Foundations of Computing

Lecture 12

Arkady Yerukhimovich

February 27, 2024

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

Outline

© Lecture 10411 Review

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

Lecture 10+11 Review

@ Equivalence of CFGs and PDAs
e CFL Pumping Lemma
@ Using the CFL Pumping Lemma

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

Outline

© Models of Computation

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 20

Finite Automata

Input file

DFA/NFA

U
Output
Recall:
@ An NFA/DFA has no external storage
@ Only memory must be encoded in the finite number of states
@ Can only recognize regular languages

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

Pushdown Automata (PDA)

Input file

DFA/NFA

U
Output

A PDA consists of:
@ An NFA for a control unit
@ A Stack for storage

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

Pushdown Automata (PDA)

Input file

DFA/NFA Pe—

U
Output

A PDA consists of:
@ An NFA for a control unit
@ A Stack for storage
Recall:
@ Can only access memory in LIFO fashion
@ Can only recognize context-free languages

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

A Model for General Computation

All the prior models of computation couldn't recognize some simple
languages. Can we develop a computation model that captures all
languages that can be computed on any computer?

One model to rule them all! l

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

Outline

© The Turing Machine

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 20

The Turing Machine

Control
(NFA/DFA)

Tape: [0[1]1]0fu]uf...

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

The Turing Machine

Control
(NFA/DFA)

Tape: [0[1]1]0fu]uf...

Key Differences:

@ A TM can read and write to its tape

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

The Turing Machine

Control
(NFA/DFA)

Tape: [0[1]1]0fu]uf...

Key Differences:
@ A TM can read and write to its tape

@ The read/write head can move to the right and to the left

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

The Turing Machine

Control
(NFA/DFA)

Tape: [0[1]1]0fu]uf...
' g

Key Differences:
@ A TM can read and write to its tape
@ The read/write head can move to the right and to the left
@ No separate input tape, input written onto memory tape at start

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

The Turing Machine

Control
(NFA/DFA)

Tape: [0[1]1]0fu]uf...

Key Differences:
@ A TM can read and write to its tape
@ The read/write head can move to the right and to the left
@ No separate input tape, input written onto memory tape at start

@ The memory tape is infinite

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

The Turing Machine

Control
(NFA/DFA)

Tape: [0[1]1]0fu]uf...

Key Differences:
@ A TM can read and write to its tape
@ The read/write head can move to the right and to the left
@ No separate input tape, input written onto memory tape at start
@ The memory tape is infinite
@ Control FA has accept and reject states that are immediately output
if entered

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

An Example: TM To Recognize L = {w#w | w € {0,1}*}

An Algorithm for M:
On input string s (written on the tape):

[\ [e|o]i]uf

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

An Example: TM To Recognize L = {w#w | w € {0,1}*}

An Algorithm for M:
On input string s (written on the tape):

@ Scan the input to check that it contains exactly one # symbol, if not
reject.

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 10/21

An Example: TM To Recognize L = {w#w | w € {0,1}*}

An Algorithm for M:
On input string s (written on the tape):

@ Scan the input to check that it contains exactly one # symbol, if not
reject.

@ Zigzag to corresponding positions on each side of the # and see if
they contain same symbol. If not, reject. Cross off symbols as they
are checked

LA HE R

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 10/21

An Example: TM To Recognize L = {w#w | w € {0,1}*}

An Algorithm for M:
On input string s (written on the tape):

@ Scan the input to check that it contains exactly one # symbol, if not
reject.

@ Zigzag to corresponding positions on each side of the # and see if
they contain same symbol. If not, reject. Cross off symbols as they
are checked

© When all symbols to the left of # have been crossed off, check that
no uncrossed-off symbols remain to the right of #. If any symbols
remain, reject, otherwise accept.

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 10/21

An Example: TM To Recognize L = {w#w | w € {0,1}*}

Recognizing s = 011000#011000:

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 11/21

An Example: TM To Recognize L = {w#w | w € {0,1}*}

Recognizing s = 011000#011000:

0110004011000 LI - - -

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 11/21

An Example: TM To Recognize L = {w#w | w € {0,1}*}

Recognizing s = 011000#011000:

0110004011000 LI - - -
x110004011000 Lt - - -

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 11/21

An Example: TM To Recognize L = {w#w | w € {0,1}*}

Recognizing s = 011000#011000:

0110004011000 LI - - -
x110004£011000 LI - - -
x110004x11000 L - - -

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

An Example: TM To Recognize L = {w#w | w € {0,1}*}

Recognizing s = 011000#011000:

011000#:011000 L - - -
x11000#011000 LI - - -
x110004x11000 L - - -
xx1000#x11000 L - - -

February 27, 2024 11/21

Arkady Yerukhimovich CS 3313 — Foundations of Computing

An Example: TM To Recognize L = {w#w | w € {0,1}*}

Recognizing s = 011000#011000:

011000#:011000 L - - -
x11000#011000 LI - - -
x110004x11000 L - - -
xx1000#x11000 L - - -

XXXXXXFEXXXXXXL] - -+

11/21

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

An Example: TM To Recognize L = {w#w | w € {0,1}*}

Recognizing s = 011000#011000:

011000#:011000 L - - -
x11000#011000 LI - - -
x110004x11000 L - - -
xx1000#x11000 L - - -

XXXXXXFEXXXXXXL] - -+

accept

11/21

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

Algorithms

What is an algorithm?

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 12/21

Algorithms

What is an algorithm?

@ A collection of simple instructions for carrying out some task

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 12/21

Algorithms

What is an algorithm?

@ A collection of simple instructions for carrying out some task

@ A process according to which it can be determined by a finite number
of operations — Hilbert 1900

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 12/21

Algorithms

What is an algorithm?

@ A collection of simple instructions for carrying out some task

@ A process according to which it can be determined by a finite number
of operations — Hilbert 1900

Algorithms are critical to understand solutions / complexity of a problem

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 12/21

Algorithms

What is an algorithm?

@ A collection of simple instructions for carrying out some task

@ A process according to which it can be determined by a finite number
of operations — Hilbert 1900

Algorithms are critical to understand solutions / complexity of a problem

@ To show how to solve a problem, we design an algorithm

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 12/21

Algorithms

What is an algorithm?

@ A collection of simple instructions for carrying out some task

@ A process according to which it can be determined by a finite number
of operations — Hilbert 1900

Algorithms are critical to understand solutions / complexity of a problem
@ To show how to solve a problem, we design an algorithm

@ To reason about languages accepted by NFA/PDA, we designed
algorithms

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 12/21

Algorithms

What is an algorithm?

@ A collection of simple instructions for carrying out some task

@ A process according to which it can be determined by a finite number
of operations — Hilbert 1900

Algorithms are critical to understand solutions / complexity of a problem
@ To show how to solve a problem, we design an algorithm

@ To reason about languages accepted by NFA/PDA, we designed
algorithms

@ How can we reason about the limits of what an algorithm can
compute?

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 12/21

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 13 /21

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 13 /21

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:
@ While unproven, all modern computers satisfy Church-Turing thesis

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 13 /21

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:
@ While unproven, all modern computers satisfy Church-Turing thesis

@ To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 13 /21

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:
@ While unproven, all modern computers satisfy Church-Turing thesis

@ To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

@ This means that Turing Machines give an abstraction to capture
“feasible computation”

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 13 /21

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:
@ While unproven, all modern computers satisfy Church-Turing thesis

@ To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

@ This means that Turing Machines give an abstraction to capture
“feasible computation”

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 13 /21

Outline

@ Formalizing Turing Machines

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

Turing Machine — Formal Definition

A Turing machine is a 7-tuple:

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 15/21

Turing Machine — Formal Definition

A Turing machine is a 7-tuple:
@ Q — set of states

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 15/21

Turing Machine — Formal Definition

A Turing machine is a 7-tuple:
@ Q — set of states ‘L
@ X - input alphabet (not including blank symbol L/)

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 15/21

Turing Machine — Formal Definition

A Turing machine is a 7-tuple:
@ Q — set of states
@ X - input alphabet (not including blank symbol L/)
© [— tape alphabet, where U el and 2 C T

X X

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 15/21

Turing Machine — Formal Definition

A Turing machine is a 7-tuple:
@ Q — set of states
@ X - input alphabet (not including blank symbol L/)
© [— tape alphabet, where U el and 2 C T
Q §:QxI— QxT x{L, R} — transition function

Tt

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 15/21

Turing Machine — Formal Definition

A Turing machine is a 7-tuple:
@ Q — set of states
@ X - input alphabet (not including blank symbol L/)
© [— tape alphabet, where U el and 2 C T
Q §:QxI— QxT x{L, R} — transition function
Q@ qo € Q — start state
Q Gaccepr € @ — accept state
Q@ Greject € @ — reject state

Transition function: 0 : @ x ' - Q x I x {L, R}

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 15/21

Turing Machine — Formal Definition

A Turing machine is a 7-tuple:
@ Q — set of states
@ X - input alphabet (not including blank symbol L/)
© [— tape alphabet, where U el and 2 C T
Q §:QxI— QxT x{L, R} — transition function
Q@ qo € Q — start state
Q Gaccepr € @ — accept state
Q@ Greject € @ — reject state

Transition function: 0 : @ x ' - Q x I x {L, R}
On state g and tape input 7:

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 15/21

Turing Machine — Formal Definition

A Turing machine is a 7-tuple:
@ Q — set of states
@ X - input alphabet (not including blank symbol L/)
© [— tape alphabet, where U el and 2 C T
Q §:QxI— QxT x{L, R} — transition function
Q@ qo € Q — start state
Q Gaccepr € @ — accept state
Q@ Greject € @ — reject state
Transition function: 0 : @ x ' - Q x I x {L, R}
On state g and tape input 7:
@ move control to state ¢,

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

Turing Machine — Formal Definition

A Turing machine is a 7-tuple:
@ Q — set of states
@ X - input alphabet (not including blank symbol L/)
© [— tape alphabet, where U el and 2 C T
Q §:QxI— QxT x{L, R} — transition function
Q@ qo € Q — start state
Q Gaccepr € @ — accept state
Q@ Greject € @ — reject state
Transition function: 0 : @ x ' - Q x I x {L, R}
On state g and tape input 7:
@ move control to state ¢,

@ write 7/ to the tape,

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

Turing Machine — Formal Definition

A Turing machine is a 7-tuple:
@ Q — set of states
@ X - input alphabet (not including blank symbol L/)
© [— tape alphabet, where U el and 2 C T
Q §:QxI— QxT x{L, R} — transition function
Q@ qo € Q — start state
Q Gaccepr € @ — accept state
Q@ Greject € @ — reject state
Transition function: 0 : @ x ' - Q x I x {L, R}
On state g and tape input 7:
@ move control to state ¢,
@ write 7/ to the tape,
@ and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

Computing on a Turing Machine

ds

\

e

Tape: [0 1 T0]u]u

Configuration of a TM

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 16 /21

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 16 /21

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation

@ Current state of control, state of tape, location of tape head

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 16 /21

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation
@ Current state of control, state of tape, location of tape head

o Example: 019310

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 16 /21

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation
@ Current state of control, state of tape, location of tape head

o Example: 019310

Definitions:
e Configuration (7 yields C,, if M can go from C; to G, in a single step

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 16 /21

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation
@ Current state of control, state of tape, location of tape head

o Example: 019310

Definitions:
e Configuration (7 yields C,, if M can go from C; to G, in a single step
@ start configuration of M on input s — configuration ggs

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 16 /21

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation
@ Current state of control, state of tape, location of tape head

o Example: 019310

Definitions:
e Configuration (7 yields C,, if M can go from C; to G, in a single step
@ start configuration of M on input s — configuration ggs
@ accepting configuration — any config with state qaccept

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 16 /21

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation
@ Current state of control, state of tape, location of tape head

o Example: 019310

Definitions:

Configuration G yields G, if M can go from (3 to (5 in a single step
start configuration of M on input s — configuration gos

accepting configuration — any config with state qaccept

rejecting configuration — any config with state geject

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 16 /21

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation
@ Current state of control, state of tape, location of tape head

o Example: 019310

Definitions:

Configuration G yields G, if M can go from (3 to (5 in a single step
start configuration of M on input s — configuration gos

accepting configuration — any config with state qaccept

rejecting configuration — any config with state geject

halting configuration — accepting or rejecting configs

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 16 /21

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation
@ Current state of control, state of tape, location of tape head

o Example: 019310

Definitions:

Configuration G yields G, if M can go from (3 to (5 in a single step
start configuration of M on input s — configuration gos

accepting configuration — any config with state qaccept

rejecting configuration — any config with state geject

halting configuration — accepting or rejecting configs

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 16 /21

Computing on a Turing Machine

A TM accepts an input s if there exists a sequence of configs
G, G, ..., C, where

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 17 /21

Computing on a Turing Machine

A TM accepts an input s if there exists a sequence of configs
G, G, ..., C, where

@ (is the start configuration of M on input s

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 17 /21

Computing on a Turing Machine

A TM accepts an input s if there exists a sequence of configs
G, G, ..., C, where

@ (is the start configuration of M on input s
@ Each (; yields Ciyg

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 17 /21

Computing on a Turing Machine

A TM accepts an input s if there exists a sequence of configs
G, G, ..., C, where

@ (is the start configuration of M on input s
@ Each (; yields Ciyg

© Cy is an accepting configuration

Arkady Yerukhimovich

CS 3313 — Foundations of Computing

February 27, 2024 17 /21

Computing on a Turing Machine

A TM accepts an input s if there exists a sequence of configs
G, G, ..., C, where

@ (is the start configuration of M on input s
@ Each (; yields Ciyg

© Cy is an accepting configuration

Language L(M)

The collection of strings that M accepts

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 17 /21

Characterizing Computability of Languages

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024

Characterizing Computability of Languages

Definition: Recursively enumerable languages

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 18 /21

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 18 /21

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

@ M halts and accepts all strings in L

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 18 /21

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

@ M halts and accepts all strings in L

@ M may not halt on strings not in L — does not necessarily have to
reject

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 18 /21

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

@ M halts and accepts all strings in L

@ M may not halt on strings not in L — does not necessarily have to
reject

v

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 18 /21

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

@ M halts and accepts all strings in L

@ M may not halt on strings not in L — does not necessarily have to
reject

v

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

@ M halts on all inputs, accepting those in L and rejecting those not in L

v

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 18 /21

Another Example

Consider L = {0%" | n > 0}

TM algorithm M for recognizing L:
On input s:

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 19/21

Another Example

Consider L = {0%" | n > 0}
TM algorithm M for recognizing L:
On input s:
@ If the tape has exactly one 0, accept

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 19/21

Another Example

Consider L = {0%" | n > 0}
TM algorithm M for recognizing L:
On input s:
@ If the tape has exactly one 0, accept
@ If the tape has an odd number of Q's, greater than 1, reject

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 19/21

Another Example

Consider L = {0%" | n > 0}
TM algorithm M for recognizing L:
On input s:
@ If the tape has exactly one 0, accept
@ If the tape has an odd number of Q's, greater than 1, reject

© Sweep left to right across tape, crossing out every other 0

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 19/21

Another Example

Consider L = {0%" | n > 0}

TM algorithm M for recognizing L:

On input s:
@ If the tape has exactly one 0, accept
@ If the tape has an odd number of Q's, greater than 1, reject
© Sweep left to right across tape, crossing out every other 0
@ Return the head to the left-hand end of the tape

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 19/21

Another Example

Consider L = {0%" | n > 0}

TM algorithm M for recognizing L:

On input s:
@ If the tape has exactly one 0, accept
@ If the tape has an odd number of Q's, greater than 1, reject
© Sweep left to right across tape, crossing out every other 0
@ Return the head to the left-hand end of the tape
Q Gotostepl

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 19/21

Another Example

Consider L = {0%" | n > 0}

TM algorithm M for recognizing L:

On input s:
@ If the tape has exactly one 0, accept
@ If the tape has an odd number of Q's, greater than 1, reject
© Sweep left to right across tape, crossing out every other 0
@ Return the head to the left-hand end of the tape
Q Gotostepl

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 19/21

Making M Formal

° Q=1{91,92,93,94,9s5

o ¥ ={0} @@
o [={0,x,U}

e {:

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 20/21

Making M Formal

o Q — {CIL q2,493,44,4s5, qa, qr}

e ¥ ={0}
o [={0,x,U}
@ 4:

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 20/21

Running M on w = 0000

start

Arkady Yerukhimovich CS 3313 — Foundations of Computing February 27, 2024 21/21

