Foundations of Computing Lab 5 - PDAs and CFGs

February 14, 2024

Outline

(1) Pushdown Automata (PDAs)

(2) Context-Free Grammars (CFGs)

(3) Solutions

Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following
(1) Read a symbol from the input tape
(2) Optionally, pop a value from the Stack
(3) Use the input symbol and the stack symbol to choose a next state
(9) Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following
(1) Read a symbol from the input tape
(2) Optionally, pop a value from the Stack
(3) Use the input symbol and the stack symbol to choose a next state
(9) Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Observations:

- Since the control is an NFA, ϵ transitions are allowed
- A PDA may choose not to touch the stack in a particular step
- Unlike the case for DFA/NFA, deterministic PDA's are not equal to non-deterministic ones. We will only study non-deterministic PDAs.

Example - Exercise from class last Wednesday

Show a PDA that recognizes the language

$$
L=\{w \mid w \text { has an equal number of } 0 \mathrm{~s} \text { and } 1 \mathrm{~s}\}
$$

(1) Describe a PDA algorithm for this language
(2) Write the states and transition function
(3) Draw the PDA graph

Example - Exercise from class last Wednesday

Show a PDA that recognizes the language

$$
L=\{w \mid w \text { has an equal number of } 0 \mathrm{~s} \text { and } 1 \mathrm{~s}\}
$$

(1) Describe a PDA algorithm for this language
(2) Write the states and transition function
(3) Draw the PDA graph

Algorithm:
(1) Push \$ on the stack
(2) If input is 0 , pop value from the stack

- If it's a 0 or $\$$ push it back on the stack and push another 0 on top
- If it's a 1 pop it off the stack
(3) If input is 1 , pop value from the stack
- If it's a 1 or $\$$ push it back and push another 1 on top
- If it's a 0 pop it off the stack
(9) When the input is done, if $\$$ is top of the stack, accept

Resulting PDA

Another Example - the Power of Non-determinism

Build a PDA that recognizes the language

$$
L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0 \text { and } i=j \text { or } i=k\right\}
$$

Another Example - the Power of Non-determinism

Build a PDA that recognizes the language

$$
L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0 \text { and } i=j \text { or } i=k\right\}
$$

Solution Idea:

- Already know how to check if number of b's matches number of a's

Another Example - the Power of Non-determinism

Build a PDA that recognizes the language

$$
L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0 \text { and } i=j \text { or } i=k\right\}
$$

Solution Idea:

- Already know how to check if number of b's matches number of a's
- Can similarly check if number of c's matches number of a's

Another Example - the Power of Non-determinism

Build a PDA that recognizes the language

$$
L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0 \text { and } i=j \text { or } i=k\right\}
$$

Solution Idea:

- Already know how to check if number of b's matches number of a's
- Can similarly check if number of c's matches number of a's
- But, how do we know which one to match?

Another Example - the Power of Non-determinism

Build a PDA that recognizes the language

$$
L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0 \text { and } i=j \text { or } i=k\right\}
$$

Solution Idea:

- Already know how to check if number of b's matches number of a's
- Can similarly check if number of c's matches number of a's
- But, how do we know which one to match?
- Answer: Just guess which one to match non-deterministically

Another Example - the Power of Non-determinism

Build a PDA that recognizes the language

$$
L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0 \text { and } i=j \text { or } i=k\right\}
$$

An Exercise - Work in Groups

(1) Give a PDA M recognizing

$$
L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}
$$

Outline

(1) Pushdown Automata (PDAs)

(2) Context-Free Grammars (CFGs)

Grammar

A grammar G consists of:

- V - finite set of variables (usually Capital Letters)
- Σ - a finite set of symbols called the terminals (usually lower case letters)
- R - finite set of rules how strings in L can be produced
- $S \in V$ - start variable

If no S is specified, can assume it is the variable in the first rule.

Definition

For a grammar G, the language L_{G} generated by G is the set of all terminal strings that can be produced by G starting with the start symbol by using a sequence of the production rules.

Strings Produced by a Grammar

For a grammar G generating language L, can generate each string $w \in L$ as follows:
(1) Write down the start variable
(2) Find a written-down variable and a rule starting with that variable.

Replace the written variable with the right side of that rule
(3) Repeat Step 2 until no variables remain

Definition

A grammar G is context-free if for all of its rules, the right side consists of exactly one variable and no terminals.

How to Design CFGs for L

Designing CFGs

- CFGs are inherently recursive (e.g., $A \rightarrow 0 A 1$) - need to think what happens when we recurse
- Build a string from outside in
- Build from both ends at the same time (due to recursion)

This is Tricky

Designing CFGs is not natural, takes lots of practice

Example 1

Question

Design a CFG for the language $L=\left\{a^{m} b^{n} c^{k} \mid m=n+k, m, n, k \geq 0\right\}$

Example 1

Question

Design a CFG for the language $L=\left\{a^{m} b^{n} c^{k} \mid m=n+k, m, n, k \geq 0\right\}$
Intuition:

- Each generated a is matched with either one b or one c
- Design a grammar for $a^{i} b^{i}$
- Design a grammar for $a^{j} c^{j}$

Example 1

Question

Design a CFG for the language $L=\left\{a^{m} b^{n} c^{k} \mid m=n+k, m, n, k \geq 0\right\}$
Intuition:

- Each generated a is matched with either one b or one c
- Design a grammar for $a^{i} b^{i}$
- Design a grammar for $a^{j} c^{j}$
- Consider the string aaaaabbccc
- Red part on the inside
- Blue part on the outside
- Generate outside part first, and then inside part

Example 1

Question

Design a CFG for the language $L=\left\{a^{m} b^{n} c^{k} \mid m=n+k, m, n, k \geq 0\right\}$
Intuition:

- Each generated a is matched with either one b or one c
- Design a grammar for $a^{i} b^{i}$
- Design a grammar for $a^{j} c^{j}$
- Consider the string aaaaabbccc
- Red part on the inside
- Blue part on the outside
- Generate outside part first, and then inside part
(1) S derives $a^{j} c^{j}$ and either terminate, or recurse and generate B
(2) B derives $a^{i} b^{i}$

Example 1

Question

Design a CFG for the language $L=\left\{a^{m} b^{n} c^{k} \mid m=n+k, m, n, k \geq 0\right\}$
Intuition:

- Each generated a is matched with either one b or one c
- Design a grammar for $a^{i} b^{i}$
- Design a grammar for $a^{j} c^{j}$
- Consider the string aaaaabbccc
- Red part on the inside
- Blue part on the outside
- Generate outside part first, and then inside part
(1) S derives $a^{j} c^{j}$ and either terminate, or recurse and generate B
(2) B derives $a^{i} b^{i}$

Solution:

$$
\begin{aligned}
& S \rightarrow a S c|B| \epsilon \\
& B \rightarrow a B b \mid \epsilon
\end{aligned}
$$

Example 2

Question

Design a CFG for the language $L=\left\{w \in\{a, b\}^{*} \mid n_{a}(w)=n_{b}(w)\right\}$

Example 2

Question

Design a CFG for the language $L=\left\{w \in\{a, b\}^{*} \mid n_{a}(w)=n_{b}(w)\right\}$
Intuition:

- We want an equal number of a's and b's
- Every time we add an a, should also add a b
- Either a or b can be first
- Arbitrary strings with equal number of a's and b's everywhere else Solution:

$$
S \rightarrow \text { SaSbS }|S b S a S| \epsilon
$$

Exercises

Construct CFGs for the following languages:
(2) $\left\{a^{n} b^{m} \mid 2 n \leq m \leq 3 n\right\}$
(3) $\left\{w \mid w \in\{a, b\}^{*}\right.$ and $\left.n_{a}(w) \neq n_{b}(w)\right\}$

