Foundations of Computing
 Lecture 1

Arkady Yerukhimovich

January 16, 2024

Modeling Computation

Input file

Output

Outline

(1) Strings, Languages, and Automata

(2) Deterministic Finite Automata (DFA)

Strings

- Alphabet Σ : Set of symbols
- Ex: $\Sigma=\{a, b\}, \Sigma=\{0,1\}$

Strings

- Alphabet Σ : Set of symbols
- Ex: $\Sigma=\{a, b\}, \Sigma=\{0,1\}$
- String: finite sequence of symbols from Σ
- ex: $v=a b a, w=a b a a a$
- ex: $v=001, w=11001$
- λ, ϵ - empty string
- Length of a string: $|v|=3$ and $|\lambda|=0$

Strings

- Alphabet Σ : Set of symbols
- Ex: $\Sigma=\{a, b\}, \Sigma=\{0,1\}$
- String: finite sequence of symbols from Σ
- ex: $v=a b a, w=a b a a a$
- ex: $v=001, w=11001$
- λ, ϵ - empty string
- Length of a string: $|v|=3$ and $|\lambda|=0$
- Operations on Strings
- Concatenation: vw = abaabaaa
- Reverse: $w^{R}=a a a b a$
- Repeat: $v^{2}=a b a a b a$ and $v^{0}=\lambda$

Languages

- Language L : Set of strings
- We say that any $s \in L$ is in the language

Languages

- Language L : Set of strings
- We say that any $s \in L$ is in the language
- Examples:
- $L_{1}=\{a b, a a\}$

Languages

- Language L : Set of strings
- We say that any $s \in L$ is in the language
- Examples:
- $L_{1}=\{a b, a a\}$
- $L 2=\left\{a^{n} b^{n}: n \geq 0\right\}$

Languages

- Language L : Set of strings
- We say that any $s \in L$ is in the language
- Examples:
- $L_{1}=\{a b, a a\}$
- $L 2=\left\{a^{n} b^{n}: n \geq 0\right\}$
- The language of all English sentences

Languages

- Language L : Set of strings
- We say that any $s \in L$ is in the language
- Examples:
- $L_{1}=\{a b, a a\}$
- $L 2=\left\{a^{n} b^{n}: n \geq 0\right\}$
- The language of all English sentences
- For an alphabet Σ, Σ^{*} is the set of all strings formed by concatenating zero or more symbols from Σ
Ex: If $\Sigma=\{0,1\}$ then $\Sigma^{*}=$ the set of all binary strings, including λ

Languages

- Language L : Set of strings
- We say that any $s \in L$ is in the language
- Examples:
- $L_{1}=\{a b, a a\}$
- $L 2=\left\{a^{n} b^{n}: n \geq 0\right\}$
- The language of all English sentences
- For an alphabet Σ, Σ^{*} is the set of all strings formed by concatenating zero or more symbols from Σ
Ex: If $\Sigma=\{0,1\}$ then $\Sigma^{*}=$ the set of all binary strings, including λ

We will often be interested in languages recognized by a particular "computer".

A Simple Example: A Light Switch

> Viewing this as a language
> $L_{\text {light }}=\{$ set of all flip sequences resulting in the light being on $\}$ $L_{\text {light }}=\{1$ flip, 3 flips, 5 flips, ... $\}$

Finite Automata

- An automaton is an abstract model of a computing device

Finite Automata

- An automaton is an abstract model of a computing device
- An automaton consists of:
- An input mechanism

Finite Automata

- An automaton is an abstract model of a computing device
- An automaton consists of:
- An input mechanism
- A control unit

Finite Automata

- An automaton is an abstract model of a computing device
- An automaton consists of:
- An input mechanism
- A control unit
- Possibly, a storage mechanism

Finite Automata

- An automaton is an abstract model of a computing device
- An automaton consists of:
- An input mechanism
- A control unit
- Possibly, a storage mechanism
- Possibly, an output mechanism

Finite Automata

- An automaton is an abstract model of a computing device
- An automaton consists of:
- An input mechanism
- A control unit
- Possibly, a storage mechanism
- Possibly, an output mechanism
- Control unit transitions between internal states, as determined by a next-state or transition function
- There are a finite number of states - size of the automaton

Finite Automata

- An automaton is an abstract model of a computing device
- An automaton consists of:
- An input mechanism
- A control unit
- Possibly, a storage mechanism
- Possibly, an output mechanism
- Control unit transitions between internal states, as determined by a next-state or transition function
- There are a finite number of states - size of the automaton

A note of input size

An automaton must be able to accept input of arbitrary length. The length of the input may be much larger than the number of states.

Automata we will study

- Finite Automata (Deterministic and Non-deterministic)
- These model Finite State Machines with no memory

Automata we will study

- Finite Automata (Deterministic and Non-deterministic)
- These model Finite State Machines with no memory
- Pushdown automata
- Add the simplest form of memory to a Finite State Machine

Automata we will study

- Finite Automata (Deterministic and Non-deterministic)
- These model Finite State Machines with no memory
- Pushdown automata
- Add the simplest form of memory to a Finite State Machine
- Turing Machines
- Add unrestricted memory to a Finite State Machine
- Believed to be as powerful as any other model of computation
- This will be the main model of computation used in computability and complexity theory

Outline

(1) Strings, Languages, and Automata

(2) Deterministic Finite Automata (DFA)

Modeling Computation

Input file

Output

Finite Automata by Picture

Computation on string $x=1101$

(1) Start in state $q 1$
(2) read 1 , follow transition to $q 2$
(3) read 1 , follow transition to $q 2$
(3) read 0 , follow transition to $q 3$
(5) read 1 , follow transition to $q 3$
(6 "reject" (output 0) because $q 3$ is not an accept state

Finite Automaton - Formal Definition

Finite Automaton

A finite automaton is a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where:

- Q is a finite set of states
- Σ is a finite input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Example Automaton

Defining this formally: $M=(Q, \Sigma, \delta, q 1, F)$

Example Automaton

Defining this formally: $M=(Q, \Sigma, \delta, q 1, F)$

- $Q=\{q 1, q 2, q 3\}$

Example Automaton

Defining this formally: $M=(Q, \Sigma, \delta, q 1, F)$

- $Q=\{q 1, q 2, q 3\}$
- $\Sigma=\{0,1\}$

Example Automaton

Defining this formally: $M=(Q, \Sigma, \delta, q 1, F)$

- $Q=\{q 1, q 2, q 3\}$
- $\Sigma=\{0,1\}$
- $\delta=$| | 0 | 1 |
| :---: | :---: | :---: |
| q 1 | q 1 | q 2 |

Example Automaton

Defining this formally: $M=(Q, \Sigma, \delta, q 1, F)$

- $Q=\{q 1, q 2, q 3\}$
- $\Sigma=\{0,1\}$
- $\delta=$| | 0 | 1 |
| :---: | :---: | :---: |
| q1 | q1 | q2 |
| q2 | q3 | q2 |
| q3 | q2 | q3 |

Example Automaton

Defining this formally: $M=(Q, \Sigma, \delta, q 1, F)$

- $Q=\{q 1, q 2, q 3\}$
- $\Sigma=\{0,1\}$
- $\delta=$| | 0 | 1 |
| :---: | :---: | :---: |
| q1 | q1 | q2 |
| q2 | q3 | q2 |
| q3 | q2 | q3 |
- $q 1$ is the start state

Example Automaton

Defining this formally: $M=(Q, \Sigma, \delta, q 1, F)$

- $Q=\{q 1, q 2, q 3\}$
- $\Sigma=\{0,1\}$
- $\delta=$| | 0 | 1 |
| :---: | :---: | :---: |
| q1 | q1 | q2 |
| q2 | q3 | q2 |
| q3 | q2 | q3 |
- $q 1$ is the start state
- $F=\{q 2\}$

