Approach

* language accepted by a DFA/NFA = { w | there is a path labelled w

from start state to a final state}

* To find regular expression for the language accepted by a
DFA/NFA, find the labels (and reg. expr.) of the paths from start
state to each final state
eConcatenate labels on the path — the label is the regular

expression
—-Concatenate labels on the subpaths

|f we have two choices of paths with labels w; and w, then “or’
the paths to get (w; U w,)

)

o|f there is a cycle, with path labelled w, then w*

NFA to Regular Expression — Example 1

* Find a regular expression corresponding to below NFA:

Example 1 by Node Elimination

Original DFA

1. Add start state to
avoid incoming edges

2. Remove qq

Example 1 by Node Elimination

start

3. Remove q; @ b*ab*a
start

4. Remove q, @ b*ab*ab*a

5. Read off answer L=b*ab*ab*a

NFA to Regular Expression — Alternate Approach

b b b

a a a
start

= Find expression for paths from q, to qs:
= Paths from q, to q, followed by q, to q, followed by g, to q;
= b* a followed by b*a followed by b*a

= Regexpr=b*a b*ab*a

Exercise 2: NFA to Reg. Exp. — Work in groups

= You can use either approach here, but on the homework must use

node elimination

start

Outline

 Regular Expressions
 NFA to Regular Expressions Conversion
= NFA/DFA Pumping Lemma

How to prove a language is not regular...
The Pumping Lemma for Regular Languages

For every regular language L
There is an integer p, such that (note; you cannot fix p)
For every string w in L of length > p (you can choose w)
We can write w = xyz such that:
I. |xy| <p (this lets you focus on pumping within first p symbols)
2. |y| >0 (ycannot be empty)

3. Foralli> 0, xyzisin L. (togetcontradiction find one

value of i where pumped string is not
inL)

18

Pumping Lemma as an Adversarial Game

1. Player 1 (me) picks language L to be proved nonregular

< Prove L = {ss® | s € {a, b}*} is not regular.

2. Player 2 picks p, but doesn'’t tell me what p is, player 1
must win for all values of p

3. Player 1 picks a string w, which may depend on p, and
must be of length at least p

> Assume L is regular. Letw = aPb'blaP € L,
i.e., s = aPbl; as well as |s| > p.

Note: Words in purple are the example wordings we use in this type of proofs.

Pumping Lemma as an Adversarial Game

4. Player 2 divides w into xyz s.t. |y|>0 and |xy|<=p
 He does not tell player 1 this division, player 1's
strategy must work for all choices

» Then by the Pumping Lemma, w can be divided into three parts
w = xyz, such that x = a%,y = af,z = a?~*Fp1p1aP, where
=1 (ax+pB) <p.

5. Player 1 “wins” by picking an integer k>=0, which may be a
function of p,x,y, and z, such that xy*z ¢ L

» Now, consider k = 0. Then the string after the pumping
becomes w' = xy°z = xz = aPPb'b1aP. Note that since g > 1,
there’s no way for w' to be in the form of a string followed by its
reverse; hence w' € L. Contradiction. = L not regular.

Pumping Lemma Remarks

= How do we know what string we need to choose?

« Trial and Error and some eureka

o L={wwf|w € {a, b}, if we'd chosen s = a™a™, then
for s’ = a®FBa™, then adversary can just choose 8 > 1
to be of even length, such that s" = w'w'k. So, choosing
such an s has no use for us.

e L={a"h™|m #n, n,m =1}, by choose s = aPbP*! or
s = aPb??, can we find some integer k such for s’
= xy*z, number of a’'s equals to number of b’s.
[We saw this in class]

Exercise 3: Pumping Lemma

Exercise: Prove that L = {a™b™ | m < n} is not regular.
1. What string s should we choose?
2. What does the pumping lemma tell us?

3. How to complete the proof?

