CS 3313: Foundations of Computing

Review of Proof Techniques

Outline

Proof techniques

Sets and set operations

- Set: Collection of non-repeating items $S = \{1, a, \{c, d\}\}, |S| = 3$
- Common sets:
 - \mathbb{Z} set of integers \mathbb{Z}^+ set of positive integers
 - \mathbb{N} natural numbers \mathbb{R} Reals
 - Ø or {} empty set
- Set relations:
 - Membership: $5 \in \mathbb{Z}$, $3.1 \notin \mathbb{Z}$, $\{c, d\} \in \{1, a, \{c, d\}\}$
 - Subset: $\{1,2\} \subset \{1,2,3\}$
 - Union: $A \cup B$ Intersection: $A \cap B$ Complement: \overline{A}
 - De Morgan's Laws: $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$
 - Cartesian product: If $A = \{1,2,3\}, B = \{a,b\}$ $A \times B = \{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}$

Outline

- Math preliminaries
- Proof techniques

Proofs

This class will involve a lot of proofs.

General proof procedure:

- 1. Understand the statement without the math lingo
- 2. Build up an intuition in English or by picture, work through examples
 - This gets easier with practice
- 3. Construct proof
 - This part is procedural
 - Use facts and theorems you already know
 - Proof techniques will guide you

Writing proofs

- Be concise no multi-paragraph explanations
- Be precise use mathematic notation and logical reasoning
- Follow proof techniques this will give you a structure for the proof

Proof techniques

- Direct proof
- Proof by contradiction
- Proof by induction

Direct Proof

Produce a chain of logically sound deductions that justify the expected conclusion

• Theorem: $\overline{A \cup B} = \overline{A} \cap \overline{B}$

- Theorem: $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- Intuition: Any element not in the union of A and B must be outside of both A and B

- Theorem: $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- Intuition: Any element not in the union of A and B must be outside of both A and B
- Proof: Important, there are two directions to prove!
 - 1. Suppose $x \in \overline{A \cup B}$, then $x \in \overline{A} \cap \overline{B}$ If $x \in \overline{A \cup B}$, then $x \notin A \cup B$ (by definition of complement) So, $x \notin A$ and $x \notin B$ (by definition of union) Thus, $x \in \overline{A}$ and $x \in \overline{B}$ (by definition of complement) Therefore, $x \in \overline{A} \cap \overline{B}$ (by definition of intersection)

- Theorem: $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- Intuition: Any element not in the union of A and B must be outside of both A and B
- Proof: Important, there are two directions to prove!
 - 1. Suppose $x \in \overline{A \cup B}$, then $x \in \overline{A \cap B}$ If $x \in \overline{A \cup B}$, then $x \notin A \cup B$ (by definition of complement) So, $x \notin A$ and $x \notin B$ (by definition of union) Thus, $x \in \overline{A}$ and $x \in \overline{B}$ (by definition of complement) Therefore, $x \in \overline{A \cap B}$ (by definition of intersection)
 - 2. Suppose $x \in \overline{A} \cap \overline{B}$, then $x \in \overline{A \cup B}$ If $x \in \overline{A} \cap \overline{B}$, then $x \in \overline{A}$ and $x \in \overline{B}$ (by definition of intersection) So, $x \notin A$ and $x \notin B$ (by definition of complement) thus, $x \notin A \cup B$ (by definition of union) implying that $x \in \overline{A \cup B}$ (by definition of complement)

Proof by contradiction

Proof Outline:

- 1. Assume the opposite of what you want to try to prove
- 2. Show that it leads to a contradiction
- 3. Thus, the original assumption must be false

• Theorem: For any integer n, if n² is odd then n is odd

- Theorem: For any integer n, if n² is odd then n is odd
- Intuition: The product of two odd numbers has no factors of 2, so it will be odd

- Theorem: For any integer n, if n² is odd then n is odd
- Intuition: The product of two odd numbers has no factors of 2, so it will be odd
- Proof:
 - Assume there exists an even n s.t. n² is odd (very important to get the negation of the statement correct!)
 Then, n=2m for some integer m (by definition of even)
 So, n² = 4m² = 2(2m²) which is even

Contradiction!!!

Proof by induction

Proof Outline:

- Base case: Verify that statement holds for base case (e.g., true for i=1)
- Inductive hypothesis: Assume that if the statement holds for i=n for some value n
- **3.** Induction step: Prove that the statement holds for i=n+1

<u>Why this works:</u>

P(1) is true implies P(2) is true P(2) is true implies P(3) is true

... P(n-1) is true implies P(n) is true Therefore, P(n) is true

• Theorem:
$$1 + 2 + \dots + n = \sum_{i=1}^{n} i = \frac{(n+1)n}{2}$$

• Theorem:
$$1 + 2 + \dots + n = \sum_{i=1}^{n} i = \frac{(n+1)n}{2}$$

Intuition: Test it for some small values of n

• Theorem:
$$1 + 2 + \dots + n = \sum_{i=1}^{n} i = \frac{(n+1)n}{2}$$

- Intuition: Test it for some small values of n
- Proof:

Base case: n = 1 - 1 = (1+1)*1/2 = 2/2 = 1

Hypothesis: Assume $\sum_{i=1}^{k} i = \frac{(k+1)k}{2}$ for some k

Induction: Show that $\sum_{i=1}^{k+1} i = \frac{((k+1)+1)(k+1)}{2}$

•
$$\sum_{i=1}^{k+1} i = k + 1 + \sum_{i=1}^{k} i = (k+1) + \frac{(k+1)(k)}{2}$$
 (by hypothesis)
= $\frac{k^2 + 3k + 2}{2} = \frac{(k+2)(k+1)}{2}$