CS 3313
Foundations of Computing:

Examples of use of CFL
Pumping Lemma



Going Back to Before the Exam

* Today we will practice using the CFL pumping lemma

= You will need this on the next homework



Statement of the CFL Pumping Lemma

For every context-free language L
There is an integer p, such that
For every string s in L of length > p
There exists s = uvwxy such that:
1. |vwx|<p.
2. |vx|>0.

3. Foralli> 0, uviwxlyisin L.

* You cannot fix the value of p
« vwx can fall anywhere in the string
as long as it satisfies |vwx| <p
=> have to consider all cases for vwx



L,:{a™ | mis aprime number,

1. Assume 1t 1s CFL and let p be the constant of the lemma
2. Pick z= a" where n 1s the smallest prime larger than p

3. Z= Uuvwxy

 All the substrings consist entirely of a’s
e Letv=d and x=a*

* Remaining string uwy consists of n — (j+k) a’s.

* From lemma, we know that / <j+k<p



L,:{a™|misaprime number}

= From lemma, uv'wxyisin L, foralli > 0

» we need to pick an 1 so that the resulting number of a’s are not prime.

= How to get a contradiction: pick a value of i such that we end up

with a number that can be factored

" Pick i=n+1, since vx consists of (j+k) a’s

o uviwxly = gn-0+h gt DG+ = gln—G+0) + (n+ Di+k)

" So, the number of a’s is

m = (n—(+k) + (n+1)(+K) = n+n(+k) = n(1+j+k)
» Since (j+k)>1, (I1+j+k) > 2

" Therefore m=n(1+j+k) is not a prime
» Since it has two factors, both greater than 1.



L,:{w|w€ {ab,c}* and n (w)=n,(w)*n_.(w) }

* This language does not place restrictions on the pattern

* n,(w)=number of a’s in the string w, etc.
 We can have a’s after b’s etc.

» [Intuition: we need to keep track of number of b’s and ¢’s, and then
multiply the two...this implies we need to store two variables

(n,(w) and n.(w) ). likely not context free



L, {w|wE€ {a,b,c}*, and n (w)=n,(w)*n_.(w) }
» Assume L, context free, let p be the constant of the lemma

" We need to pick values for n, (w), n,(w), n.(w) which will make it
easy to prove the n,(w) in pumped string cannot be the product of
ny(w) and n.(w)

* Additionally, pick a pattern that makes 1t easier to determine the
different cases of vwx



L, {w|wE€ {ab,c}*, and n (w)=n,(w)*n_.(w)

= Let p be the constant and pick z= a”b?c? where m=p-
* why pick this as z ?

« We want to construct an instance of n,(w)*n_.(w) which will make it easier to
contradict: if we pick perfect squares then we know that the next perfect
square after p? is (p+1)° which is (2p+1) more than p?

« Lemma states, ywx| <p and |vx| > 1

= Next: look at the possible cases for where vwx could be

* We need to find a contradiction for each of these cases



L, {w|wE€ {ab,c}*, and n (w)=n,(w)*n_.(w)
= Let’s look at the possible cases for where vwx could be

* We need to find a contradiction for each of these cases

ad... ... aabb............bbcc... ..... cc
p’as pbs pcs
‘ case 1 ' ‘case 2 ' ‘case 3 '
case 4 ‘ case 5
Observation:

vX 1n cases 1,2,3 consist of one type of symbol/terminal
vX 1n cases 4,5 consists of two types of symbols



Cases 1, 2, and 3
LZ: {W | wE {d,b,C} *) and na(w)= nb(w) *nc(w)

= (Case 1: vx consists entirely of a’s => v= o/, x=a*

* From Lemma: (j+k) > 1 and (j+k) <p
» Consider z' = uv?wx?y = aP*+U+ijppp

* But, ny(w)=n.(w)=p
o Since p’+(j+k) > p?, we know that ng(w) + ny(w) * n.(w)

" Therefore z’ it is not in the L,

" (Cases 2, 3: i.e. vx consists entirely of b’s or entirely of ¢’s

» Setting i=2, we get an increase in either the number of b’s or c¢’s without
increasing a’s. So, ng,(w) # np(w) * n.(w)



Cases 4,5
L,={w|wE€ {ab,c}*, and n (w)= n,(w)*n_.(w)

= (Cases 4,5 are a bit more complicated

= if either v or x consist of two different symbols then uv?wx?y will have a’s after

b’s etc.....but this is allowed 1n this language!!
= (Case 4: vx consists of j a’s and £ b’s — we don’t care about the exact pattern

= (Case 5: vx consists of j b’s and k ¢c’s — we don’t care about the exact pattern



Cases 4,5
L2= {W | wE {d,b,C} *) and na(w)= nb(w) *nc(w)

= (Case 4: vx consists of j a’s and £ b’s — we don’t care about the exact pattern
= From conditions of the lemma, (j+k) > 0 and (j+k) <p

= Therefore, z” = uv’wx?y will have
* ny(z)= (p° +))
* my(z)=(ptk
* n(z)=p
= Question: is (p? +j) = p(p+k) ?
o If p? +j = p?+ pk then j= pk
— If k=0 then j=0 contradiction since (7+k)>0
- If k>0 then j=pk > p, so (j+k)>p  contradiction since (j+k) <p

= (Case 5 1s similar



Exercise:
L;_{xwwky|x=p, xycf{0,1}* wec {a,b}*}

* Intuition: While recognizing ww” can be done using a stack,
recognizing x=y implies a stack storage 1s not sufficient

 This property is like the language ww — see earlier proof (and in textbook)
that it 1s not context free.

" Application of pumping lemma now requires carefully choosing
the string so we can simplify the proof and focus in on what seems

to be the non-context free property of x=y.

= Assume 1t 1s CFL and let p be the constant of the lemma



L:{xwwly|x=y, x,ye{0,1}* we fab}*}

* Hint: what 1s the smallest string that w can be ? What does a string
z look like with this smallest “value” for w ?

* Next: write out this string and consider the different cases.



