
CS 3313
Foundations of Computing:

Lab 9 – Asymptotic Notation

Time Complexity Background

In programming, we want to minimize the time it takes for our
algorithms to run
By reducing the number of operations we need to compute, we
see dramatic decreases in run-time
• This is essential! We want things ASAP!

For example, consider the following:

𝒏 𝒏𝟐 𝒏𝟑

1 1 1

10 100 1,000

100 10,000 1,000,000

1,000 1,000,000 1,000,000,000

Asymptotic Notation

When we compare programs, we look at them asymptotically
This is because we are concerned with the growth in time of our
functions as our value n (the number of elements we have)
increases
We saw an example of this on the previous slide, where a higher
power resulted in a higher growth rate
• We can demonstrate this visually as well

4

Big-O Notation

Big-O Notation helps us describe how long an algorithm takes by
setting an upper bound
For example, if we take two functions, f(n) and g(n), we can say:
• f(n) = O(g(n)) if and only if there exists constants 𝑐 > 0 and 𝑛! ≥ 1 s.t.

𝑓 𝑛 ≤ 𝑐 ∗ 𝑔(𝑛) for all 𝑛 ≥ 𝑛!
True or False:
• 5𝑛 + 3 = 𝑂 𝑛 ?
• 𝑛" + 5𝑛 + 3 = 𝑂 𝑛 ?
• 𝑛" + 5𝑛 + 3 = 𝑂(𝑛")?
• 𝑛" + 5𝑛 + 3 = 𝑂(𝑛#)?
• 3$ = 𝑂 3$%& ?

5

Big-O Notation

Now that we have defined what Big-O means, how can we show
that this holds true as n increases?
The trick to this is through the induction proof technique

6

Big-O Notation: Induction Proof

Let’s do the following example from the previous slide:
• 𝑛" + 5𝑛 + 3 = 𝑂(𝑛")
• 𝑛" + 5𝑛 + 3 ≤ 𝑐𝑛" Now, we pick values for c and 𝑛!
• 𝑛" + 5𝑛 + 3 ≤ 9𝑛" ∀ 𝑛 ≥ 𝑛! = 1
• Base case: 𝑛 = 1 à (1)" + 5 1 + 3 ≤ 9(1)"

à 9 ≤ 9
• Induction Hypothesis: Assume that 𝑘" + 5𝑘 + 3 ≤ 9𝑘" holds for a value

n=k
• Induction: Demonstrate that the equality holds for 𝑘 + 1:

(𝑘 + 1)! + 5 𝑘 + 1 + 3 ≤ 9(𝑘 + 1)!

(𝑘!+2𝑘 + 1) + 5𝑘 + 5 + 3 ≤ 9 𝑘! + 2𝑘 + 1
𝑘! + 7𝑘 + 9 ≤ 9𝑘! + 18𝑘 + 9
0 ≤ 8𝑘! + 11𝑘

Therefore, this is true, as we know 𝑘 ≥ 𝑛" = 1

7

Exercise 1:

𝐿1 = 𝑤𝑤2 𝑤 ∈ a, b}∗

• Give a 1-tape TM solution to solve this problem in 𝑂(𝑛") time
• Can we improve the time by having a 2-tape TM? If so, give a 2-tape TM

solution and describe its time complexity

8

Big-Omega and Big-Theta (Big-Ω and Big-θ)

Big-Ω denotes the following relationship between functions f(n)
and g(n):
• 𝑓 𝑛 = Ω 𝑔 𝑛 if and only if there exists constants 𝑐 > 0 and 𝑛" ≥ 1 s.t.

𝑓 𝑛 ≥ 𝑐 ∗ 𝑔(𝑛) for all 𝑛 ≥ 𝑛"
• For example, 3𝑛! = Ω 𝑛

Big-θ denotes the following relationship between functions f(n)
and g(n):
• 𝑓 𝑛 = 𝜃 𝑔 𝑛 if and only if there exists constants 𝑐#, 𝑐! > 0 and 𝑛" ≥ 1 s.t.

𝑐# ∗ 𝑔(𝑛) ≤ 𝑓 𝑛 ≤ 𝑐! ∗ 𝑔(𝑛) for all 𝑛 ≥ 𝑛"
• For example, 3𝑛 = 𝜃 𝑛

9

Transformations Between Notations

Here, we see that these relationships are connected
• For example, if f(n) = O(g(n)), then g(n) = Ω(f(n))

- Why is this?

• Additionally, if f(n) = O(g(n)) and simultaneously f(n) = Ω(g(n)), then
f(n) = θ(g(n))
- Why is this?

10

Exercise 2:

Prove or disprove the following:

• $ $%&
"

= Ω(𝑛")

• $ $%&
"

= 𝜃(𝑛")

• 2"$ = 𝑂(2$)

