
Foundations of Computing

Lecture 12

Arkady Yerukhimovich

February 27, 2024

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 1 / 21



Outline

1 Lecture 10+11 Review

2 Models of Computation

3 The Turing Machine

4 Formalizing Turing Machines

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 2 / 21



Lecture 10+11 Review

Equivalence of CFGs and PDAs

CFL Pumping Lemma

Using the CFL Pumping Lemma

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 3 / 21



Outline

1 Lecture 10+11 Review

2 Models of Computation

3 The Turing Machine

4 Formalizing Turing Machines

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 4 / 21



Finite Automata

Recall:

An NFA/DFA has no external storage

Only memory must be encoded in the finite number of states

Can only recognize regular languages
Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 5 / 21



Pushdown Automata (PDA)

A PDA consists of:
An NFA for a control unit
A Stack for storage

Recall:
Can only access memory in LIFO fashion
Can only recognize context-free languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 6 / 21



Pushdown Automata (PDA)

A PDA consists of:
An NFA for a control unit
A Stack for storage

Recall:
Can only access memory in LIFO fashion
Can only recognize context-free languages
Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 6 / 21



A Model for General Computation

Question

All the prior models of computation couldn’t recognize some simple
languages. Can we develop a computation model that captures all
languages that can be computed on any computer?

Our Goal

One model to rule them all!

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 7 / 21



Outline

1 Lecture 10+11 Review

2 Models of Computation

3 The Turing Machine

4 Formalizing Turing Machines

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 8 / 21



The Turing Machine

Key Di↵erences:

A TM can read and write to its tape

The read/write head can move to the right and to the left

No separate input tape, input written onto memory tape at start

The memory tape is infinite

Control FA has accept and reject states that are immediately output
if entered

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 9 / 21



The Turing Machine

Key Di↵erences:

A TM can read and write to its tape

The read/write head can move to the right and to the left

No separate input tape, input written onto memory tape at start

The memory tape is infinite

Control FA has accept and reject states that are immediately output
if entered

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 9 / 21

I



The Turing Machine

Key Di↵erences:

A TM can read and write to its tape

The read/write head can move to the right and to the left

No separate input tape, input written onto memory tape at start

The memory tape is infinite

Control FA has accept and reject states that are immediately output
if entered

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 9 / 21



The Turing Machine

Key Di↵erences:

A TM can read and write to its tape

The read/write head can move to the right and to the left

No separate input tape, input written onto memory tape at start

The memory tape is infinite

Control FA has accept and reject states that are immediately output
if entered

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 9 / 21

&



The Turing Machine

Key Di↵erences:

A TM can read and write to its tape

The read/write head can move to the right and to the left

No separate input tape, input written onto memory tape at start

The memory tape is infinite

Control FA has accept and reject states that are immediately output
if entered

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 9 / 21



The Turing Machine

Key Di↵erences:

A TM can read and write to its tape

The read/write head can move to the right and to the left

No separate input tape, input written onto memory tape at start

The memory tape is infinite

Control FA has accept and reject states that are immediately output
if entered

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 9 / 21



An Example: TM To Recognize L = {w#w | w 2 {0, 1}⇤}

An Algorithm for M:
On input string s (written on the tape):

1 Scan the input to check that it contains exactly one # symbol, if not
reject.

2 Zigzag to corresponding positions on each side of the # and see if
they contain same symbol. If not, reject. Cross o↵ symbols as they
are checked

3 When all symbols to the left of # have been crossed o↵, check that
no uncrossed-o↵ symbols remain to the right of #. If any symbols
remain, reject, otherwise accept.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 10 / 21

/It



An Example: TM To Recognize L = {w#w | w 2 {0, 1}⇤}

An Algorithm for M:
On input string s (written on the tape):

1 Scan the input to check that it contains exactly one # symbol, if not
reject.

2 Zigzag to corresponding positions on each side of the # and see if
they contain same symbol. If not, reject. Cross o↵ symbols as they
are checked

3 When all symbols to the left of # have been crossed o↵, check that
no uncrossed-o↵ symbols remain to the right of #. If any symbols
remain, reject, otherwise accept.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 10 / 21



An Example: TM To Recognize L = {w#w | w 2 {0, 1}⇤}

An Algorithm for M:
On input string s (written on the tape):

1 Scan the input to check that it contains exactly one # symbol, if not
reject.

2 Zigzag to corresponding positions on each side of the # and see if
they contain same symbol. If not, reject. Cross o↵ symbols as they
are checked

3 When all symbols to the left of # have been crossed o↵, check that
no uncrossed-o↵ symbols remain to the right of #. If any symbols
remain, reject, otherwise accept.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 10 / 21

* * #Y



An Example: TM To Recognize L = {w#w | w 2 {0, 1}⇤}

An Algorithm for M:
On input string s (written on the tape):

1 Scan the input to check that it contains exactly one # symbol, if not
reject.

2 Zigzag to corresponding positions on each side of the # and see if
they contain same symbol. If not, reject. Cross o↵ symbols as they
are checked

3 When all symbols to the left of # have been crossed o↵, check that
no uncrossed-o↵ symbols remain to the right of #. If any symbols
remain, reject, otherwise accept.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 10 / 21



An Example: TM To Recognize L = {w#w | w 2 {0, 1}⇤}

Recognizing s = 011000#011000:

011000#011000 t · · ·
x11000#011000 t · · ·
x11000#x11000 t · · ·
xx1000#x11000 t · · ·

· · ·
xxxxxx#xxxxxxt · · ·

accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 11 / 21



An Example: TM To Recognize L = {w#w | w 2 {0, 1}⇤}

Recognizing s = 011000#011000:

011000#011000 t · · ·

x11000#011000 t · · ·
x11000#x11000 t · · ·
xx1000#x11000 t · · ·

· · ·
xxxxxx#xxxxxxt · · ·

accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 11 / 21



An Example: TM To Recognize L = {w#w | w 2 {0, 1}⇤}

Recognizing s = 011000#011000:

011000#011000 t · · ·
x11000#011000 t · · ·

x11000#x11000 t · · ·
xx1000#x11000 t · · ·

· · ·
xxxxxx#xxxxxxt · · ·

accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 11 / 21



An Example: TM To Recognize L = {w#w | w 2 {0, 1}⇤}

Recognizing s = 011000#011000:

011000#011000 t · · ·
x11000#011000 t · · ·
x11000#x11000 t · · ·

xx1000#x11000 t · · ·
· · ·

xxxxxx#xxxxxxt · · ·
accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 11 / 21



An Example: TM To Recognize L = {w#w | w 2 {0, 1}⇤}

Recognizing s = 011000#011000:

011000#011000 t · · ·
x11000#011000 t · · ·
x11000#x11000 t · · ·
xx1000#x11000 t · · ·

· · ·
xxxxxx#xxxxxxt · · ·

accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 11 / 21



An Example: TM To Recognize L = {w#w | w 2 {0, 1}⇤}

Recognizing s = 011000#011000:

011000#011000 t · · ·
x11000#011000 t · · ·
x11000#x11000 t · · ·
xx1000#x11000 t · · ·

· · ·
xxxxxx#xxxxxxt · · ·

accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 11 / 21



An Example: TM To Recognize L = {w#w | w 2 {0, 1}⇤}

Recognizing s = 011000#011000:

011000#011000 t · · ·
x11000#011000 t · · ·
x11000#x11000 t · · ·
xx1000#x11000 t · · ·

· · ·
xxxxxx#xxxxxxt · · ·

accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 11 / 21



Algorithms

What is an algorithm?

A collection of simple instructions for carrying out some task

A process according to which it can be determined by a finite number
of operations – Hilbert 1900

Algorithms are critical to understand solutions / complexity of a problem

To show how to solve a problem, we design an algorithm

To reason about languages accepted by NFA/PDA, we designed
algorithms

How can we reason about the limits of what an algorithm can
compute?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 12 / 21



Algorithms

What is an algorithm?

A collection of simple instructions for carrying out some task

A process according to which it can be determined by a finite number
of operations – Hilbert 1900

Algorithms are critical to understand solutions / complexity of a problem

To show how to solve a problem, we design an algorithm

To reason about languages accepted by NFA/PDA, we designed
algorithms

How can we reason about the limits of what an algorithm can
compute?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 12 / 21



Algorithms

What is an algorithm?

A collection of simple instructions for carrying out some task

A process according to which it can be determined by a finite number
of operations – Hilbert 1900

Algorithms are critical to understand solutions / complexity of a problem

To show how to solve a problem, we design an algorithm

To reason about languages accepted by NFA/PDA, we designed
algorithms

How can we reason about the limits of what an algorithm can
compute?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 12 / 21



Algorithms

What is an algorithm?

A collection of simple instructions for carrying out some task

A process according to which it can be determined by a finite number
of operations – Hilbert 1900

Algorithms are critical to understand solutions / complexity of a problem

To show how to solve a problem, we design an algorithm

To reason about languages accepted by NFA/PDA, we designed
algorithms

How can we reason about the limits of what an algorithm can
compute?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 12 / 21



Algorithms

What is an algorithm?

A collection of simple instructions for carrying out some task

A process according to which it can be determined by a finite number
of operations – Hilbert 1900

Algorithms are critical to understand solutions / complexity of a problem

To show how to solve a problem, we design an algorithm

To reason about languages accepted by NFA/PDA, we designed
algorithms

How can we reason about the limits of what an algorithm can
compute?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 12 / 21



Algorithms

What is an algorithm?

A collection of simple instructions for carrying out some task

A process according to which it can be determined by a finite number
of operations – Hilbert 1900

Algorithms are critical to understand solutions / complexity of a problem

To show how to solve a problem, we design an algorithm

To reason about languages accepted by NFA/PDA, we designed
algorithms

How can we reason about the limits of what an algorithm can
compute?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 12 / 21



Algorithms

What is an algorithm?

A collection of simple instructions for carrying out some task

A process according to which it can be determined by a finite number
of operations – Hilbert 1900

Algorithms are critical to understand solutions / complexity of a problem

To show how to solve a problem, we design an algorithm

To reason about languages accepted by NFA/PDA, we designed
algorithms

How can we reason about the limits of what an algorithm can
compute?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 12 / 21



Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:

While unproven, all modern computers satisfy Church-Turing thesis

To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

This means that Turing Machines give an abstraction to capture
“feasible computation”

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 13 / 21



Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:

While unproven, all modern computers satisfy Church-Turing thesis

To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

This means that Turing Machines give an abstraction to capture
“feasible computation”

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 13 / 21



Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:

While unproven, all modern computers satisfy Church-Turing thesis

To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

This means that Turing Machines give an abstraction to capture
“feasible computation”

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 13 / 21



Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:

While unproven, all modern computers satisfy Church-Turing thesis

To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

This means that Turing Machines give an abstraction to capture
“feasible computation”

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 13 / 21



Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:

While unproven, all modern computers satisfy Church-Turing thesis

To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

This means that Turing Machines give an abstraction to capture
“feasible computation”

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 13 / 21



Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:

While unproven, all modern computers satisfy Church-Turing thesis

To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

This means that Turing Machines give an abstraction to capture
“feasible computation”

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 13 / 21



Outline

1 Lecture 10+11 Review

2 Models of Computation

3 The Turing Machine

4 Formalizing Turing Machines

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 14 / 21



Turing Machine – Formal Definition

A Turing machine is a 7-tuple:

1 Q – set of states

2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �

4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function

5 q0 2 Q – start state

6 qaccept 2 Q – accept state

7 qreject 2 Q – reject state

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 15 / 21



Turing Machine – Formal Definition

A Turing machine is a 7-tuple:

1 Q – set of states

2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �

4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function

5 q0 2 Q – start state

6 qaccept 2 Q – accept state

7 qreject 2 Q – reject state

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 15 / 21



Turing Machine – Formal Definition

A Turing machine is a 7-tuple:

1 Q – set of states

2 ⌃ – input alphabet (not including blank symbol t)

3 � – tape alphabet, where t 2 � and ⌃ ✓ �

4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function

5 q0 2 Q – start state

6 qaccept 2 Q – accept state

7 qreject 2 Q – reject state

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 15 / 21

↓



Turing Machine – Formal Definition

A Turing machine is a 7-tuple:

1 Q – set of states

2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �

4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function

5 q0 2 Q – start state

6 qaccept 2 Q – accept state

7 qreject 2 Q – reject state

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 15 / 21

Y
,

X



Turing Machine – Formal Definition

A Turing machine is a 7-tuple:

1 Q – set of states

2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �

4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function

5 q0 2 Q – start state

6 qaccept 2 Q – accept state

7 qreject 2 Q – reject state

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 15 / 21

- 4



Turing Machine – Formal Definition

A Turing machine is a 7-tuple:

1 Q – set of states

2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �

4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function

5 q0 2 Q – start state

6 qaccept 2 Q – accept state

7 qreject 2 Q – reject state

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}

On state q and tape input �:

move control to state q0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 15 / 21



Turing Machine – Formal Definition

A Turing machine is a 7-tuple:

1 Q – set of states

2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �

4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function

5 q0 2 Q – start state

6 qaccept 2 Q – accept state

7 qreject 2 Q – reject state

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 15 / 21



Turing Machine – Formal Definition

A Turing machine is a 7-tuple:

1 Q – set of states

2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �

4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function

5 q0 2 Q – start state

6 qaccept 2 Q – accept state

7 qreject 2 Q – reject state

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 15 / 21



Turing Machine – Formal Definition

A Turing machine is a 7-tuple:

1 Q – set of states

2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �

4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function

5 q0 2 Q – start state

6 qaccept 2 Q – accept state

7 qreject 2 Q – reject state

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 15 / 21



Turing Machine – Formal Definition

A Turing machine is a 7-tuple:

1 Q – set of states

2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �

4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function

5 q0 2 Q – start state

6 qaccept 2 Q – accept state

7 qreject 2 Q – reject state

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 15 / 21



Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s
accepting configuration – any config with state qaccept
rejecting configuration – any config with state qreject
halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 16 / 21

01



Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s
accepting configuration – any config with state qaccept
rejecting configuration – any config with state qreject
halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 16 / 21



Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s
accepting configuration – any config with state qaccept
rejecting configuration – any config with state qreject
halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 16 / 21



Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s
accepting configuration – any config with state qaccept
rejecting configuration – any config with state qreject
halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 16 / 21



Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step

start configuration of M on input s – configuration q0s
accepting configuration – any config with state qaccept
rejecting configuration – any config with state qreject
halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 16 / 21



Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s

accepting configuration – any config with state qaccept
rejecting configuration – any config with state qreject
halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 16 / 21



Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s
accepting configuration – any config with state qaccept

rejecting configuration – any config with state qreject
halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 16 / 21



Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s
accepting configuration – any config with state qaccept
rejecting configuration – any config with state qreject

halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 16 / 21



Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s
accepting configuration – any config with state qaccept
rejecting configuration – any config with state qreject
halting configuration – accepting or rejecting configs
Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 16 / 21



Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s
accepting configuration – any config with state qaccept
rejecting configuration – any config with state qreject
halting configuration – accepting or rejecting configs
Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 16 / 21



Computing on a Turing Machine

A TM accepts an input s if there exists a sequence of configs
C1,C2, . . . ,Ck where

1 C1 is the start configuration of M on input s

2 Each Ci yields Ci+1

3 Ck is an accepting configuration

Language L(M)

The collection of strings that M accepts

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 17 / 21



Computing on a Turing Machine

A TM accepts an input s if there exists a sequence of configs
C1,C2, . . . ,Ck where

1 C1 is the start configuration of M on input s

2 Each Ci yields Ci+1

3 Ck is an accepting configuration

Language L(M)

The collection of strings that M accepts

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 17 / 21



Computing on a Turing Machine

A TM accepts an input s if there exists a sequence of configs
C1,C2, . . . ,Ck where

1 C1 is the start configuration of M on input s

2 Each Ci yields Ci+1

3 Ck is an accepting configuration

Language L(M)

The collection of strings that M accepts

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 17 / 21



Computing on a Turing Machine

A TM accepts an input s if there exists a sequence of configs
C1,C2, . . . ,Ck where

1 C1 is the start configuration of M on input s

2 Each Ci yields Ci+1

3 Ck is an accepting configuration

Language L(M)

The collection of strings that M accepts

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 17 / 21



Computing on a Turing Machine

A TM accepts an input s if there exists a sequence of configs
C1,C2, . . . ,Ck where

1 C1 is the start configuration of M on input s

2 Each Ci yields Ci+1

3 Ck is an accepting configuration

Language L(M)

The collection of strings that M accepts

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 17 / 21



Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on all inputs, accepting those in L and rejecting those not in L

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 18 / 21



Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on all inputs, accepting those in L and rejecting those not in L

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 18 / 21



Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on all inputs, accepting those in L and rejecting those not in L

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 18 / 21



Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on all inputs, accepting those in L and rejecting those not in L

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 18 / 21



Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on all inputs, accepting those in L and rejecting those not in L

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 18 / 21



Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on all inputs, accepting those in L and rejecting those not in L

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 18 / 21



Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on all inputs, accepting those in L and rejecting those not in L

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 18 / 21



Another Example

Consider L = {02n | n � 0}

TM algorithm M for recognizing L:
On input s:

1 If the tape has exactly one 0, accept

2 If the tape has an odd number of 0’s, greater than 1, reject

3 Sweep left to right across tape, crossing out every other 0

4 Return the head to the left-hand end of the tape

5 Go to step 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 19 / 21



Another Example

Consider L = {02n | n � 0}

TM algorithm M for recognizing L:
On input s:

1 If the tape has exactly one 0, accept

2 If the tape has an odd number of 0’s, greater than 1, reject

3 Sweep left to right across tape, crossing out every other 0

4 Return the head to the left-hand end of the tape

5 Go to step 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 19 / 21



Another Example

Consider L = {02n | n � 0}

TM algorithm M for recognizing L:
On input s:

1 If the tape has exactly one 0, accept

2 If the tape has an odd number of 0’s, greater than 1, reject

3 Sweep left to right across tape, crossing out every other 0

4 Return the head to the left-hand end of the tape

5 Go to step 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 19 / 21



Another Example

Consider L = {02n | n � 0}

TM algorithm M for recognizing L:
On input s:

1 If the tape has exactly one 0, accept

2 If the tape has an odd number of 0’s, greater than 1, reject

3 Sweep left to right across tape, crossing out every other 0

4 Return the head to the left-hand end of the tape

5 Go to step 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 19 / 21



Another Example

Consider L = {02n | n � 0}

TM algorithm M for recognizing L:
On input s:

1 If the tape has exactly one 0, accept

2 If the tape has an odd number of 0’s, greater than 1, reject

3 Sweep left to right across tape, crossing out every other 0

4 Return the head to the left-hand end of the tape

5 Go to step 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 19 / 21



Another Example

Consider L = {02n | n � 0}

TM algorithm M for recognizing L:
On input s:

1 If the tape has exactly one 0, accept

2 If the tape has an odd number of 0’s, greater than 1, reject

3 Sweep left to right across tape, crossing out every other 0

4 Return the head to the left-hand end of the tape

5 Go to step 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 19 / 21



Another Example

Consider L = {02n | n � 0}

TM algorithm M for recognizing L:
On input s:

1 If the tape has exactly one 0, accept

2 If the tape has an odd number of 0’s, greater than 1, reject

3 Sweep left to right across tape, crossing out every other 0

4 Return the head to the left-hand end of the tape

5 Go to step 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 19 / 21



Making M Formal

Q = {q1, q2, q3, q4, q5, qa, qr}
⌃ = {0}
� = {0, x ,t}
� :

q1 q2 q3

q5

qr qa q4

start
0 ! t,R

t ! R t ! R

x ! R

0 ! L

0 ! x ,R

x ! Rt ! Lt ! R

0 ! R 0 ! x ,R

x ! R

t ! R

x ! L

x ! R

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 20 / 21

00



Making M Formal

Q = {q1, q2, q3, q4, q5, qa, qr}
⌃ = {0}
� = {0, x ,t}
� :

q1 q2 q3

q5

qr qa q4

start
0 ! t,R

t ! R t ! R

x ! R

0 ! L

0 ! x ,R

x ! Rt ! Lt ! R

0 ! R 0 ! x ,R

x ! R

t ! R

x ! L

x ! R

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 20 / 21

e -
&

4 &
-

↓
-



Running M on w = 0000

q1 q2 q3

q5

qr qa q4

start
0 ! t,R

t ! R t ! R

x ! R

0 ! L

0 ! x ,R

x ! Rt ! Lt ! R

0 ! R 0 ! x ,R

x ! R

t ! R

x ! L

x ! R

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 27, 2024 21 / 21


