Foundations of Computing

Lab 4 — PDAs and CFGs

February 12, 2025

CS 3313 — Foundations of Computing February 12, 2025

Outline

@ Pushdown Automata (PDAs)

CS 3313 — Foundations of Computing February 12, 2025

Computing With a PDA

Computing with a PDA
At each step, a PDA can do the following
© Read a symbol from the input tape
@ Optionally, pop a value from the Stack
© Use the input symbol and the stack symbol to choose a next state
@ Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept
state once all the input has been processed

CS 3313 - Foundations of Computing February 12, 2025 3/17

Computing With a PDA

Computing with a PDA
At each step, a PDA can do the following
© Read a symbol from the input tape
@ Optionally, pop a value from the Stack
© Use the input symbol and the stack symbol to choose a next state
@ Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept
state once all the input has been processed

Observations:
@ Since the control is an NFA, ¢ transitions are allowed
@ A PDA may choose not to touch the stack in a particular step

@ Unlike the case for DFA/NFA, deterministic PDA’s are not equal to
non-deterministic ones. We will only study non-deterministic PDAs.

CS 3313 - Foundations of Computing February 12, 2025 3/17

An Example — the Power of Non-determinism

Build a PDA that recognizes the language

L={abc*|ijk>0andi=jori=k}

CS 3313 — Foundations of Computing February 12, 2025

An Example — the Power of Non-determinism

Build a PDA that recognizes the language

L={abc*|ijk>0andi=jori=k}

Solution ldea:

@ Already know how to check if number of b's matches number of a’s

CS 3313 — Foundations of Computing February 12, 2025

An Example — the Power of Non-determinism

Build a PDA that recognizes the language

L={abc*|ijk>0andi=jori=k}

Solution Idea:
@ Already know how to check if number of b's matches number of a’s

@ Can similarly check if number of ¢’s matches number of a's

CS 3313 — Foundations of Computing February 12, 2025

An Example — the Power of Non-determinism

Build a PDA that recognizes the language

L={abc*|ijk>0andi=jori=k}

Solution ldea:
@ Already know how to check if number of b's matches number of a’s
@ Can similarly check if number of ¢’s matches number of a's

@ But, how do we know which one to match?

CS 3313 — Foundations of Computing February 12, 2025

An Example — the Power of Non-determinism

Build a PDA that recognizes the language

L={abc*|ijk>0andi=jori=k}

Solution ldea:
@ Already know how to check if number of b's matches number of a’s
@ Can similarly check if number of ¢’s matches number of a's
@ But, how do we know which one to match?

@ Answer: Just guess which one to match non-deterministically, and
then verify that guess was correct

CS 3313 - Foundations of Computing February 12, 2025

Another Example — the Power of Non-determinism

Build a PDA that recognizes the language
L={a'bc*|ij,k>0andi=jori=k}

CS 3313 - Foundations of Computing February 12, 2025

An Exercise — Work in Groups

@ Give a PDA M recognizing

L={wwf|we{01}*}

CS 3313 - Foundations of Computing February 12, 2025

Outline

© Context-Free Grammars (CFGs)

CS 3313 — Foundations of Computing February 12, 2025

Grammar

A grammar G consists of:
@ V — finite set of variables (usually Capital Letters)

@ ¥ — a finite set of symbols called the terminals (usually lower case
letters)

@ R — finite set of rules how strings in L can be produced
@ S € V — start variable

If no S is specified, can assume it is the variable in the first rule.

Definition

For a grammar G, the language L generated by G is the set of all
terminal strings that can be produced by G starting with the start symbol
by using a sequence of the production rules.

CS 3313 - Foundations of Computing February 12, 2025 8/17

Strings Produced by a Grammar

For a grammar G generating language L, can generate each string w € L
as follows:

@ Write down the start variable

@ Find a written-down variable and a rule starting with that variable.
Replace the written variable with the right side of that rule

© Repeat Step 2 until no variables remain

Definition

A grammar G is context-free if for all of its rules, the right side consists of
exactly one variable and no terminals.

CS 3313 — Foundations of Computing February 12, 2025 9/17

How to Design CFGs for L

Designing CFGs

o CFGs are inherently recursive (e.g., A — 0A1) — need to think what
happens when we recurse

@ Build a string from outside in

@ Build from both ends at the same time (due to recursion)

Designing CFGs is not natural, takes lots of practice \

CS 3313 — Foundations of Computing February 12, 2025 10/17

Example 1

Design a CFG for the language L = {a™b"ck | m = n+ k, m,n, k > 0}

CS 3313 - Foundations of Computing February 12, 2025 11/17

Example 1

Design a CFG for the language L = {a™b"ck | m = n+ k, m,n, k > 0}

Intuition:
@ Each generated a is matched with either one b or one ¢
o Design a grammar for a'b’
o Design a grammar for &/ ¢/

CS 3313 - Foundations of Computing February 12, 2025 11/17

Example 1

Design a CFG for the language L = {a™b"ck | m = n+ k, m,n, k > 0}

Intuition:
@ Each generated a is matched with either one b or one ¢
o Design a grammar for a'b’
o Design a grammar for &/ ¢/
@ Consider the string aaaaabbccc
e Red part on the inside
o Blue part on the outside
Generate outside part first, and then inside part

CS 3313 — Foundations of Computing February 12, 2025 11/17

Example 1

Design a CFG for the language L = {a™b"ck | m = n+ k, m,n, k > 0}

Intuition:
@ Each generated a is matched with either one b or one ¢
o Design a grammar for a'b’
o Design a grammar for &/ ¢/
@ Consider the string aaaaabbccc
e Red part on the inside
o Blue part on the outside
Generate outside part first, and then inside part
@ S derives ¢/ and either terminate, or recurse and generate B
@ B derives a'b’

CS 3313 — Foundations of Computing February 12, 2025 11/17

Example 1

Design a CFG for the language L = {a™b"ck | m = n+ k, m,n, k > 0}

Intuition:
@ Each generated a is matched with either one b or one ¢
o Design a grammar for a'b’
o Design a grammar for &/ ¢/
@ Consider the string aaaaabbccc
e Red part on the inside
o Blue part on the outside
Generate outside part first, and then inside part
@ S derives ¢/ and either terminate, or recurse and generate B
@ B derives a'b’
Solution:

S — aSc|B|e
B — aBble

CS 3313 — Foundations of Computing February 12, 2025 11/17

Example 2

Design a CFG for the language L = {w € {a, b}* | no(w) = np(w)}

CS 3313 - Foundations of Computing February 12, 2025 12/17

Example 2

Design a CFG for the language L = {w € {a, b}* | no(w) = np(w)}

Intuition:
@ We want an equal number of a's and b’s
@ Every time we add an a, should also add a b
o Either a or b can be first

@ Arbitrary strings with equal number of a’s and b’s everywhere else

CS 3313 - Foundations of Computing February 12, 2025 12/17

Example 2

Design a CFG for the language L = {w € {a, b}* | no(w) = np(w)}

Intuition:
@ We want an equal number of a's and b’s
@ Every time we add an a, should also add a b
o Either a or b can be first
@ Arbitrary strings with equal number of a’s and b’s everywhere else

Solution:

S — SaSbS | ShSaS | e

CS 3313 - Foundations of Computing February 12, 2025 12/17

Exercises

Construct CFGs for the following languages:
@ {a"b™|2n < m < 3n}
Q {w|we{a b}* and n,(w) # np(w)}

CS 3313 - Foundations of Computing February 12, 2025 13 /17

Outline

© Solutions

CS 3313 — Foundations of Computing February 12, 20

	Pushdown Automata (PDAs)
	Context-Free Grammars (CFGs)
	Solutions

