Foundations of Computing Lab 10 - NP-Completeness

April 9, 2025

CS 3313 - Foundations of Computing

April 9, 2025

2 Recalling SAT and 3-SAT

CS 3313 - Foundations of Computing

< ∃⇒

æ

Image: A matched black

A verifier for a language L is an algorithm V where

$$L = \{x \mid V \text{ accepts } (x, w) \text{ for some string } w\}$$

- Runtime of V is measured as a function of |x|
- V is a polynomial time verifier if it runs in time poly(|x|)
- L is polynomial time verifiable if it has a polynomial time verifier
- Strng w is called a witness that $x \in L$

Definition

 $\mathcal{N}\mathcal{P}$ is the class of languages that have polynomial-time verifiers.

< 47 ▶

æ

- **()** Show that $A \in \mathcal{NP}$ provide a poly-time verification algorithm for A
- **2** Reduce some other \mathcal{NP} -complete problem to A (e.g., $SAT \leq_P A$)

Important

Make sure you understand why this is the correct direction for the reduction.

f 1 Review Definition of ${\cal NP}$

Image: A matched black

æ

Satisfiability Problem

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

Example: $\phi = (\overline{x} \land y) \lor (x \land \overline{z})$

Can you think of a formula that is not satisfiable?

We proved in class that SAT is \mathcal{NP} -complete

э

The 3-SAT Problem

- Recall that SAT asks if a Boolean formula has a satisfying assignment
- 3-SAT asks the same question for 3-CNF formulas

3-CNF formulas

- A literal is a (possibly negated) Boolean variable x or \overline{x}
- A clause is several literals connected with \lor 's $x_1 \lor \overline{x_2} \lor x_3$
- A Boolean formula is in conjunctive normal form (CNF) if it consists of clauses connected by $\wedge `s$

$$(x_1 \lor \overline{x_2} \lor x_3 \lor x_4) \land (\overline{x_3} \lor x_5)$$

• A Boolean formula is a 3-CNF if all the clauses have exactly 3 literals

 $(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_3} \lor x_4 \lor x_5) \land (\overline{x_1} \lor x_4 \lor x_2)$

3-SAT

3-SAT= { $\langle \phi \rangle \mid \phi$ is a satisfiable 3-CNF formula}

Can show that 3-SAT is $\mathcal{NP}\text{-}\mathsf{complete}$ using similar proof to SAT

f 1 Review Definition of \mathcal{NP}

2 Recalling SAT and 3-SAT

æ

Image: A matched black

Clique

A clique in and undirected graph is a subset of nodes s.t. every two nodes are connected by an edge. A k-clique is a clique containing k nodes

 $CLIQUE = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with a } k$ -clique $\}$

Goal:

Prove that CLIQUE is \mathcal{NP} -complete

- $\textcircled{O} CLIQUE \in \mathcal{NP}$
- **2** 3SAT \leq_P CLIQUE

Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where

э

Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where • If ϕ is satisfiable, G has a clique of size k

Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where

- If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k

11/14

Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where

- If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k

Reduction Procedure f

- Create a vertex for each term (i.e., x_1 or $\overline{x_1}$) in each clause label the vertex with the variable
- Oraw an edge between two vertices if
 - They are in different clauses
 - They can be set to 1 at the same time (i.e., they are not contradictory)
 - Exercise 1: Show the graph resulting from the formula
 φ = (x₁ ∨ x₁ ∨ x₂) ∧ (x₁ ∨ x₂ ∨ x₂) ∧ (x₁ ∨ x₂ ∨ x₂). Is this equation
 satisfiable?
 - Exercise 2: Show the graph resulting from the formula $\phi = (x_1 \lor \overline{x_1} \lor x_2) \land (\overline{x_3} \lor x_1 \lor x_2) \land (x_3 \lor x_1 \lor \overline{x_2})$. Is this satisfiable?

Proving This Works

- Case 1: ϕ is satisfiable:
 - This means that there is an assignment x that satisfies all clauses at once (assume φ has k clauses)
 - Since ϕ is a CNF, this means that at least one term in each clause is set to 1 by x
 - This means that these terms are non-contradictory and so, would all have edges between them in $f(\phi)$
 - Then, these nodes form a k-CLIQUE so $(G, k) \in CLIQUE$
- Case 2: ϕ is not satisfiable
 - There is no assignment x that satisfies all clauses at once
 - $\bullet\,$ For every assignment, at least one clause must have all its terms set to 0
 - Since there are no edges between vertices in same clause, this means that largest clique has at most k-1 nodes
 - $(G, k) \notin CLIQUE$

12/14

Given an undirected graph G = (V, E), an independent set of G is a set of vertices $S \subseteq V$ such that no two members of S are connected by an edge. That is, if $u, v \in S$, then $(u, v) \notin E$.

Independent Set Problem

Given a graph G and an integer k, does G have an independent set of size $\geq k$?

 $L_{IS} = \{(G, k) \mid G \text{ has an independent set of size } \geq k\}$

Exercise 3: Prove that L_{IS} is \mathcal{NP} -Complete

Given an undirected graph G = (V, E), an independent set of G is a set of vertices $S \subseteq V$ such that no two members of S are connected by an edge. That is, if $u, v \in S$, then $(u, v) \notin E$.

Independent Set Problem

Given a graph G and an integer k, does G have an independent set of size $\geq k$?

 $L_{IS} = \{(G, k) \mid G \text{ has an independent set of size } \geq k\}$

Exercise 3: Prove that L_{IS} is \mathcal{NP} -Complete

Hints:

Remember that you have to prove two things

Given an undirected graph G = (V, E), an independent set of G is a set of vertices $S \subseteq V$ such that no two members of S are connected by an edge. That is, if $u, v \in S$, then $(u, v) \notin E$.

Independent Set Problem

Given a graph G and an integer k, does G have an independent set of size $\geq k$?

 $L_{IS} = \{(G, k) \mid G \text{ has an independent set of size } \geq k\}$

Exercise 3: Prove that L_{IS} is \mathcal{NP} -Complete

Hints:

- Remember that you have to prove two things
- What is the relationship between CLIQUE and IS?