CS 3313

Foundations of Computing:

Lab 7

Turing Machine Transition Function

Takes two arguments

- A state in Q
- A tape input in Γ

Turing Machine Transition Function

Takes two arguments

- A state in Q
- A tape input in Γ
$\delta(q, x)$ - is undefined or a triple $\left(q^{\prime}, y, D \in\{L, R\}\right)$
- q' - a new state
- y-value to write on the tape
- D - direction to move the head - Left or Right

Turing Machine Transition Function

Takes two arguments

- A state in Q
- A tape input in Γ
$\delta(q, x)$ - is undefined or a triple ($q^{\prime}, y, D \in\{L, R\}$)
- q' - a new state
- y - value to write on the tape
- D - direction to move the head - Left or Right

Convention

- Just as with NFAs and PDAs, if transition is undefined TM goes to reject state
- If TM enters reject state it halts and rejects
- If TM enters accept state, it halts and accepts

Church-Turing Thesis

Anything that can be computed by an algorithm can be computed by a Turing Machine

Three Steps to Build a TM

1. Write an algorithm

- Describe at a high-level the logic for recognizing L
- By Church-Turing thesis, this describes a TM

2. Write a Turing-Machine algorithm

- Specify what happens to the tape (i.e., scan the tape until the first 1 and write a 0)
- Don't need to specify the control states
- This is usually enough - unless asked for the formal specification

3. Write the full specification

- Includes full specification of transition function and states of control machine (remember that this is a DFA/NFA)

Exercise 1: $\mathrm{L}=\left\{\boldsymbol{w} \boldsymbol{w} \mid \boldsymbol{w} \in\{\boldsymbol{a}, \boldsymbol{b}\}^{*}\right\}$

Step 1: Write an algorithm

Exercise 1: $\mathrm{L}=\left\{\boldsymbol{w} \boldsymbol{w} \mid \boldsymbol{w} \in\{\boldsymbol{a}, \boldsymbol{b}\}^{*}\right\}$

Step 1: Write an algorithm

1. Find the midpoint of the input
2. Check that the string before and after the midpoint are the same

Question(s):

- How do we find the midpoint?
- How do we check the two strings are equal?

Exercise 1: $\mathrm{L}=\left\{\boldsymbol{w} \boldsymbol{w} \mid \boldsymbol{w} \in\{\boldsymbol{a}, \boldsymbol{b}\}^{*}\right\}$

Step 1: Write an algorithm

1. Find the midpoint of the input
2. Check that the string before and after the midpoint are the same

Question(s):

- How do we find the midpoint?
- How do we check the two strings are equal?

Composing TMs

- Just like we compose algorithms
- Design TM for step 1, and then step 2 and call one after the other

Exercise 1: $\mathrm{L}=\left\{\boldsymbol{w} \boldsymbol{w} \mid \boldsymbol{w} \in\{\boldsymbol{a}, \boldsymbol{b}\}^{*}\right\}$

Step 2: Write a Turing-Machine Algorithm

- Describe what how to manipulate the tape

Exercise 1: $\mathrm{L}=\left\{\boldsymbol{w} \boldsymbol{w} \mid \boldsymbol{w} \in\{\boldsymbol{a}, \boldsymbol{b}\}^{*}\right\}$

Step 3 (OPTIONAL): Write a full description

- Give the transition diagram for the TM

Exercise 2: $L=\left\{a^{i} b^{j} c^{i} d^{j} \mid i, j>0\right\}$

Build TM to decide $\mathrm{L}-$ do Steps $1+2,3$ is optional

