Foundations of Computing

Lecture 12

Arkady Yerukhimovich

February 27, 2024

Outline

(1) Lecture $10+11$ Review

(2) Models of Computation

(3) The Turing Machine

4 Formalizing Turing Machines

Lecture $10+11$ Review

- Equivalence of CFGs and PDAs
- CFL Pumping Lemma
- Using the CFL Pumping Lemma

Outline

(1) Lecture $10+11$ Review
(2) Models of Computation

(3) The Turing Machine

(4) Formalizing Turing Machines

Finite Automata

Input file

Recall:

- An NFA/DFA has no external storage
- Only memory must be encoded in the finite number of states
- Can only recognize regular languages

Pushdown Automata (PDA)

Input file

A PDA consists of:

- An NFA for a control unit
- A Stack for storage

Pushdown Automata (PDA)

Input file

A PDA consists of:

- An NFA for a control unit
- A Stack for storage

Recall:

- Can only access memory in LIFO fashion
- Can only recognize context-free languages

A Model for General Computation

Question

All the prior models of computation couldn't recognize some simple languages. Can we develop a computation model that captures all languages that can be computed on any computer?

Our Goal

One model to rule them all!

Outline

(1) Lecture 10+11 Review

(2) Models of Computation

(3) The Turing Machine
(4) Formalizing Turing Machines

The Turing Machine

The Turing Machine

Control (NFA/DFA)

\section*{Tape: | 0 | 1 | 1 | 0 | \square | \sqcup |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Key Differences:

- A TM can read and write to its tape

The Turing Machine

Key Differences:

- A TM can read and write to its tape
- The read/write head can move to the right and to the left

The Turing Machine

Control (NFA/DFA)

Key Differences:

- A TM can read and write to its tape
- The read/write head can move to the right and to the left
- No separate input tape, input written onto memory tape at start

The Turing Machine

Control (NFA/DFA)

\section*{Tape: | 0 | 1 | 1 | 0 | \square | \sqcup |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Key Differences:

- A TM can read and write to its tape
- The read/write head can move to the right and to the left
- No separate input tape, input written onto memory tape at start
- The memory tape is infinite

The Turing Machine

Control (NFA/DFA)

\section*{Tape: | 0 | 1 | 1 | 0 | \sqcup | \sqcup |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Key Differences:

- A TM can read and write to its tape
- The read/write head can move to the right and to the left
- No separate input tape, input written onto memory tape at start
- The memory tape is infinite
- Control FA has accept and reject states that are immediately output if entered

An Example: TM To Recognize $L=\{w \# w \mid w \in\{0,1\} *\}$

An Algorithm for M :
On input string s (written on the tape):

An Example: TM To Recognize $L=\{w \# w \mid w \in\{0,1\} *\}$

An Algorithm for M :
On input string s (written on the tape):
(1) Scan the input to check that it contains exactly one \# symbol, if not reject.

An Example: TM To Recognize $L=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}$

An Algorithm for M :
On input string s (written on the tape):
(1) Scan the input to check that it contains exactly one \# symbol, if not reject.
(2) Zigzag to corresponding positions on each side of the $\#$ and see if they contain same symbol. If not, reject. Cross off symbols as they are checked

$$
P X \neq X 1
$$

An Example: TM To Recognize $L=\{w \# w \mid w \in\{0,1\} *\}$

An Algorithm for M :
On input string s (written on the tape):
(1) Scan the input to check that it contains exactly one \# symbol, if not reject.
(2) Zigzag to corresponding positions on each side of the $\#$ and see if they contain same symbol. If not, reject. Cross off symbols as they are checked
(3) When all symbols to the left of \# have been crossed off, check that no uncrossed-off symbols remain to the right of \#. If any symbols remain, reject, otherwise accept.

An Example: TM To Recognize $L=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}$

Recognizing $s=011000 \# 011000$:

An Example: TM To Recognize $L=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}$

Recognizing $s=011000 \# 011000$:

011000\#011000 ப • .

An Example: TM To Recognize $L=\{w \# w \mid w \in\{0,1\} *\}$

Recognizing $s=011000 \# 011000$:

$$
\begin{aligned}
& 011000 \# 011000 \sqcup \cdots \\
& x 11000 \# 011000 \sqcup \cdots
\end{aligned}
$$

An Example: TM To Recognize $L=\{w \# w \mid w \in\{0,1\} *\}$

Recognizing $s=011000 \# 011000$:

$$
\begin{aligned}
& 011000 \# 011000 \sqcup \cdots \\
& x 11000 \# 011000 \sqcup \cdots \\
& x 11000 \# x 11000 \sqcup \cdots
\end{aligned}
$$

An Example: TM To Recognize $L=\{w \# w \mid w \in\{0,1\} *\}$

Recognizing $s=011000 \# 011000$:

$$
\begin{aligned}
& 011000 \# 011000 \sqcup \cdots \\
& x 11000 \# 011000 \sqcup \cdots \\
& x 11000 \# x 11000 \sqcup \cdots \\
& x \times 1000 \# x 11000 \sqcup \cdots
\end{aligned}
$$

An Example: TM To Recognize $L=\{w \# w \mid w \in\{0,1\} *\}$

Recognizing $s=011000 \# 011000$:

$$
\begin{array}{r}
011000 \# 011000 \sqcup \cdots \\
x 11000 \# 011000 \sqcup \cdots \\
x 11000 \# x 11000 \sqcup \cdots \\
x x 1000 \# x 11000 \sqcup \cdots \\
\cdots \\
x x x x x x \# x x x x x x \sqcup \cdots
\end{array}
$$

An Example: TM To Recognize $L=\{w \# w \mid w \in\{0,1\} *\}$

Recognizing $s=011000 \# 011000$:

$$
\begin{array}{r}
011000 \# 011000 \sqcup \cdots \\
x 11000 \# 011000 \sqcup \cdots \\
x 11000 \# x 11000 \sqcup \cdots \\
x x 1000 \# x 11000 \sqcup \cdots \\
\cdots \\
x x x x x x \# x x x x x x \sqcup \cdots \\
\text { accept }
\end{array}
$$

Algorithms

What is an algorithm?

Algorithms

What is an algorithm?

- A collection of simple instructions for carrying out some task

Algorithms

What is an algorithm?

- A collection of simple instructions for carrying out some task
- A process according to which it can be determined by a finite number of operations - Hilbert 1900

Algorithms

What is an algorithm?

- A collection of simple instructions for carrying out some task
- A process according to which it can be determined by a finite number of operations - Hilbert 1900

Algorithms are critical to understand solutions / complexity of a problem

Algorithms

What is an algorithm?

- A collection of simple instructions for carrying out some task
- A process according to which it can be determined by a finite number of operations - Hilbert 1900

Algorithms are critical to understand solutions / complexity of a problem

- To show how to solve a problem, we design an algorithm

Algorithms

What is an algorithm?

- A collection of simple instructions for carrying out some task
- A process according to which it can be determined by a finite number of operations - Hilbert 1900

Algorithms are critical to understand solutions / complexity of a problem

- To show how to solve a problem, we design an algorithm
- To reason about languages accepted by NFA/PDA, we designed algorithms

Algorithms

What is an algorithm?

- A collection of simple instructions for carrying out some task
- A process according to which it can be determined by a finite number of operations - Hilbert 1900

Algorithms are critical to understand solutions / complexity of a problem

- To show how to solve a problem, we design an algorithm
- To reason about languages accepted by NFA/PDA, we designed algorithms
- How can we reason about the limits of what an algorithm can compute?

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a Turing Machine

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a Turing Machine

Observations:

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a Turing Machine

Observations:

- While unproven, all modern computers satisfy Church-Turing thesis

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a Turing Machine

Observations:

- While unproven, all modern computers satisfy Church-Turing thesis
- To prove that some problem cannot be solved by an algorithm, enough to reason about Turing Machines

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a Turing Machine

Observations:

- While unproven, all modern computers satisfy Church-Turing thesis
- To prove that some problem cannot be solved by an algorithm, enough to reason about Turing Machines
- This means that Turing Machines give an abstraction to capture "feasible computation"

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a Turing Machine

Observations:

- While unproven, all modern computers satisfy Church-Turing thesis
- To prove that some problem cannot be solved by an algorithm, enough to reason about Turing Machines
- This means that Turing Machines give an abstraction to capture "feasible computation"

Outline

(1) Lecture $10+11$ Review

(2) Models of Computation

(3) The Turing Machine

4 Formalizing Turing Machines

Turing Machine - Formal Definition

A Turing machine is a 7-tuple:

Turing Machine - Formal Definition

A Turing machine is a 7-tuple:
(1) Q - set of states

Turing Machine - Formal Definition

A Turing machine is a 7-tuple:
(1) Q - set of states
(2) Σ - input alphabet (not including blank symbol \sqcup)

Turing Machine - Formal Definition

A Turing machine is a 7-tuple:
(1) Q - set of states
(2) Σ - input alphabet (not including blank symbol \sqcup)
(3) Γ - tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$

Turing Machine - Formal Definition

A Turing machine is a 7-tuple:
(1) Q - set of states
(2) Σ - input alphabet (not including blank symbol \sqcup)
(3) Γ - tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$
(9) $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}-$ transition function

Turing Machine - Formal Definition

A Turing machine is a 7-tuple:
(1) Q-set of states
(2) Σ - input alphabet (not including blank symbol \sqcup)
(3) Γ - tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$
(9) $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ - transition function
(3) $q_{0} \in Q$ - start state
(0) $q_{\text {accept }} \in Q$ - accept state
(1) $q_{\text {reject }} \in Q$ - reject state

Transition function: $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$

Turing Machine - Formal Definition

A Turing machine is a 7-tuple:
(1) Q - set of states
(2) Σ - input alphabet (not including blank symbol \sqcup)
(3) Γ - tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$
(9) $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ - transition function
(5) $q_{0} \in Q$ - start state
(0) $q_{\text {accept }} \in Q$ - accept state
(1) $q_{\text {reject }} \in Q$ - reject state

Transition function: $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$
On state q and tape input γ :

Turing Machine - Formal Definition

A Turing machine is a 7-tuple:
(1) Q-set of states
(2) Σ - input alphabet (not including blank symbol \sqcup)
(3) Γ - tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$
(9) $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ - transition function
(5) $q_{0} \in Q$ - start state
(0) $q_{\text {accept }} \in Q$ - accept state
(1) $q_{\text {reject }} \in Q$ - reject state

Transition function: $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$
On state q and tape input γ :

- move control to state q^{\prime},

Turing Machine - Formal Definition

A Turing machine is a 7-tuple:
(1) Q - set of states
(2) Σ - input alphabet (not including blank symbol \sqcup)
(3) Γ - tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$
(9) $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ - transition function
(3) $q_{0} \in Q$ - start state
(6) $q_{\text {accept }} \in Q$ - accept state
(1) $q_{\text {reject }} \in Q$ - reject state

Transition function: $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$
On state q and tape input γ :

- move control to state q^{\prime},
- write γ^{\prime} to the tape,

Turing Machine - Formal Definition

A Turing machine is a 7-tuple:
(1) Q - set of states
(2) Σ - input alphabet (not including blank symbol \sqcup)
(3) Γ - tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$
(9) $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ - transition function
(3) $q_{0} \in Q$ - start state
(0) $q_{\text {accept }} \in Q$ - accept state
(1) $q_{\text {reject }} \in Q$ - reject state

Transition function: $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$
On state q and tape input γ :

- move control to state q^{\prime},
- write γ^{\prime} to the tape,
- and move the tape head one spot to either Left or Right

Computing on a Turing Machine

Configuration of a TM

Computing on a Turing Machine

Configuration of a TM

- Describes the state of a TM computation

Computing on a Turing Machine

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head

Computing on a Turing Machine

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head
- Example: $01 q_{3} 10$

Computing on a Turing Machine

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head
- Example: $01 q_{3} 10$

Definitions:

- Configuration C_{1} yields C_{2}, if M can go from C_{1} to C_{2} in a single step

Computing on a Turing Machine

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head
- Example: $01 q_{3} 10$

Definitions:

- Configuration C_{1} yields C_{2}, if M can go from C_{1} to C_{2} in a single step
- start configuration of M on input s - configuration $q_{0} s$

Computing on a Turing Machine

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head
- Example: $01 q_{3} 10$

Definitions:

- Configuration C_{1} yields C_{2}, if M can go from C_{1} to C_{2} in a single step
- start configuration of M on input s - configuration $q_{0} s$
- accepting configuration - any config with state $q_{\text {accept }}$

Computing on a Turing Machine

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head
- Example: $01 q_{3} 10$

Definitions:

- Configuration C_{1} yields C_{2}, if M can go from C_{1} to C_{2} in a single step
- start configuration of M on input s - configuration $q_{0} s$
- accepting configuration - any config with state $q_{\text {accept }}$
- rejecting configuration - any config with state $q_{\text {reject }}$

Computing on a Turing Machine

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head
- Example: $01 q_{3} 10$

Definitions:

- Configuration C_{1} yields C_{2}, if M can go from C_{1} to C_{2} in a single step
- start configuration of M on input s - configuration $q_{0} s$
- accepting configuration - any config with state $q_{\text {accept }}$
- rejecting configuration - any config with state $q_{\text {reject }}$
- halting configuration - accepting or rejecting configs

Computing on a Turing Machine

Configuration of a TM

- Describes the state of a TM computation
- Current state of control, state of tape, location of tape head
- Example: $01 q_{3} 10$

Definitions:

- Configuration C_{1} yields C_{2}, if M can go from C_{1} to C_{2} in a single step
- start configuration of M on input s - configuration $q_{0} s$
- accepting configuration - any config with state $q_{\text {accept }}$
- rejecting configuration - any config with state $q_{\text {reject }}$
- halting configuration - accepting or rejecting configs

Computing on a Turing Machine

A TM accepts an input s if there exists a sequence of configs $C_{1}, C_{2}, \ldots, C_{k}$ where

Computing on a Turing Machine

A TM accepts an input s if there exists a sequence of configs $C_{1}, C_{2}, \ldots, C_{k}$ where
(1) C_{1} is the start configuration of M on input s

Computing on a Turing Machine

A TM accepts an input s if there exists a sequence of configs $C_{1}, C_{2}, \ldots, C_{k}$ where
(1) C_{1} is the start configuration of M on input s
(2) Each C_{i} yields C_{i+1}

Computing on a Turing Machine

A TM accepts an input s if there exists a sequence of configs $C_{1}, C_{2}, \ldots, C_{k}$ where
(1) C_{1} is the start configuration of M on input s
(2) Each C_{i} yields C_{i+1}
(3) C_{k} is an accepting configuration

Computing on a Turing Machine

A TM accepts an input s if there exists a sequence of configs $C_{1}, C_{2}, \ldots, C_{k}$ where
(1) C_{1} is the start configuration of M on input s
(2) Each C_{i} yields C_{i+1}
(3) C_{k} is an accepting configuration

Language $L(M)$
The collection of strings that M accepts

Characterizing Computability of Languages

Characterizing Computability of Languages

Definition: Recursively enumerable languages

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM M recognizes it

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM M recognizes it

- M halts and accepts all strings in L

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM M recognizes it

- M halts and accepts all strings in L
- M may not halt on strings not in L - does not necessarily have to reject

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM M recognizes it

- M halts and accepts all strings in L
- M may not halt on strings not in L - does not necessarily have to reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM M recognizes it

- M halts and accepts all strings in L
- M may not halt on strings not in L - does not necessarily have to reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

- M halts on all inputs, accepting those in L and rejecting those not in L

Another Example

Consider $L=\left\{0^{2^{n}} \mid n \geq 0\right\}$
TM algorithm M for recognizing L :
On input s :

Another Example

Consider $L=\left\{0^{2^{n}} \mid n \geq 0\right\}$
TM algorithm M for recognizing L :
On input s :
(1) If the tape has exactly one 0 , accept

Another Example

Consider $L=\left\{0^{2^{n}} \mid n \geq 0\right\}$
TM algorithm M for recognizing L :
On input s:
(1) If the tape has exactly one 0 , accept
(2) If the tape has an odd number of 0 's, greater than 1 , reject

Another Example

Consider $L=\left\{0^{2^{n}} \mid n \geq 0\right\}$
TM algorithm M for recognizing L :
On input s :
(1) If the tape has exactly one 0 , accept
(2) If the tape has an odd number of 0 's, greater than 1 , reject
(3) Sweep left to right across tape, crossing out every other 0

Another Example

Consider $L=\left\{0^{2^{n}} \mid n \geq 0\right\}$
TM algorithm M for recognizing L :
On input s:
(1) If the tape has exactly one 0 , accept
(2) If the tape has an odd number of 0 's, greater than 1 , reject
(3) Sweep left to right across tape, crossing out every other 0
(9) Return the head to the left-hand end of the tape

Another Example

Consider $L=\left\{0^{2^{n}} \mid n \geq 0\right\}$
TM algorithm M for recognizing L :
On input s :
(1) If the tape has exactly one 0 , accept
(2) If the tape has an odd number of 0 's, greater than 1 , reject
(3) Sweep left to right across tape, crossing out every other 0
(1) Return the head to the left-hand end of the tape
(3) Go to step 1

Another Example

Consider $L=\left\{0^{2^{n}} \mid n \geq 0\right\}$
TM algorithm M for recognizing L :
On input s :
(1) If the tape has exactly one 0 , accept
(2) If the tape has an odd number of 0 's, greater than 1 , reject
(3) Sweep left to right across tape, crossing out every other 0
(1) Return the head to the left-hand end of the tape
(3) Go to step 1

Making M Formal

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right.$, (q) (q) $\left(q_{r}\right)$
- $\Sigma=\{0\}$
- 「 $=\{0, x, \sqcup\}$
- δ :

Making M Formal

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{a}, q_{r}\right\}$
- $\Sigma=\{0\}$
-「 $=\{0, x, \sqcup\}$
- δ :

Running M on $w=0000$

