Foundations of Computing Lecture 10

Arkady Yerukhimovich

February 15, 2024

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

February 15, 2024

- 3 The CFL Pumping Lemma
- 4 Using the CFL Pumping Lemma

< A[™]

▶ < ∃ >

э

• Context-Free Grammars

- Strings generated by grammars
- Building CFGs
- Parse Trees

3 N 3

• Context-Free Grammars

- Strings generated by grammars
- Building CFGs
- Parse Trees

Today

Connect CFGs and PDAs and look at their limitations

- 3 The CFL Pumping Lemma
- ④ Using the CFL Pumping Lemma

- (日)

- ∢ ⊒ →

э

A language is context free (i.e., is generated by a CFG) if an only if some pushdown automaton accepts it.

A language is context free (i.e., is generated by a CFG) if an only if some pushdown automaton accepts it.

Proof:

We need to prove both directions:

A language is context free (i.e., is generated by a CFG) if an only if some pushdown automaton accepts it.

Proof:

We need to prove both directions:

If a language is context free, then some PDA accepts it

A language is context free (i.e., is generated by a CFG) if an only if some pushdown automaton accepts it.

Proof:

We need to prove both directions:

- If a language is context free, then some PDA accepts it
- ② If a language is accepted by a PDA, then it is context free

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

- Recall: Derivation of w in G sequence of substitutions resulting in w
- Each step gives intermediate string of variables and terminals
- *M* decides if \exists sequence of substitutions in *G* leads from start to *w*

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

- Recall: Derivation of w in G sequence of substitutions resulting in w
- Each step gives intermediate string of variables and terminals
- *M* decides if \exists sequence of substitutions in *G* leads from start to *w*

Algorithm for *M*:

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

- Recall: Derivation of w in G sequence of substitutions resulting in w
- Each step gives intermediate string of variables and terminals
- *M* decides if \exists sequence of substitutions in *G* leads from start to *w*

Algorithm for *M*:

• *M* pushes the start variable on its stack

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

- Recall: Derivation of w in G sequence of substitutions resulting in w
- Each step gives intermediate string of variables and terminals
- *M* decides if \exists sequence of substitutions in *G* leads from start to *w*

Algorithm for *M*:

- *M* pushes the start variable on its stack
- *M* repeatedly makes substitutions according to *G*, storing intermediate strings on stack

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

- Recall: Derivation of w in G sequence of substitutions resulting in w
- Each step gives intermediate string of variables and terminals
- *M* decides if \exists sequence of substitutions in *G* leads from start to *w*

Algorithm for *M*:

- *M* pushes the start variable on its stack
- *M* repeatedly makes substitutions according to *G*, storing intermediate strings on stack
- M(w) = 1 if some intermediate string equals w

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

- Recall: Derivation of w in G sequence of substitutions resulting in w
- Each step gives intermediate string of variables and terminals
- *M* decides if \exists sequence of substitutions in *G* leads from start to *w*

Algorithm for *M*:

- *M* pushes the start variable on its stack
- *M* repeatedly makes substitutions according to *G*, storing intermediate strings on stack
- M(w) = 1 if some intermediate string equals w

Challenges

- May be many substitution rules at each step, how do we choose one?
- I How does M store the intermediate strings?

Arkady Yerukhimovich

Image: A matrix

- May be many substitution rules at each step, how do we choose one?
- Observe the intermediate strings?

Solutions:

- May be many substitution rules at each step, how do we choose one?
- Observe the intermediate strings?

Solutions:

() Rely on non-determinism of M to choose correct substitution rule

- May be many substitution rules at each step, how do we choose one?
- Observe the intermediate strings?

Solutions:

- **(**) Rely on non-determinism of M to choose correct substitution rule
- Idea: Just store the strings on the stack

- May be many substitution rules at each step, how do we choose one?
- 2 How does M store the intermediate strings?

Solutions:

- **(**) Rely on non-determinism of M to choose correct substitution rule
- Idea: Just store the strings on the stack Problem:
 - Need to find variable A to replace, but can only access top symbol.

aa Abbc

- May be many substitution rules at each step, how do we choose one?
- Observe the intermediate strings?

Solutions:

- **(**) Rely on non-determinism of M to choose correct substitution rule
- Idea: Just store the strings on the stack Problem:
 - Need to find variable A to replace, but can only access top symbol.
 - Need to remove any leading terminal characters to get to A

- May be many substitution rules at each step, how do we choose one?
- Observe the intermediate strings?

Solutions:

- **(**) Rely on non-determinism of M to choose correct substitution rule
- Idea: Just store the strings on the stack Problem:
 - Need to find variable A to replace, but can only access top symbol.
 - Need to remove any leading terminal characters to get to A
 - But, if we throw these away, can't tell if they match w

Problem:

- Need to find variable A to replace, but can only access top symbols.
- Need to remove any leading terminal characters to get to A
- But, if we throw these away, can't tell if they match w

Solution:

Problem:

- Need to find variable A to replace, but can only access top symbols.
- Need to remove any leading terminal characters to get to A
- But, if we throw these away, can't tell if they match w

Solution:

Description of PDA M

Arkady Yerukhimovich

Push \$ to mark start of stack

3. 3

- Push \$ to mark start of stack
- Repeat the following until done
 - If top of stack is variable *A*, non-deterministically choose a substitution rule and replace *A* with the right side of rule (push it on stack)

- Push \$ to mark start of stack
- Repeat the following until done
 - If top of stack is variable *A*, non-deterministically choose a substitution rule and replace *A* with the right side of rule (push it on stack)
 - If top of stack is terminal, compare it to next input symbol. If they match, repeat. If not, reject this non-deterministic branch

- Push \$ to mark start of stack
- Repeat the following until done
 - If top of stack is variable *A*, non-deterministically choose a substitution rule and replace *A* with the right side of rule (push it on stack)
 - If top of stack is terminal, compare it to next input symbol. If they match, repeat. If not, reject this non-deterministic branch
 - If top of stack is \$ symbol, accept if full input has been read

- Push \$ to mark start of stack
- Provide the following until done
 - If top of stack is variable *A*, non-deterministically choose a substitution rule and replace *A* with the right side of rule (push it on stack)
 - If top of stack is terminal, compare it to next input symbol. If they match, repeat. If not, reject this non-deterministic branch
 - If top of stack is \$ symbol, accept if full input has been read

Picture version of the resulting PDA is in the book

We are done

We are done with this direction of the proof

Proof of PDA $M \rightarrow CFG G$

Arkady Yerukhimovich

3

• *G* generates strings that cause *M* to go from start state to an accept state

- *G* generates strings that cause *M* to go from start state to an accept state
- We build something stronger:
 For each pair of states p, q ∈ M, G has a variable A_{pq} such that
 - A_{pq} generates all strings that take M from state p (with an empty stack) to state q (with an empty stack)

0,670 start, accept

- *G* generates strings that cause *M* to go from start state to an accept state
- We build something stronger:
 For each pair of states p, q ∈ M, G has a variable A_{pq} such that
 - A_{pq} generates all strings that take M from state p (with an empty stack) to state q (with an empty stack)

Observations:

- *G* generates strings that cause *M* to go from start state to an accept state
- We build something stronger:
 For each pair of states p, q ∈ M, G has a variable A_{pq} such that
 - A_{pq} generates all strings that take M from state p (with an empty stack) to state q (with an empty stack)

Observations:

• Strings generated by A_{pq} take M from p to q without modifying the stack

- *G* generates strings that cause *M* to go from start state to an accept state
- We build something stronger:
 For each pair of states p, q ∈ M, G has a variable A_{pq} such that
 - A_{pq} generates all strings that take M from state p (with an empty stack) to state q (with an empty stack)

Observations:

- Strings generated by A_{pq} take M from p to q without modifying the stack
- Thus, $A_{q_0q_{accept}}$ generates all strings $w \in L(M)$

Proof of PDA $M \rightarrow CFG G$: Building A_{pq}

Assume that M has the following properties:

- **1** Only one accept state: q_{accept}
- Ø M empties its stack before accepting
- All transitions either have form x, e → a (push an item on the stack) or x, a → e (pop an item off the stack), but not both.

We've already shown how to turn any PDA M into one satisfying these properties

11/22
Consider x taking M from p to q with empty stack

.∋...>

Consider x taking M from p to q with empty stack

• *M*'s first move on *x* must be a push – nothing to pop

- *M*'s first move on *x* must be a push nothing to pop
- *M*'s last move on *x* must be a pop need empty stack

- *M*'s first move on *x* must be a push nothing to pop
- *M*'s last move on *x* must be a pop need empty stack Two possibilities:

- *M*'s first move on *x* must be a push nothing to pop
- *M*'s last move on *x* must be a pop need empty stack Two possibilities:
 - Symbol popped in last step same symbol pushed in first step
 - In this case, stack is only empty at beginning and end
 - Add rule $A_{pq} \rightarrow aA_{rs}b$:

- *M*'s first move on *x* must be a push nothing to pop
- *M*'s last move on *x* must be a pop need empty stack Two possibilities:
 - Symbol popped in last step same symbol pushed in first step
 - In this case, stack is only empty at beginning and end
 - Add rule $A_{pq} \rightarrow aA_{rs}b$:
 - Symbol popped in last step not same symbol pushed in first step
 - Symbol pushed in first step, must be popped before the end, so stack becomes empty at some middle state *r*
 - Add rule $A_{pq} \rightarrow A_{pr}A_{rq}$

We have shown conversions for:

- CFG $G \rightarrow$ PDA M, and
- PDA $M \rightarrow CFG G$

< A

3 N 3

We have shown conversions for:

- CFG $G \rightarrow$ PDA M, and
- PDA $M \rightarrow CFG G$

Takeaway

PDAs recognize exactly the set of context-free languages.

Arkady Yerukhimovich

We have shown conversions for:

- CFG $G \rightarrow$ PDA M, and
- PDA $M \rightarrow CFG G$

Takeaway

PDAs recognize exactly the set of context-free languages.

Question

Are all languages context-free?

э

Arkady Yerukhimovich

④ Using the CFL Pumping Lemma

э

Theorem

If L is a CFL, then there exists a pumping length p s.t. for any $s \in L$, with $|s| \ge p$, s can be divided into 5 pieces s = uvxyz satisfying: a For each $i \ge 0$, $uv^i xy^i z \in L$ a |vy| > 0b $|vxy| \le p$

Theorem

If L is a CFL, then there exists a pumping length p s.t. for any $s \in L$, with $|s| \ge p$, s can be divided into 5 pieces s = uvxyz satisfying: a For each $i \ge 0$, $uv^i xy^i z \in L$ a |vy| > 0b $|vxy| \le p$

Pumping lemma in math notation:

 $\exists p \text{ s.t } \forall s \in L, |s| \geq p, \exists \text{ partition } s = uvxyz \text{ s.t. } \forall i, uv^i xy^i z \in L$

Theorem

If L is a CFL, then there exists a pumping length p s.t. for any s ∈ L, with |s| ≥ p, s can be divided into 5 pieces s = uvxyz satisfying:
a For each i ≥ 0, uvⁱxyⁱz ∈ L
a |vy| > 0
a |vxy| ≤ p

Pumping lemma in math notation:

 $\exists p \text{ s.t } \forall s \in L, |s| \geq p, \exists \text{ partition } s = uvxyz \text{ s.t. } \forall i, uv^i xy^i z \in L$

Negation of pumping lemma: $\forall p, \exists s \in L, |s| \ge p \text{ s.t. } \forall \text{ partitions } s = uvxyz \exists i \text{ s.t. } uv^i xy^i z \notin L$

Proving the CFL Pumping Lemma (Intuition)

Arkady Yerukhimovich

< A

3 N 3

- 2 CFG == PDA
- 3 The CFL Pumping Lemma
- Using the CFL Pumping Lemma

3. 3

We use the CFL pumping lemma to prove that L is not a CFL similarly to how we used the regular language pumping lemma.

We use the CFL pumping lemma to prove that L is not a CFL similarly to how we used the regular language pumping lemma.

Specifically:

• Consider the negation:

 $\forall p, \exists s \in L, |s| \ge p \text{ s.t. } \forall \text{ partitions } s = uvxyz \exists i \text{ s.t. } uv^i xy^i z \notin L$

We use the CFL pumping lemma to prove that L is not a CFL similarly to how we used the regular language pumping lemma.

Specifically:

• Consider the negation:

 $\forall p, \exists s \in L, |s| \ge p \text{ s.t. } \forall \text{ partitions } s = uvxyz \exists i \text{ s.t. } uv^i xy^i z \notin L$

• So, we need to find such an *s* and prove that for any way to partition it, it cannot be pumped

18 / 22

3)) J

Assume that L is CFL

- Assume that L is CFL
- 3 Use pumping lemma to guarantee pumping length p, s.t. all s with |s| > p can be pumped

- Assume that L is CFL
- **2** Use pumping lemma to guarantee pumping length p, s.t. all s with |s| > p can be pumped
- Pick some $s \in L$ with $|s| \ge p$

- Assume that L is CFL
- **2** Use pumping lemma to guarantee pumping length p, s.t. all s with |s| > p can be pumped
- Pick some $s \in L$ with $|s| \ge p$
- Oemonstrate that s cannot be pumped
 - For each possible division w = uvxyz (with |vy| > 0 and $|vxy| \le p$), find an integer *i* such that $uv^ixy^iz \notin L$

- Assume that L is CFL
- **2** Use pumping lemma to guarantee pumping length p, s.t. all s with |s| > p can be pumped
- Pick some $s \in L$ with $|s| \ge p$
- Oemonstrate that s cannot be pumped
 - For each possible division w = uvxyz (with |vy| > 0 and $|vxy| \le p$), find an integer *i* such that $uv^ixy^iz \notin L$

Sontradiction !!!

→ < ∃ →</p>

< □ > < 同 >

3

• Assume L is CFL, and let p be the pumping length

э

Proof:

- Assume L is CFL, and let p be the pumping length
- 2 Choose $s = a^p b^p c^p \in L$

3. 3

Proof:

() Assume L is CFL, and let p be the pumping length

2 Choose
$$s = a^p b^p c^p \in L$$

- **③** By pumping lemma, s = uvxyz s.t. $uv^ixy^iz \in L$ for all i
- **(**) Complete proof by considering all possible values for v, y

Proof:

• Assume L is CFL, and let p be the pumping length

2 Choose
$$s = a^p b^p c^p \in L$$

- **③** By pumping lemma, s = uvxyz s.t. $uv^i xy^i z \in L$ for all i
- Complete proof by considering all possible values for v, y
 - v and y both have only one type of symbol (e.g., $v = a^{\ell}$ and $y = b^{\ell'}$) then $uv^i xy^i z$ has more a's and b's than c's, so is not in L

Proof:

- Assume L is CFL, and let p be the pumping length
- 2 Choose $s = a^p b^p c^p \in L$
- **③** By pumping lemma, s = uvxyz s.t. $uv^i xy^i z \in L$ for all i
- Complete proof by considering all possible values for v, y
 - v and y both have only one type of symbol (e.g., $v = a^{\ell}$ and $y = b^{\ell'}$) then $uv^i xy^i z$ has more a's and b's than c's, so is not in L
 - If either v or y have more than one type of symbol, uvⁱxyⁱz will have alternating symbols, so not in L

Proof:

- Assume L is CFL, and let p be the pumping length
- 2 Choose $s = a^p b^p c^p \in L$
- **③** By pumping lemma, s = uvxyz s.t. $uv^i xy^i z \in L$ for all i
- Complete proof by considering all possible values for v, y
 - v and y both have only one type of symbol (e.g., $v = a^{\ell}$ and $y = b^{\ell'}$) then $uv^i xy^i z$ has more a's and b's than c's, so is not in L
 - If either v or y have more than one type of symbol, $uv^i xy^i z$ will have alternating symbols, so not in L
- Ontradiction Hence L is not CFL

Arkady Yerukhimovich

Consider $L = \{ww \mid w \in \{0,1\}^*\}$, prove L is not CFL

< □ > < 同 >

2

∃ ⇒

Consider $L = \{ww \mid w \in \{0,1\}^*\}$, prove L is not CFL

Proof:

- **(**) Assume L is CFL, and let p be the pumping length
- 2 Try 1: Choose $s = 0^p 10^p 1 \in L$

э

∃ >

Consider $L = \{ww \mid w \in \{0, 1\}^*\}$, prove L is not CFL Proof:

- **(**) Assume L is CFL, and let p be the pumping length
- 2 Try 1: Choose $s = 0^p 10^p 1 \in L$
- **3** Try 2: Choose $s = 0^p 1^p 0^p 1^p \in L$

3) 3

Consider $L = \{ww \mid w \in \{0, 1\}^*\}$, prove L is not CFL Proof:

- **(**) Assume L is CFL, and let p be the pumping length
- 2 Try 1: Choose $s = 0^p 10^p 1 \in L$
- **3** Try 2: Choose $s = 0^p 1^p 0^p 1^p \in L$
- Consider all possible cases for vxy ($|vxy| \le p$)

Consider $L = \{ww \mid w \in \{0,1\}^*\}$, prove L is not CFL

Proof:

- **(**) Assume L is CFL, and let p be the pumping length
- 2 Try 1: Choose $s = 0^p 10^p 1 \in L$
- 3 Try 2: Choose $s = 0^p 1^p 0^p 1^p \in L$
- Consider all possible cases for vxy ($|vxy| \le p$)
 - vxy does not contain the midpoint of s
 - vxy is left of center pumping moves a 1 into first character of right half
Consider $L = \{ww \mid w \in \{0,1\}^*\}$, prove L is not CFL

Proof:

- Assume L is CFL, and let p be the pumping length
- **2** Try 1: Choose $s = 0^{p} 10^{p} 1 \in L$
- Try 2: Choose $s = 0^{p} 1^{p} 0^{p} 1^{p} \in L$
- Consider all possible cases for vxy ($|vxy| \le p$)
 - vxy does not contain the midpoint of s
 - vxy is left of center pumping moves a 1 into first character of right half
 - vxy is left of center pumping moves a 0 into last character of left half

21/22

Consider $L = \{ww \mid w \in \{0,1\}^*\}$, prove L is not CFL

Proof:

- Assume L is CFL, and let p be the pumping length
- 2 Try 1: Choose $s = 0^p 10^p 1 \in L$
- Try 2: Choose $s = 0^{p} 1^{p} 0^{p} 1^{p} \in L$
- Consider all possible cases for vxy ($|vxy| \le p$)
 - vxy does not contain the midpoint of s
 - vxy is left of center pumping moves a 1 into first character of right half
 - vxy is left of center pumping moves a 0 into last character of left half
 - vxy does contain the midpoint of s pumping makes this not match unpumped parts

Consider $L = \{ww \mid w \in \{0,1\}^*\}$, prove L is not CFL

Proof:

- Assume L is CFL, and let p be the pumping length
- 2 Try 1: Choose $s = 0^p 10^p 1 \in L$
- **3** Try 2: Choose $s = 0^p 1^p 0^p 1^p \in L$
- Consider all possible cases for vxy ($|vxy| \le p$)
 - vxy does not contain the midpoint of s
 - vxy is left of center pumping moves a 1 into first character of right half
 - vxy is left of center pumping moves a 0 into last character of left half
 - vxy does contain the midpoint of s pumping makes this not match unpumped parts
- Ontradiction Hence L is not CFL

- $\bullet\,$ This is the end of the material for exam 1
- Next week, review

æ