
CS 3313
Foundations of Computing:

Lab 8

Decidable vs Undecidable problems

Algorithm = Turing machine that halts on all inputs (always
halts)
• Decision problem: the answer is “Yes” or “No”

A problem is undecidable if there is no algorithm (Turing machine

that always halts) that solves the problem
• Problem = language
• How do we show a problem is undecidable – need to prove the problem is

undecidable

A problem is decidable if there is an algorithm (Turing machine that

always halt) to solve the problem
• How do we show a problem is solvable – provide an algorithm that solves

the problem
• Key observation: the algorithm can be deterministic or non-deterministic

when we are trying to prove it is solvable/decidable

3

Decidable Problems

A problem is decidable or recursive if there is an algorithm to
answer it
• Recall: An “algorithm,” formally, is a TM that halts on all inputs,

accepted or not

Otherwise, the problem is undecidable.

Language is Turing-recognizable or recursively enumerable if it
is accepted by a TM
• TM halts and accepts if the string is in the language
• However, TM may not halt if the string is not in the language

Recall Definitions

Decidable Language: A language L is recursive if there is a
Turing machine that accepts the language and halts on all inputs

Turing-recognizable Language: if there is a Turing machine that
accepts the language by halting when the input string is in the
language
• The machine may or may not halt if the string is not in the language

M
w ϵ L(M)

Yes

No

w

M
w ϵ L(M)

Yesw

Recall the Relationships Among Language
Classes

Recall Proof that LTM is Undecidable
ATM = {⟨M, w⟩ | M is a TM and M(w) = 1}

• Assume that ATM is decided by TM H

H(⟨M, w⟩) = #accept if 𝑀 accepts w
reject if 𝑀 does not accept w

• Use H to build a TM D that checks whether a TM M accepts its own
description, and then does the opposite:

On Input ⟨M⟩, where M is a TM
1. Run H on input ⟨M, ⟨M⟩⟩
2. Output the opposite of what H outputs

D(⟨M⟩) = #accept if 𝑀 does not accept ⟨M⟩
reject if 𝑀 accepts ⟨M⟩

• Now consider what happens if we run D on ⟨D⟩

D(⟨D⟩) = #accept if 𝐷 does not accept ⟨D⟩
reject if 𝐷 accepts ⟨D⟩

Decidability…and Reducibility proof technique

Reducibility of a problem A to problem B
Given two problems A and B, problem A is reducible to problem
B if an algorithm for solving B can be used to solve problem A
• Therefore, solving A cannot be harder than solving B
• If A is undecidable and A is reducible to B, then B is undecidable

Idea: If you had a black box that can solve instances of B, can
you solve instances of A using calls to this Black box?
• The black box is the assumed Algorithm for B

Crucial step in the proof is the reduction “algorithm”
• This process should be an “algorithm” – i.e., a TM that always halts

Example: Proof that the halting problem is undecidable
HALTTM = { <M,w> | M halts on w }
Given any input and any machine, will the machine terminate or run forever?

Assume algorithm B for HALT
Reducibility algorithm R (HALTTM reducible to ATM):

• Run B(<M,w>), if it rejects then reject – M does not halt on w
• Otherwise Run M(w) and output what it outputs
• This algorithm R decides ATM

Exercise 1: L = { ⟨M⟩ | M is a TM and L(M)=∅ }

L = { ⟨M⟩ | M is a TM and L(M)=∅ }
Given a Turing machine M, does M accept any input?
• (i.e., does M accept the empty set)

Exercise 2: L = {⟨M1, M2⟩ | L(M1) ⊆ L(M2)} is Undecidable

Given any two Turing machines M1, M2 is the language accepted
by M1 a subset of language accepted by M2?
• Hint: Reduce to Exercise 1

