
Foundations of Computing

Lecture 10

Arkady Yerukhimovich

February 15, 2024

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 1 / 22

Outline

1 Lecture 9 Review

2 CFG == PDA

3 The CFL Pumping Lemma

4 Using the CFL Pumping Lemma

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 2 / 22

Lecture 9 Review

Context-Free Grammars
Strings generated by grammars
Building CFGs
Parse Trees

Today

Connect CFGs and PDAs and look at their limitations

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 3 / 22

Lecture 9 Review

Context-Free Grammars
Strings generated by grammars
Building CFGs
Parse Trees

Today

Connect CFGs and PDAs and look at their limitations

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 3 / 22

Outline

1 Lecture 9 Review

2 CFG == PDA

3 The CFL Pumping Lemma

4 Using the CFL Pumping Lemma

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 4 / 22

Main Theorem

Theorem

A language is context free (i.e., is generated by a CFG) if an only if some
pushdown automaton accepts it.

Proof:
We need to prove both directions:

1 If a language is context free, then some PDA accepts it

2 If a language is accepted by a PDA, then it is context free

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 5 / 22

Main Theorem

Theorem

A language is context free (i.e., is generated by a CFG) if an only if some
pushdown automaton accepts it.

Proof:
We need to prove both directions:

1 If a language is context free, then some PDA accepts it

2 If a language is accepted by a PDA, then it is context free

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 5 / 22

Main Theorem

Theorem

A language is context free (i.e., is generated by a CFG) if an only if some
pushdown automaton accepts it.

Proof:
We need to prove both directions:

1 If a language is context free, then some PDA accepts it

2 If a language is accepted by a PDA, then it is context free

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 5 / 22

Main Theorem

Theorem

A language is context free (i.e., is generated by a CFG) if an only if some
pushdown automaton accepts it.

Proof:
We need to prove both directions:

1 If a language is context free, then some PDA accepts it

2 If a language is accepted by a PDA, then it is context free

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 5 / 22

Proof of CFG G ! PDA M

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

Recall: Derivation of w in G – sequence of substitutions resulting in w

Each step gives intermediate string of variables and terminals

M decides if 9 sequence of substitutions in G leads from start to w

Algorithm for M:

M pushes the start variable on its stack

M repeatedly makes substitutions according to G , storing
intermediate strings on stack

M(w) = 1 if some intermediate string equals w

Challenges

1 May be many substitution rules at each step, how do we choose one?

2 How does M store the intermediate strings?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 6 / 22

Proof of CFG G ! PDA M

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

Recall: Derivation of w in G – sequence of substitutions resulting in w

Each step gives intermediate string of variables and terminals

M decides if 9 sequence of substitutions in G leads from start to w

Algorithm for M:

M pushes the start variable on its stack

M repeatedly makes substitutions according to G , storing
intermediate strings on stack

M(w) = 1 if some intermediate string equals w

Challenges

1 May be many substitution rules at each step, how do we choose one?

2 How does M store the intermediate strings?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 6 / 22

Proof of CFG G ! PDA M

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

Recall: Derivation of w in G – sequence of substitutions resulting in w

Each step gives intermediate string of variables and terminals

M decides if 9 sequence of substitutions in G leads from start to w

Algorithm for M:

M pushes the start variable on its stack

M repeatedly makes substitutions according to G , storing
intermediate strings on stack

M(w) = 1 if some intermediate string equals w

Challenges

1 May be many substitution rules at each step, how do we choose one?

2 How does M store the intermediate strings?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 6 / 22

Proof of CFG G ! PDA M

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

Recall: Derivation of w in G – sequence of substitutions resulting in w

Each step gives intermediate string of variables and terminals

M decides if 9 sequence of substitutions in G leads from start to w

Algorithm for M:

M pushes the start variable on its stack

M repeatedly makes substitutions according to G , storing
intermediate strings on stack

M(w) = 1 if some intermediate string equals w

Challenges

1 May be many substitution rules at each step, how do we choose one?

2 How does M store the intermediate strings?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 6 / 22

Proof of CFG G ! PDA M

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

Recall: Derivation of w in G – sequence of substitutions resulting in w

Each step gives intermediate string of variables and terminals

M decides if 9 sequence of substitutions in G leads from start to w

Algorithm for M:

M pushes the start variable on its stack

M repeatedly makes substitutions according to G , storing
intermediate strings on stack

M(w) = 1 if some intermediate string equals w

Challenges

1 May be many substitution rules at each step, how do we choose one?

2 How does M store the intermediate strings?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 6 / 22

Proof of CFG G ! PDA M

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

Recall: Derivation of w in G – sequence of substitutions resulting in w

Each step gives intermediate string of variables and terminals

M decides if 9 sequence of substitutions in G leads from start to w

Algorithm for M:

M pushes the start variable on its stack

M repeatedly makes substitutions according to G , storing
intermediate strings on stack

M(w) = 1 if some intermediate string equals w

Challenges

1 May be many substitution rules at each step, how do we choose one?

2 How does M store the intermediate strings?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 6 / 22

Proof of CFG G ! PDA M

Challenges

1 May be many substitution rules at each step, how do we choose one?

2 How does M store the intermediate strings?

Solutions:

1 Rely on non-determinism of M to choose correct substitution rule

2 Idea: Just store the strings on the stack
Problem:

Need to find variable A to replace, but can only access top symbol.
Need to remove any leading terminal characters to get to A
But, if we throw these away, can’t tell if they match w

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 7 / 22

Proof of CFG G ! PDA M

Challenges

1 May be many substitution rules at each step, how do we choose one?

2 How does M store the intermediate strings?

Solutions:

1 Rely on non-determinism of M to choose correct substitution rule

2 Idea: Just store the strings on the stack
Problem:

Need to find variable A to replace, but can only access top symbol.
Need to remove any leading terminal characters to get to A
But, if we throw these away, can’t tell if they match w

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 7 / 22

Proof of CFG G ! PDA M

Challenges

1 May be many substitution rules at each step, how do we choose one?

2 How does M store the intermediate strings?

Solutions:

1 Rely on non-determinism of M to choose correct substitution rule

2 Idea: Just store the strings on the stack

Problem:
Need to find variable A to replace, but can only access top symbol.
Need to remove any leading terminal characters to get to A
But, if we throw these away, can’t tell if they match w

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 7 / 22

Proof of CFG G ! PDA M

Challenges

1 May be many substitution rules at each step, how do we choose one?

2 How does M store the intermediate strings?

Solutions:

1 Rely on non-determinism of M to choose correct substitution rule

2 Idea: Just store the strings on the stack
Problem:

Need to find variable A to replace, but can only access top symbol.

Need to remove any leading terminal characters to get to A
But, if we throw these away, can’t tell if they match w

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 7 / 22

Proof of CFG G ! PDA M

Challenges

1 May be many substitution rules at each step, how do we choose one?

2 How does M store the intermediate strings?

Solutions:

1 Rely on non-determinism of M to choose correct substitution rule

2 Idea: Just store the strings on the stack
Problem:

Need to find variable A to replace, but can only access top symbol.
Need to remove any leading terminal characters to get to A

But, if we throw these away, can’t tell if they match w

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 7 / 22

Proof of CFG G ! PDA M

Challenges

1 May be many substitution rules at each step, how do we choose one?

2 How does M store the intermediate strings?

Solutions:

1 Rely on non-determinism of M to choose correct substitution rule

2 Idea: Just store the strings on the stack
Problem:

Need to find variable A to replace, but can only access top symbol.
Need to remove any leading terminal characters to get to A
But, if we throw these away, can’t tell if they match w

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 7 / 22

Proof of CFG G ! PDA M

Problem:

Need to find variable A to replace, but can only access top symbols.

Need to remove any leading terminal characters to get to A

But, if we throw these away, can’t tell if they match w

Solution:

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 8 / 22

Proof of CFG G ! PDA M

Problem:

Need to find variable A to replace, but can only access top symbols.

Need to remove any leading terminal characters to get to A

But, if we throw these away, can’t tell if they match w

Solution:

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 8 / 22

Proof of CFG G ! PDA M

Description of PDA M
1 Push $ to mark start of stack

2 Repeat the following until done
If top of stack is variable A, non-deterministically choose a substitution
rule and replace A with the right side of rule (push it on stack)
If top of stack is terminal, compare it to next input symbol. If they
match, repeat. If not, reject this non-deterministic branch
If top of stack is $ symbol, accept if full input has been read

Picture version of the resulting PDA is in the book

We are done

We are done with this direction of the proof

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 9 / 22

Proof of CFG G ! PDA M

Description of PDA M
1 Push $ to mark start of stack
2 Repeat the following until done

If top of stack is variable A, non-deterministically choose a substitution
rule and replace A with the right side of rule (push it on stack)

If top of stack is terminal, compare it to next input symbol. If they
match, repeat. If not, reject this non-deterministic branch
If top of stack is $ symbol, accept if full input has been read

Picture version of the resulting PDA is in the book

We are done

We are done with this direction of the proof

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 9 / 22

Proof of CFG G ! PDA M

Description of PDA M
1 Push $ to mark start of stack
2 Repeat the following until done

If top of stack is variable A, non-deterministically choose a substitution
rule and replace A with the right side of rule (push it on stack)
If top of stack is terminal, compare it to next input symbol. If they
match, repeat. If not, reject this non-deterministic branch

If top of stack is $ symbol, accept if full input has been read

Picture version of the resulting PDA is in the book

We are done

We are done with this direction of the proof

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 9 / 22

Proof of CFG G ! PDA M

Description of PDA M
1 Push $ to mark start of stack
2 Repeat the following until done

If top of stack is variable A, non-deterministically choose a substitution
rule and replace A with the right side of rule (push it on stack)
If top of stack is terminal, compare it to next input symbol. If they
match, repeat. If not, reject this non-deterministic branch
If top of stack is $ symbol, accept if full input has been read

Picture version of the resulting PDA is in the book

We are done

We are done with this direction of the proof

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 9 / 22

Proof of CFG G ! PDA M

Description of PDA M
1 Push $ to mark start of stack
2 Repeat the following until done

If top of stack is variable A, non-deterministically choose a substitution
rule and replace A with the right side of rule (push it on stack)
If top of stack is terminal, compare it to next input symbol. If they
match, repeat. If not, reject this non-deterministic branch
If top of stack is $ symbol, accept if full input has been read

Picture version of the resulting PDA is in the book

We are done

We are done with this direction of the proof

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 9 / 22

Proof of PDA M ! CFG G

Idea: Construct CFG G that generates all strings M accepts

G generates strings that cause M to go from start state to an accept
state

We build something stronger:
For each pair of states p, q 2 M, G has a variable Apq such that

Apq generates all strings that take M from state p (with an empty
stack) to state q (with an empty stack)

Observations:

Strings generated by Apq take M from p to q without modifying the
stack

Thus, Aq0qaccept generates all strings w 2 L(M)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 10 / 22

Proof of PDA M ! CFG G

Idea: Construct CFG G that generates all strings M accepts

G generates strings that cause M to go from start state to an accept
state

We build something stronger:
For each pair of states p, q 2 M, G has a variable Apq such that

Apq generates all strings that take M from state p (with an empty
stack) to state q (with an empty stack)

Observations:

Strings generated by Apq take M from p to q without modifying the
stack

Thus, Aq0qaccept generates all strings w 2 L(M)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 10 / 22

Proof of PDA M ! CFG G

Idea: Construct CFG G that generates all strings M accepts

G generates strings that cause M to go from start state to an accept
state

We build something stronger:
For each pair of states p, q 2 M, G has a variable Apq such that

Apq generates all strings that take M from state p (with an empty
stack) to state q (with an empty stack)

Observations:

Strings generated by Apq take M from p to q without modifying the
stack

Thus, Aq0qaccept generates all strings w 2 L(M)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 10 / 22

Proof of PDA M ! CFG G

Idea: Construct CFG G that generates all strings M accepts

G generates strings that cause M to go from start state to an accept
state

We build something stronger:
For each pair of states p, q 2 M, G has a variable Apq such that

Apq generates all strings that take M from state p (with an empty
stack) to state q (with an empty stack)

Observations:

Strings generated by Apq take M from p to q without modifying the
stack

Thus, Aq0qaccept generates all strings w 2 L(M)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 10 / 22

Proof of PDA M ! CFG G

Idea: Construct CFG G that generates all strings M accepts

G generates strings that cause M to go from start state to an accept
state

We build something stronger:
For each pair of states p, q 2 M, G has a variable Apq such that

Apq generates all strings that take M from state p (with an empty
stack) to state q (with an empty stack)

Observations:

Strings generated by Apq take M from p to q without modifying the
stack

Thus, Aq0qaccept generates all strings w 2 L(M)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 10 / 22

Proof of PDA M ! CFG G

Idea: Construct CFG G that generates all strings M accepts

G generates strings that cause M to go from start state to an accept
state

We build something stronger:
For each pair of states p, q 2 M, G has a variable Apq such that

Apq generates all strings that take M from state p (with an empty
stack) to state q (with an empty stack)

Observations:

Strings generated by Apq take M from p to q without modifying the
stack

Thus, Aq0qaccept generates all strings w 2 L(M)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 10 / 22

Proof of PDA M ! CFG G

Idea: Construct CFG G that generates all strings M accepts

G generates strings that cause M to go from start state to an accept
state

We build something stronger:
For each pair of states p, q 2 M, G has a variable Apq such that

Apq generates all strings that take M from state p (with an empty
stack) to state q (with an empty stack)

Observations:

Strings generated by Apq take M from p to q without modifying the
stack

Thus, Aq0qaccept generates all strings w 2 L(M)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 10 / 22

Proof of PDA M ! CFG G : Building Apq

Assume that M has the following properties:

1 Only one accept state: qaccept
2 M empties its stack before accepting

3 All transitions either have form x , ✏ ! a (push an item on the stack)
or x , a ! ✏ (pop an item o↵ the stack), but not both.

We’ve already shown how to turn any PDA M into one satisfying these
properties

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 11 / 22

Proof of PDA M ! CFG G : Building Apq

Consider x taking M from p to q with empty stack

M’s first move on x must be a push – nothing to pop

M’s last move on x must be a pop – need empty stack
Two possibilities:

Symbol popped in last step same symbol pushed in first step
In this case, stack is only empty at beginning and end
Add rule Apq ! aArsb:

Symbol popped in last step not same symbol pushed in first step
Symbol pushed in first step, must be popped before the end, so stack
becomes empty at some middle state r
Add rule Apq ! AprArq

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 12 / 22

Proof of PDA M ! CFG G : Building Apq

Consider x taking M from p to q with empty stack

M’s first move on x must be a push – nothing to pop

M’s last move on x must be a pop – need empty stack
Two possibilities:

Symbol popped in last step same symbol pushed in first step
In this case, stack is only empty at beginning and end
Add rule Apq ! aArsb:

Symbol popped in last step not same symbol pushed in first step
Symbol pushed in first step, must be popped before the end, so stack
becomes empty at some middle state r
Add rule Apq ! AprArq

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 12 / 22

Proof of PDA M ! CFG G : Building Apq

Consider x taking M from p to q with empty stack

M’s first move on x must be a push – nothing to pop

M’s last move on x must be a pop – need empty stack

Two possibilities:
Symbol popped in last step same symbol pushed in first step

In this case, stack is only empty at beginning and end
Add rule Apq ! aArsb:

Symbol popped in last step not same symbol pushed in first step
Symbol pushed in first step, must be popped before the end, so stack
becomes empty at some middle state r
Add rule Apq ! AprArq

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 12 / 22

Proof of PDA M ! CFG G : Building Apq

Consider x taking M from p to q with empty stack

M’s first move on x must be a push – nothing to pop

M’s last move on x must be a pop – need empty stack
Two possibilities:

Symbol popped in last step same symbol pushed in first step
In this case, stack is only empty at beginning and end
Add rule Apq ! aArsb:

Symbol popped in last step not same symbol pushed in first step
Symbol pushed in first step, must be popped before the end, so stack
becomes empty at some middle state r
Add rule Apq ! AprArq

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 12 / 22

Proof of PDA M ! CFG G : Building Apq

Consider x taking M from p to q with empty stack

M’s first move on x must be a push – nothing to pop

M’s last move on x must be a pop – need empty stack
Two possibilities:

Symbol popped in last step same symbol pushed in first step
In this case, stack is only empty at beginning and end
Add rule Apq ! aArsb:

Symbol popped in last step not same symbol pushed in first step
Symbol pushed in first step, must be popped before the end, so stack
becomes empty at some middle state r
Add rule Apq ! AprArq

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 12 / 22

Proof of PDA M ! CFG G : Building Apq

Consider x taking M from p to q with empty stack

M’s first move on x must be a push – nothing to pop

M’s last move on x must be a pop – need empty stack
Two possibilities:

Symbol popped in last step same symbol pushed in first step
In this case, stack is only empty at beginning and end
Add rule Apq ! aArsb:

Symbol popped in last step not same symbol pushed in first step
Symbol pushed in first step, must be popped before the end, so stack
becomes empty at some middle state r
Add rule Apq ! AprArq

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 12 / 22

Conclusion

We have shown conversions for:

CFG G ! PDA M, and

PDA M ! CFG G

Takeaway

PDAs recognize exactly the set of context-free languages.

Question

Are all languages context-free?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 13 / 22

Conclusion

We have shown conversions for:

CFG G ! PDA M, and

PDA M ! CFG G

Takeaway

PDAs recognize exactly the set of context-free languages.

Question

Are all languages context-free?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 13 / 22

Conclusion

We have shown conversions for:

CFG G ! PDA M, and

PDA M ! CFG G

Takeaway

PDAs recognize exactly the set of context-free languages.

Question

Are all languages context-free?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 13 / 22

Outline

1 Lecture 9 Review

2 CFG == PDA

3 The CFL Pumping Lemma

4 Using the CFL Pumping Lemma

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 14 / 22

The CFL Pumping Lemma

Theorem

If L is a CFL, then there exists a pumping length p s.t. for any s 2 L, with
|s| � p, s can be divided into 5 pieces s = uvxyz satisfying:

1 For each i � 0, uv ixy iz 2 L

2 |vy | > 0

3 |vxy | p

Pumping lemma in math notation:
9p s.t 8s 2 L, |s| � p, 9 partition s = uvxyz s.t. 8i , uv ixy iz 2 L

Negation of pumping lemma:
8p, 9s 2 L, |s| � p s.t. 8 partitions s = uvxyz 9 i s.t. uv ixy iz /2 L

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 15 / 22

The CFL Pumping Lemma

Theorem

If L is a CFL, then there exists a pumping length p s.t. for any s 2 L, with
|s| � p, s can be divided into 5 pieces s = uvxyz satisfying:

1 For each i � 0, uv ixy iz 2 L

2 |vy | > 0

3 |vxy | p

Pumping lemma in math notation:
9p s.t 8s 2 L, |s| � p, 9 partition s = uvxyz s.t. 8i , uv ixy iz 2 L

Negation of pumping lemma:
8p, 9s 2 L, |s| � p s.t. 8 partitions s = uvxyz 9 i s.t. uv ixy iz /2 L

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 15 / 22

The CFL Pumping Lemma

Theorem

If L is a CFL, then there exists a pumping length p s.t. for any s 2 L, with
|s| � p, s can be divided into 5 pieces s = uvxyz satisfying:

1 For each i � 0, uv ixy iz 2 L

2 |vy | > 0

3 |vxy | p

Pumping lemma in math notation:
9p s.t 8s 2 L, |s| � p, 9 partition s = uvxyz s.t. 8i , uv ixy iz 2 L

Negation of pumping lemma:
8p, 9s 2 L, |s| � p s.t. 8 partitions s = uvxyz 9 i s.t. uv ixy iz /2 L

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 15 / 22

Proving the CFL Pumping Lemma (Intuition)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 16 / 22

Outline

1 Lecture 9 Review

2 CFG == PDA

3 The CFL Pumping Lemma

4 Using the CFL Pumping Lemma

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 17 / 22

Using the CFL Pumping Lemma

We use the CFL pumping lemma to prove that L is not a CFL similarly to
how we used the regular language pumping lemma.

Specifically:

Consider the negation:

8p, 9s 2 L, |s| � p s.t. 8 partitions s = uvxyz 9i s.t. uv ixy iz /2 L

So, we need to find such an s and prove that for any way to partition
it, it cannot be pumped

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 18 / 22

Using the CFL Pumping Lemma

We use the CFL pumping lemma to prove that L is not a CFL similarly to
how we used the regular language pumping lemma.

Specifically:

Consider the negation:

8p, 9s 2 L, |s| � p s.t. 8 partitions s = uvxyz 9i s.t. uv ixy iz /2 L

So, we need to find such an s and prove that for any way to partition
it, it cannot be pumped

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 18 / 22

Using the CFL Pumping Lemma

We use the CFL pumping lemma to prove that L is not a CFL similarly to
how we used the regular language pumping lemma.

Specifically:

Consider the negation:

8p, 9s 2 L, |s| � p s.t. 8 partitions s = uvxyz 9i s.t. uv ixy iz /2 L

So, we need to find such an s and prove that for any way to partition
it, it cannot be pumped

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 18 / 22

The Proof Procedure

To use the pumping lemma to prove that L is not CFL, we do the
following:

1 Assume that L is CFL

2 Use pumping lemma to guarantee pumping length p, s.t. all s with
|s| > p can be pumped

3 Pick some s 2 L with |s| � p
4 Demonstrate that s cannot be pumped

For each possible division w = uvxyz (with |vy | > 0 and |vxy | p),
find an integer i such that uv ixy iz /2 L

5 Contradiction!!!

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 19 / 22

The Proof Procedure

To use the pumping lemma to prove that L is not CFL, we do the
following:

1 Assume that L is CFL

2 Use pumping lemma to guarantee pumping length p, s.t. all s with
|s| > p can be pumped

3 Pick some s 2 L with |s| � p
4 Demonstrate that s cannot be pumped

For each possible division w = uvxyz (with |vy | > 0 and |vxy | p),
find an integer i such that uv ixy iz /2 L

5 Contradiction!!!

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 19 / 22

The Proof Procedure

To use the pumping lemma to prove that L is not CFL, we do the
following:

1 Assume that L is CFL

2 Use pumping lemma to guarantee pumping length p, s.t. all s with
|s| > p can be pumped

3 Pick some s 2 L with |s| � p
4 Demonstrate that s cannot be pumped

For each possible division w = uvxyz (with |vy | > 0 and |vxy | p),
find an integer i such that uv ixy iz /2 L

5 Contradiction!!!

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 19 / 22

The Proof Procedure

To use the pumping lemma to prove that L is not CFL, we do the
following:

1 Assume that L is CFL

2 Use pumping lemma to guarantee pumping length p, s.t. all s with
|s| > p can be pumped

3 Pick some s 2 L with |s| � p

4 Demonstrate that s cannot be pumped
For each possible division w = uvxyz (with |vy | > 0 and |vxy | p),
find an integer i such that uv ixy iz /2 L

5 Contradiction!!!

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 19 / 22

The Proof Procedure

To use the pumping lemma to prove that L is not CFL, we do the
following:

1 Assume that L is CFL

2 Use pumping lemma to guarantee pumping length p, s.t. all s with
|s| > p can be pumped

3 Pick some s 2 L with |s| � p
4 Demonstrate that s cannot be pumped

For each possible division w = uvxyz (with |vy | > 0 and |vxy | p),
find an integer i such that uv ixy iz /2 L

5 Contradiction!!!

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 19 / 22

The Proof Procedure

To use the pumping lemma to prove that L is not CFL, we do the
following:

1 Assume that L is CFL

2 Use pumping lemma to guarantee pumping length p, s.t. all s with
|s| > p can be pumped

3 Pick some s 2 L with |s| � p
4 Demonstrate that s cannot be pumped

For each possible division w = uvxyz (with |vy | > 0 and |vxy | p),
find an integer i such that uv ixy iz /2 L

5 Contradiction!!!

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 19 / 22

Example 1

Consider L = {anbncn | n � 0}, prove L is not CFL

Proof:

1 Assume L is CFL, and let p be the pumping length

2 Choose s = apbpcp 2 L

3 By pumping lemma, s = uvxyz s.t. uv ixy iz 2 L for all i
4 Complete proof by considering all possible values for v , y

v and y both have only one type of symbol (e.g., v = a` and y = b`
0
)

then uv ixy iz has more a’s and b’s than c ’s, so is not in L
If either v or y have more than one type of symbol, uv ixy iz will have
alternating symbols, so not in L

5 Contradiction – Hence L is not CFL

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 20 / 22

Example 1

Consider L = {anbncn | n � 0}, prove L is not CFL

Proof:

1 Assume L is CFL, and let p be the pumping length

2 Choose s = apbpcp 2 L

3 By pumping lemma, s = uvxyz s.t. uv ixy iz 2 L for all i
4 Complete proof by considering all possible values for v , y

v and y both have only one type of symbol (e.g., v = a` and y = b`
0
)

then uv ixy iz has more a’s and b’s than c ’s, so is not in L
If either v or y have more than one type of symbol, uv ixy iz will have
alternating symbols, so not in L

5 Contradiction – Hence L is not CFL

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 20 / 22

Example 1

Consider L = {anbncn | n � 0}, prove L is not CFL

Proof:

1 Assume L is CFL, and let p be the pumping length

2 Choose s = apbpcp 2 L

3 By pumping lemma, s = uvxyz s.t. uv ixy iz 2 L for all i
4 Complete proof by considering all possible values for v , y

v and y both have only one type of symbol (e.g., v = a` and y = b`
0
)

then uv ixy iz has more a’s and b’s than c ’s, so is not in L
If either v or y have more than one type of symbol, uv ixy iz will have
alternating symbols, so not in L

5 Contradiction – Hence L is not CFL

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 20 / 22

Example 1

Consider L = {anbncn | n � 0}, prove L is not CFL

Proof:

1 Assume L is CFL, and let p be the pumping length

2 Choose s = apbpcp 2 L

3 By pumping lemma, s = uvxyz s.t. uv ixy iz 2 L for all i
4 Complete proof by considering all possible values for v , y

v and y both have only one type of symbol (e.g., v = a` and y = b`
0
)

then uv ixy iz has more a’s and b’s than c ’s, so is not in L
If either v or y have more than one type of symbol, uv ixy iz will have
alternating symbols, so not in L

5 Contradiction – Hence L is not CFL

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 20 / 22

Example 1

Consider L = {anbncn | n � 0}, prove L is not CFL

Proof:

1 Assume L is CFL, and let p be the pumping length

2 Choose s = apbpcp 2 L

3 By pumping lemma, s = uvxyz s.t. uv ixy iz 2 L for all i
4 Complete proof by considering all possible values for v , y

v and y both have only one type of symbol (e.g., v = a` and y = b`
0
)

then uv ixy iz has more a’s and b’s than c ’s, so is not in L

If either v or y have more than one type of symbol, uv ixy iz will have
alternating symbols, so not in L

5 Contradiction – Hence L is not CFL

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 20 / 22

Example 1

Consider L = {anbncn | n � 0}, prove L is not CFL

Proof:

1 Assume L is CFL, and let p be the pumping length

2 Choose s = apbpcp 2 L

3 By pumping lemma, s = uvxyz s.t. uv ixy iz 2 L for all i
4 Complete proof by considering all possible values for v , y

v and y both have only one type of symbol (e.g., v = a` and y = b`
0
)

then uv ixy iz has more a’s and b’s than c ’s, so is not in L
If either v or y have more than one type of symbol, uv ixy iz will have
alternating symbols, so not in L

5 Contradiction – Hence L is not CFL

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 20 / 22

Example 1

Consider L = {anbncn | n � 0}, prove L is not CFL

Proof:

1 Assume L is CFL, and let p be the pumping length

2 Choose s = apbpcp 2 L

3 By pumping lemma, s = uvxyz s.t. uv ixy iz 2 L for all i
4 Complete proof by considering all possible values for v , y

v and y both have only one type of symbol (e.g., v = a` and y = b`
0
)

then uv ixy iz has more a’s and b’s than c ’s, so is not in L
If either v or y have more than one type of symbol, uv ixy iz will have
alternating symbols, so not in L

5 Contradiction – Hence L is not CFL

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 20 / 22

Example 2

Consider L = {ww | w 2 {0, 1}⇤}, prove L is not CFL

Proof:

1 Assume L is CFL, and let p be the pumping length

2 Try 1: Choose s = 0p10p1 2 L

3 Try 2: Choose s = 0p1p0p1p 2 L
4 Consider all possible cases for vxy (|vxy | p)

vxy does not contain the midpoint of s
vxy is left of center – pumping moves a 1 into first character of right
half
vxy is left of center – pumping moves a 0 into last character of left half

vxy does contain the midpoint of s – pumping makes this not match
unpumped parts

5 Contradiction – Hence L is not CFL

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 21 / 22

Example 2

Consider L = {ww | w 2 {0, 1}⇤}, prove L is not CFL

Proof:

1 Assume L is CFL, and let p be the pumping length

2 Try 1: Choose s = 0p10p1 2 L

3 Try 2: Choose s = 0p1p0p1p 2 L
4 Consider all possible cases for vxy (|vxy | p)

vxy does not contain the midpoint of s
vxy is left of center – pumping moves a 1 into first character of right
half
vxy is left of center – pumping moves a 0 into last character of left half

vxy does contain the midpoint of s – pumping makes this not match
unpumped parts

5 Contradiction – Hence L is not CFL

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 21 / 22

Example 2

Consider L = {ww | w 2 {0, 1}⇤}, prove L is not CFL

Proof:

1 Assume L is CFL, and let p be the pumping length

2 Try 1: Choose s = 0p10p1 2 L

3 Try 2: Choose s = 0p1p0p1p 2 L

4 Consider all possible cases for vxy (|vxy | p)
vxy does not contain the midpoint of s

vxy is left of center – pumping moves a 1 into first character of right
half
vxy is left of center – pumping moves a 0 into last character of left half

vxy does contain the midpoint of s – pumping makes this not match
unpumped parts

5 Contradiction – Hence L is not CFL

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 21 / 22

Example 2

Consider L = {ww | w 2 {0, 1}⇤}, prove L is not CFL

Proof:

1 Assume L is CFL, and let p be the pumping length

2 Try 1: Choose s = 0p10p1 2 L

3 Try 2: Choose s = 0p1p0p1p 2 L
4 Consider all possible cases for vxy (|vxy | p)

vxy does not contain the midpoint of s
vxy is left of center – pumping moves a 1 into first character of right
half
vxy is left of center – pumping moves a 0 into last character of left half

vxy does contain the midpoint of s – pumping makes this not match
unpumped parts

5 Contradiction – Hence L is not CFL

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 21 / 22

Example 2

Consider L = {ww | w 2 {0, 1}⇤}, prove L is not CFL

Proof:

1 Assume L is CFL, and let p be the pumping length

2 Try 1: Choose s = 0p10p1 2 L

3 Try 2: Choose s = 0p1p0p1p 2 L
4 Consider all possible cases for vxy (|vxy | p)

vxy does not contain the midpoint of s
vxy is left of center – pumping moves a 1 into first character of right
half

vxy is left of center – pumping moves a 0 into last character of left half

vxy does contain the midpoint of s – pumping makes this not match
unpumped parts

5 Contradiction – Hence L is not CFL

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 21 / 22

Example 2

Consider L = {ww | w 2 {0, 1}⇤}, prove L is not CFL

Proof:

1 Assume L is CFL, and let p be the pumping length

2 Try 1: Choose s = 0p10p1 2 L

3 Try 2: Choose s = 0p1p0p1p 2 L
4 Consider all possible cases for vxy (|vxy | p)

vxy does not contain the midpoint of s
vxy is left of center – pumping moves a 1 into first character of right
half
vxy is left of center – pumping moves a 0 into last character of left half

vxy does contain the midpoint of s – pumping makes this not match
unpumped parts

5 Contradiction – Hence L is not CFL

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 21 / 22

Example 2

Consider L = {ww | w 2 {0, 1}⇤}, prove L is not CFL

Proof:

1 Assume L is CFL, and let p be the pumping length

2 Try 1: Choose s = 0p10p1 2 L

3 Try 2: Choose s = 0p1p0p1p 2 L
4 Consider all possible cases for vxy (|vxy | p)

vxy does not contain the midpoint of s
vxy is left of center – pumping moves a 1 into first character of right
half
vxy is left of center – pumping moves a 0 into last character of left half

vxy does contain the midpoint of s – pumping makes this not match
unpumped parts

5 Contradiction – Hence L is not CFL

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 21 / 22

Example 2

Consider L = {ww | w 2 {0, 1}⇤}, prove L is not CFL

Proof:

1 Assume L is CFL, and let p be the pumping length

2 Try 1: Choose s = 0p10p1 2 L

3 Try 2: Choose s = 0p1p0p1p 2 L
4 Consider all possible cases for vxy (|vxy | p)

vxy does not contain the midpoint of s
vxy is left of center – pumping moves a 1 into first character of right
half
vxy is left of center – pumping moves a 0 into last character of left half

vxy does contain the midpoint of s – pumping makes this not match
unpumped parts

5 Contradiction – Hence L is not CFL

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 21 / 22

Exam 1

This is the end of the material for exam 1

Next week, review

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 15, 2024 22 / 22

