
Foundations of Computing
Lab 4 – PDAs and CFGs

February 12, 2025

CS 3313 – Foundations of Computing February 12, 2025 1 / 17

Outline

1 Pushdown Automata (PDAs)

2 Context-Free Grammars (CFGs)

3 Solutions

CS 3313 – Foundations of Computing February 12, 2025 2 / 17

Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following

1 Read a symbol from the input tape

2 Optionally, pop a value from the Stack

3 Use the input symbol and the stack symbol to choose a next state

4 Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept
state once all the input has been processed

Observations:

Since the control is an NFA, ϵ transitions are allowed

A PDA may choose not to touch the stack in a particular step

Unlike the case for DFA/NFA, deterministic PDA’s are not equal to
non-deterministic ones. We will only study non-deterministic PDAs.

CS 3313 – Foundations of Computing February 12, 2025 3 / 17

Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following

1 Read a symbol from the input tape

2 Optionally, pop a value from the Stack

3 Use the input symbol and the stack symbol to choose a next state

4 Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept
state once all the input has been processed

Observations:

Since the control is an NFA, ϵ transitions are allowed

A PDA may choose not to touch the stack in a particular step

Unlike the case for DFA/NFA, deterministic PDA’s are not equal to
non-deterministic ones. We will only study non-deterministic PDAs.

CS 3313 – Foundations of Computing February 12, 2025 3 / 17

An Example – the Power of Non-determinism

Build a PDA that recognizes the language

L = {aibjck | i , j , k ≥ 0 and i = j or i = k}

Solution Idea:

Already know how to check if number of b’s matches number of a’s

Can similarly check if number of c’s matches number of a’s

But, how do we know which one to match?

Answer: Just guess which one to match non-deterministically, and
then verify that guess was correct

CS 3313 – Foundations of Computing February 12, 2025 4 / 17

An Example – the Power of Non-determinism

Build a PDA that recognizes the language

L = {aibjck | i , j , k ≥ 0 and i = j or i = k}

Solution Idea:

Already know how to check if number of b’s matches number of a’s

Can similarly check if number of c’s matches number of a’s

But, how do we know which one to match?

Answer: Just guess which one to match non-deterministically, and
then verify that guess was correct

CS 3313 – Foundations of Computing February 12, 2025 4 / 17

An Example – the Power of Non-determinism

Build a PDA that recognizes the language

L = {aibjck | i , j , k ≥ 0 and i = j or i = k}

Solution Idea:

Already know how to check if number of b’s matches number of a’s

Can similarly check if number of c’s matches number of a’s

But, how do we know which one to match?

Answer: Just guess which one to match non-deterministically, and
then verify that guess was correct

CS 3313 – Foundations of Computing February 12, 2025 4 / 17

An Example – the Power of Non-determinism

Build a PDA that recognizes the language

L = {aibjck | i , j , k ≥ 0 and i = j or i = k}

Solution Idea:

Already know how to check if number of b’s matches number of a’s

Can similarly check if number of c’s matches number of a’s

But, how do we know which one to match?

Answer: Just guess which one to match non-deterministically, and
then verify that guess was correct

CS 3313 – Foundations of Computing February 12, 2025 4 / 17

An Example – the Power of Non-determinism

Build a PDA that recognizes the language

L = {aibjck | i , j , k ≥ 0 and i = j or i = k}

Solution Idea:

Already know how to check if number of b’s matches number of a’s

Can similarly check if number of c’s matches number of a’s

But, how do we know which one to match?

Answer: Just guess which one to match non-deterministically, and
then verify that guess was correct

CS 3313 – Foundations of Computing February 12, 2025 4 / 17

Another Example – the Power of Non-determinism

Build a PDA that recognizes the language

L = {aibjck | i , j , k ≥ 0 and i = j or i = k}

q0

q1

q2 q3

q4 q5 q6

start

ϵ, ϵ → $

a, ϵ → a

ϵ, ϵ → ϵ

b, a → ϵ

ϵ, $ → ϵ

c, ϵ → ϵ

ϵ, ϵ → ϵ

b, ϵ → ϵ

ϵ, ϵ → ϵ

c , a → ϵ

ϵ, $ → ϵ

CS 3313 – Foundations of Computing February 12, 2025 5 / 17

An Exercise – Work in Groups

1 Give a PDA M recognizing

L = {wwR | w ∈ {0, 1}∗}

CS 3313 – Foundations of Computing February 12, 2025 6 / 17

Outline

1 Pushdown Automata (PDAs)

2 Context-Free Grammars (CFGs)

3 Solutions

CS 3313 – Foundations of Computing February 12, 2025 7 / 17

Grammar

A grammar G consists of:

V – finite set of variables (usually Capital Letters)

Σ – a finite set of symbols called the terminals (usually lower case
letters)

R – finite set of rules how strings in L can be produced

S ∈ V – start variable

If no S is specified, can assume it is the variable in the first rule.

Definition

For a grammar G , the language LG generated by G is the set of all
terminal strings that can be produced by G starting with the start symbol
by using a sequence of the production rules.

CS 3313 – Foundations of Computing February 12, 2025 8 / 17

Strings Produced by a Grammar

For a grammar G generating language L, can generate each string w ∈ L
as follows:

1 Write down the start variable

2 Find a written-down variable and a rule starting with that variable.
Replace the written variable with the right side of that rule

3 Repeat Step 2 until no variables remain

Definition

A grammar G is context-free if for all of its rules, the right side consists of
exactly one variable and no terminals.

CS 3313 – Foundations of Computing February 12, 2025 9 / 17

How to Design CFGs for L

Designing CFGs

CFGs are inherently recursive (e.g., A → 0A1) – need to think what
happens when we recurse

Build a string from outside in

Build from both ends at the same time (due to recursion)

This is Tricky

Designing CFGs is not natural, takes lots of practice

CS 3313 – Foundations of Computing February 12, 2025 10 / 17

Example 1

Question

Design a CFG for the language L = {ambnck | m = n + k , m, n, k ≥ 0}

Intuition:

Each generated a is matched with either one b or one c
Design a grammar for aibi

Design a grammar for ajc j

Consider the string aaaaabbccc
Red part on the inside
Blue part on the outside

Generate outside part first, and then inside part
1 S derives ajc j and either terminate, or recurse and generate B
2 B derives aibi

Solution:

S → aSc | B | ϵ
B → aBb | ϵ

CS 3313 – Foundations of Computing February 12, 2025 11 / 17

Example 1

Question

Design a CFG for the language L = {ambnck | m = n + k , m, n, k ≥ 0}

Intuition:

Each generated a is matched with either one b or one c
Design a grammar for aibi

Design a grammar for ajc j

Consider the string aaaaabbccc
Red part on the inside
Blue part on the outside

Generate outside part first, and then inside part
1 S derives ajc j and either terminate, or recurse and generate B
2 B derives aibi

Solution:

S → aSc | B | ϵ
B → aBb | ϵ

CS 3313 – Foundations of Computing February 12, 2025 11 / 17

Example 1

Question

Design a CFG for the language L = {ambnck | m = n + k , m, n, k ≥ 0}

Intuition:

Each generated a is matched with either one b or one c
Design a grammar for aibi

Design a grammar for ajc j

Consider the string aaaaabbccc
Red part on the inside
Blue part on the outside

Generate outside part first, and then inside part

1 S derives ajc j and either terminate, or recurse and generate B
2 B derives aibi

Solution:

S → aSc | B | ϵ
B → aBb | ϵ

CS 3313 – Foundations of Computing February 12, 2025 11 / 17

Example 1

Question

Design a CFG for the language L = {ambnck | m = n + k , m, n, k ≥ 0}

Intuition:

Each generated a is matched with either one b or one c
Design a grammar for aibi

Design a grammar for ajc j

Consider the string aaaaabbccc
Red part on the inside
Blue part on the outside

Generate outside part first, and then inside part
1 S derives ajc j and either terminate, or recurse and generate B
2 B derives aibi

Solution:

S → aSc | B | ϵ
B → aBb | ϵ

CS 3313 – Foundations of Computing February 12, 2025 11 / 17

Example 1

Question

Design a CFG for the language L = {ambnck | m = n + k , m, n, k ≥ 0}

Intuition:

Each generated a is matched with either one b or one c
Design a grammar for aibi

Design a grammar for ajc j

Consider the string aaaaabbccc
Red part on the inside
Blue part on the outside

Generate outside part first, and then inside part
1 S derives ajc j and either terminate, or recurse and generate B
2 B derives aibi

Solution:

S → aSc | B | ϵ
B → aBb | ϵ

CS 3313 – Foundations of Computing February 12, 2025 11 / 17

Example 2

Question

Design a CFG for the language L = {w ∈ {a, b}∗ | na(w) = nb(w)}

Intuition:

We want an equal number of a’s and b’s

Every time we add an a, should also add a b

Either a or b can be first

Arbitrary strings with equal number of a’s and b’s everywhere else

Solution:

S → SaSbS | SbSaS | ϵ

CS 3313 – Foundations of Computing February 12, 2025 12 / 17

Example 2

Question

Design a CFG for the language L = {w ∈ {a, b}∗ | na(w) = nb(w)}

Intuition:

We want an equal number of a’s and b’s

Every time we add an a, should also add a b

Either a or b can be first

Arbitrary strings with equal number of a’s and b’s everywhere else

Solution:

S → SaSbS | SbSaS | ϵ

CS 3313 – Foundations of Computing February 12, 2025 12 / 17

Example 2

Question

Design a CFG for the language L = {w ∈ {a, b}∗ | na(w) = nb(w)}

Intuition:

We want an equal number of a’s and b’s

Every time we add an a, should also add a b

Either a or b can be first

Arbitrary strings with equal number of a’s and b’s everywhere else

Solution:

S → SaSbS | SbSaS | ϵ

CS 3313 – Foundations of Computing February 12, 2025 12 / 17

Exercises

Construct CFGs for the following languages:

2 {anbm | 2n ≤ m ≤ 3n}
3 {w | w ∈ {a, b}∗ and na(w) ̸= nb(w)}

CS 3313 – Foundations of Computing February 12, 2025 13 / 17

Outline

1 Pushdown Automata (PDAs)

2 Context-Free Grammars (CFGs)

3 Solutions

CS 3313 – Foundations of Computing February 12, 2025 14 / 17

	Pushdown Automata (PDAs)
	Context-Free Grammars (CFGs)
	Solutions

