
CS 3313
Foundations of Computing:

Examples of use of CFL 
Pumping Lemma 



Going Back to Before the Exam

§ Today we will practice using the CFL pumping lemma
§ You will need this on the next homework
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Statement of the CFL Pumping Lemma

For	every	context-free	language	L

There	is	an	integer	p,	such	that

For	every	string	s	in	L	of	length	> p
There	exists	s	=	uvwxy	such	that:

1. |vwx|	< p.

2. |vx|	>	0.

3. For	all	i	> 0,	uviwxiy	is	in	L.

• You cannot fix the value of p
• vwx can fall anywhere in the string 

as long as it satisfies |vwx| < p
=>  have to consider all cases for vwx



L1: { am | m is a prime number}

1. Assume it is CFL and let p be the constant of the lemma

2. Pick z= an where n is the smallest prime larger than p

3. z= uvwxy
• All the substrings consist entirely of a’s
• Let v= aj and x=ak

• Remaining string uwy consists of  n – (j+k) a’s.

§ From lemma,  we know that 1 < j+k < p



L1: { am | m is a prime number}

§ From lemma, uviwxiy is in L1 for all i > 0
• we need to pick an i so that the resulting number of a’s are not prime.

§ How to get a contradiction: pick a value of i such that we end up 
with a number that can be factored

§ Pick i= n+1, since vx consists of (j+k) a’s
• uviwxiy = an-(j+k) a(n+1)(j+k) = a(n – (j+k) + (n+1)(j+k))

§ So, the number of a’s is
m = (n – (j+k) + (n+1)(j+k)) = n+n(j+k) = n(1+j+k).

§ Since (j+k)>1 , (1+j+k) > 2

§ Therefore m=n(1+j+k) is not a prime
• Since it has two factors, both greater than 1.



L2: { w | w ∈ {a,b,c}*, and na(w)= nb(w)*nc(w) }
§ This language does not place restrictions on the pattern

• na(w)= number of a’s in the string w, etc.
• We can have a’s after b’s etc.

§ Intuition: we need to keep track of number of b’s and c’s, and then 
multiply the two…this implies we need to store two variables 
(nb(w) and nc(w) ): likely not context free



L2: { w | w ∈ {a,b,c}*, and na(w)= nb(w)*nc(w) }
§ Assume L2 context free, let p be the constant of the lemma

§ We need to pick values for na(w), nb(w), nc(w) which will make it 
easy to prove the na(w) in pumped string cannot be the product of 
nb(w) and nc(w) 

§ Additionally, pick a pattern that makes it easier to determine the 
different cases of vwx



L2: { w | w ∈ {a,b,c}*, and na(w)= nb(w)*nc(w)

§ Let p be the constant and pick z= ambpcp where m=p2 

• why pick this as z ?
• We want to construct an instance of nb(w)*nc(w) which will make it easier to 

contradict: if we pick perfect squares then we know that the next perfect 
square after p2 is (p+1)2 which is (2p+1) more than p2

• Lemma states, |vwx| < p  and |vx| > 1

§ Next:  look at the possible cases for where vwx could be
• We need to find a contradiction for each of these cases



L2: { w | w ∈ {a,b,c}*, and na(w)= nb(w)*nc(w)
§ Let’s look at the possible cases for where vwx could be

• We need to find a contradiction for each of these cases

aa……aabb…………bbcc……..cc

case 1 case 2 case 3

case 4 case 5

p2 a’s p b’s p c’s

Observation:  
vx in cases 1,2,3 consist of one type of symbol/terminal
vx in cases 4,5 consists of two types of symbols 



Cases 1, 2, and 3
L2: { w | w ∈ {a,b,c}*, and na(w)= nb(w)*nc(w)

§ Case 1: vx consists entirely of a’s => v= aj, x=ak

§ From Lemma: (j+k) > 1 and (j+k) < p 

§ Consider 𝑧! = 𝑢𝑣"𝑤𝑥"𝑦 = 𝑎 #!$(&$') 𝑏#𝑐#

• But, nb(w)=nc(w)=p
• Since p2+(j+k) > p2, we know that 𝑛! 𝑤 ≠ 𝑛" 𝑤 ∗ 𝑛#(𝑤)

§ Therefore z’ it is not in the L2

§ Cases 2, 3: i.e. vx consists entirely of b’s or entirely of c’s
• Setting i=2, we get an increase in either the number of b’s or c’s without 

increasing a’s.  So, 𝑛! 𝑤 ≠ 𝑛" 𝑤 ∗ 𝑛#(𝑤)



Cases 4,5
L2 ={ w | w ∈ {a,b,c}*, and na(w)= nb(w)*nc(w)
§ Cases 4,5 are a bit more complicated
§ if either v or x consist of two different symbols then uv2wx2y will have a’s after 

b’s etc…..but this is allowed in this language!!

§ Case 4:  vx consists of j a’s and k b’s – we don’t care about the exact pattern
§ Case 5:  vx consists of j b’s and k c’s – we don’t care about the exact pattern



Cases 4,5
L2= { w | w ∈ {a,b,c}*, and na(w)= nb(w)*nc(w)

§ Case 4:  vx consists of j a’s and k b’s – we don’t care about the exact pattern
§ From conditions of the lemma, (j+k) > 0 and (j+k) < p

§ Therefore, z’ = uv2wx2y will have 
• na(z’)=  (p2 + j) 
• nb(z’)= (p + k) 
• nc(z’)= p 

§ Question: is (p2 +j) = p(p+k) ?
• If p2 + j = p2+ pk then j= pk

- If k=0 then j=0 contradiction since (j+k)>0
- If k>0 then j= pk > p, so (j+k)> p       contradiction since (j+k) < p

§ Case 5 is similar



Exercise:
L3 = { x w wR y | x=y, x,y ϵ {0,1}*, w ϵ {a,b}* }

§ Intuition: While recognizing wwR can be done using a stack, 
recognizing x=y implies a stack storage is not sufficient
• This property is like the language ww – see earlier proof (and in textbook) 

that it is not context free.

§ Application of pumping lemma now requires carefully choosing 
the string so we can simplify the proof and focus in on what seems 
to be the non-context free property of  x=y.

§ Assume it is CFL and let p be the constant of the lemma



L3: { x w wR y | x=y, x,y ϵ {0,1}*, w ϵ {a,b}* }

§ Hint: what is the smallest string that w can be ? What does a string 
z look like with this smallest “value” for w ? 

§ Next: write out this string and consider the different cases.


