CS 3313
 Foundations of Computing:

Examples of use of CFL
Pumping Lemma

Going Back to Before the Exam

- Today we will practice using the CFL pumping lemma
- You will need this on the next homework

Statement of the CFL Pumping Lemma

For every context-free language L
There is an integer p, such that
For every string s in L of length $\geq p$
There exists $s=u v w x y$ such that:

1. $|v w x| \leq p$.
2. $|v x|>0$.
3. For all $i \geq 0, u v^{i} w x^{i} y$ is in L.

- You cannot fix the value of p
- vwx can fall anywhere in the string as long as it satisfies $|\nu w x| \leq p$
=> have to consider all cases for $v w x$

$L_{l}:\left\{a^{m} \mid m\right.$ is a prime number $\}$

1. Assume it is CFL and let p be the constant of the lemma
2. Pick $z=a^{n}$ where n is the smallest prime larger than p
3. $z=u v w x y$

- All the substrings consist entirely of a's
- Let $v=a^{j}$ and $x=a^{k}$
- Remaining string $u w y$ consists of $n-(j+k)$ a's.
- From lemma, we know that $l \leq j+k \leq p$

$L_{l}:\left\{a^{m} \mid m\right.$ is a prime number $\}$

- From lemma, $u v^{i} w x^{i} y$ is in L_{1} for all $i \geq 0$
- we need to pick an i so that the resulting number of a's are not prime.
- How to get a contradiction: pick a value of i such that we end up with a number that can be factored
- Pick $i=n+1$, since $v x$ consists of $(j+k) a$'s
- $u \nu^{i} w x^{i} y=a^{n-(j+k)} a^{(n+l)(j+k)}=a^{(n-(j+k)+(n+l)(j+k))}$
- So, the number of a's is

$$
m=(n-(j+k)+(n+1)(j+k))=n+n(j+k)=n(1+j+k) .
$$

- Since $(j+k) \geq 1,(1+j+k) \geq 2$
- Therefore $m=n(1+j+k)$ is not a prime
- Since it has two factors, both greater than 1.

$L_{2}:\left\{w \mid w \in\{a, b, c\}^{*}\right.$, and $\left.n_{a}(w)=n_{b}(w) * n_{c}(w)\right\}$

- This language does not place restrictions on the pattern
- $n_{a}(w)=$ number of a 's in the string w , etc.
- We can have a's after b's etc.
- Intuition: we need to keep track of number of b's and c's, and then multiply the two...this implies we need to store two variables $\left(n_{b}(w)\right.$ and $n_{c}(w)$): likely not context free

$L_{2}:\left\{w \mid w \in\{a, b, c\}^{*}\right.$, and $\left.n_{a}(w)=n_{b}(w) * n_{c}(w)\right\}$

- Assume L_{2} context free, let p be the constant of the lemma
- We need to pick values for $n_{a}(w), n_{b}(w), n_{c}(w)$ which will make it easy to prove the $n_{a}(w)$ in pumped string cannot be the product of $n_{b}(w)$ and $n_{c}(w)$
- Additionally, pick a pattern that makes it easier to determine the different cases of $v w x$

$L_{2}:\left\{w \mid w \in\{a, b, c\}^{*}\right.$, and $n_{a}(w)=n_{b}(w) * n_{c}(w)$

- Let p be the constant and pick $z=a^{m} b^{p} c^{p}$ where $m=p^{2}$
- why pick this as z ?
- We want to construct an instance of $n_{b}(w){ }^{*} n_{c}(w)$ which will make it easier to contradict: if we pick perfect squares then we know that the next perfect square after p^{2} is $(p+1)^{2}$ which is $(2 p+1)$ more than p^{2}
- Lemma states, $|v w x| \leq p$ and $|v x| \geq 1$
- Next: look at the possible cases for where vwx could be
- We need to find a contradiction for each of these cases

$L_{2}:\left\{w \mid w \in\{a, b, c\}^{*}\right.$, and $n_{a}(w)=n_{b}(w) * n_{c}(w)$

- Let's look at the possible cases for where vwx could be
- We need to find a contradiction for each of these cases

$$
a a \ldots \ldots a a b b \ldots \ldots b b c c c c
$$

Observation:
vx in cases $1,2,3$ consist of one type of symbol/terminal vx in cases 4,5 consists of two types of symbols

Cases 1, 2, and 3
$L_{2}:\left\{w \mid w \in\{a, b, c\}^{*}\right.$, and $n_{a}(w)=n_{b}(w) * n_{c}(w)$

- Case 1: $v x$ consists entirely of a 's $=>v=a^{j}, x=a^{k}$
- From Lemma: $(j+k) \geq 1$ and $(j+k) \leq p$
- Consider $z^{\prime}=u v^{2} w x^{2} y=a^{\left\{p^{2}+(j+k)\right\}} b^{p} c^{p}$
- But, $n_{b}(w)=n_{c}(w)=p$
- Since $p^{2}+(j+k)>p^{2}$, we know that $n_{a}(w) \neq n_{b}(w) * n_{c}(w)$
- Therefore z^{\prime} it is not in the L_{2}
- Cases 2, 3: i.e. vx consists entirely of b's or entirely of c's
- Setting $i=2$, we get an increase in either the number of b 's or c 's without increasing a's. So, $n_{a}(w) \neq n_{b}(w) * n_{c}(w)$

Cases 4,5

$L_{2}=\left\{w \mid w \in\{a, b, c\}^{*}\right.$, and $n_{a}(w)=n_{b}(w) * n_{c}(w)$

- Cases 4,5 are a bit more complicated
- if either v or x consist of two different symbols then $u v^{2} w x^{2} y$ will have a's after b's etc.....but this is allowed in this language!!
- Case 4: $v x$ consists of j a's and k b's - we don't care about the exact pattern
- Case 5: $v x$ consists of j b's and k c's - we don't care about the exact pattern

Cases 4,5
$L_{2=}\left\{w \mid w \in\{a, b, c\}^{*}\right.$, and $n_{a}(w)=n_{b}(w) * n_{c}(w)$

- Case 4: $v x$ consists of j a's and k b's - we don't care about the exact pattern
- From conditions of the lemma, $(j+k)>0$ and $(j+k) \leq p$
- Therefore, $\mathrm{z}^{\prime}=u v^{2} w x^{2} y$ will have
- $n_{a}\left(z^{\prime}\right)=\left(p^{2}+j\right)$
- $n_{b}\left(z^{\prime}\right)=(p+k)$
- $n_{c}\left(z^{\prime}\right)=p$
- Question: is $\left(p^{2}+j\right)=p(p+k)$?
- If $p^{2}+j=p^{2}+p k$ then $j=p k$
- If $k=0$ then $j=0 \quad$ contradiction since $(j+k)>0$
- If $k>0$ then $j=p k \geq p$, so $(j+k)>p \quad$ contradiction since $(j+k) \leq p$
- Case 5 is similar
Exercise:
$L_{3}=\left\{x w w^{R} y \mid x=y, x, y \in\{0,1\}^{*}, w \in\{a, b\}^{*}\right\}$
- Intuition: While recognizing $w w^{R}$ can be done using a stack, recognizing $x=y$ implies a stack storage is not sufficient
- This property is like the language $w w$ - see earlier proof (and in textbook) that it is not context free.
- Application of pumping lemma now requires carefully choosing the string so we can simplify the proof and focus in on what seems to be the non-context free property of $x=y$.
- Assume it is CFL and let p be the constant of the lemma

$L_{3}:\left\{x w w^{R} y \mid x=y, x, y \in\{0,1\}^{*}, w \in\{a, b\}^{*}\right\}$

- Hint: what is the smallest string that w can be ? What does a string z look like with this smallest "value" for w ?
- Next: write out this string and consider the different cases.

