
Foundations of Computing

Lecture 13

Arkady Yerukhimovich

February 29, 2024

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 1 / 16

Outline

1 Lecture 12 Review

2 Some More Turing Machines

3 Turing Machine Variants

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 2 / 16

Lecture 12 Review

Turing Machines

Definition

Examples

Church-Turing Thesis

Informally: Anything that can be computed can be computed by a

Turing Machine.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 3 / 16

Running M on w = 00

q1 q2 q3

q5

qr qa q4

start
0 ! t,R

t ! R t ! R

x ! R

0 ! L

0 ! x ,R

x ! Rt ! Lt ! R

0 ! R 0 ! x ,R

x ! R

t ! R

x ! L

x ! R

Let’s consider an execution on input 00 (as a sequence of configurations)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 4 / 16

Running M on w = 00

q1 q2 q3

q5

qr qa q4

start
0 ! t,R

t ! R t ! R

x ! R

0 ! L

0 ! x ,R

x ! Rt ! Lt ! R

0 ! R 0 ! x ,R

x ! R

t ! R

x ! L

x ! R

Let’s consider an execution on input 00 (as a sequence of configurations)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 4 / 16

↓ L

V -

- E

I
I

-> 065 LXW -> WOXW -UX GW

% , 80 U -> WOOW -UXYBU-WasXN

Outline

1 Lecture 12 Review

2 Some More Turing Machines

3 Turing Machine Variants

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 5 / 16

Specification of a Turing Machine

There are several levels of detail for specifying a TM

1 Full specification

Give full detail of transition function �
This is very tedious

2 Turing Machine Algorithm specification

Explain algorithmically what happens on the tape

For example, scan the tape until you find a #, zig-zag on the tape, etc.

Don’t bother specifying a DFA for the control state

3 Algorithm specification

Give algorithm in pseudocode

Don’t explicitly spell out what happens on the tape

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 6 / 16

Specification of a Turing Machine

There are several levels of detail for specifying a TM

1 Full specification

Give full detail of transition function �
This is very tedious

2 Turing Machine Algorithm specification

Explain algorithmically what happens on the tape

For example, scan the tape until you find a #, zig-zag on the tape, etc.

Don’t bother specifying a DFA for the control state

3 Algorithm specification

Give algorithm in pseudocode

Don’t explicitly spell out what happens on the tape

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 6 / 16

Specification of a Turing Machine

There are several levels of detail for specifying a TM

1 Full specification

Give full detail of transition function �
This is very tedious

2 Turing Machine Algorithm specification

Explain algorithmically what happens on the tape

For example, scan the tape until you find a #, zig-zag on the tape, etc.

Don’t bother specifying a DFA for the control state

3 Algorithm specification

Give algorithm in pseudocode

Don’t explicitly spell out what happens on the tape

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 6 / 16

Example 1: L = {aibjck | i ⇥ j = k and i , j , k � 1}

Machine M deciding L

On input string w :

1 Check format of the input – scan input left to right and check that it

is a member of a⇤b⇤c⇤, reject if it isn’t

2 Return the head back to the beginning of the input

Intuition:

Want to check if k = i ⇥ j . Equivalently, k =

i timesz }| {
j + j + · · ·+ j

For every a, remove j c ’s

If there are no c ’s left when done then accept

3 Cross o↵ an a and scan to the right until you find a b. Zig zag

between b’s and c ’s crossing o↵ one of each until all b’s are gone.

4 Restore all the b’s, find next uncrossed o↵ a and repeat Step 3.

5 If all a’s are crossed o↵, check if all c ’s are crossed o↵. Accept if yes,

reject if no.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 7 / 16

Example 1: L = {aibjck | i ⇥ j = k and i , j , k � 1}

Machine M deciding L

On input string w :

1 Check format of the input – scan input left to right and check that it

is a member of a⇤b⇤c⇤, reject if it isn’t

2 Return the head back to the beginning of the input

Intuition:

Want to check if k = i ⇥ j . Equivalently, k =

i timesz }| {
j + j + · · ·+ j

For every a, remove j c ’s

If there are no c ’s left when done then accept

3 Cross o↵ an a and scan to the right until you find a b. Zig zag

between b’s and c ’s crossing o↵ one of each until all b’s are gone.

4 Restore all the b’s, find next uncrossed o↵ a and repeat Step 3.

5 If all a’s are crossed o↵, check if all c ’s are crossed o↵. Accept if yes,

reject if no.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 7 / 16

Example 1: L = {aibjck | i ⇥ j = k and i , j , k � 1}

Machine M deciding L

On input string w :

1 Check format of the input – scan input left to right and check that it

is a member of a⇤b⇤c⇤, reject if it isn’t

2 Return the head back to the beginning of the input

Intuition:

Want to check if k = i ⇥ j . Equivalently, k =

i timesz }| {
j + j + · · ·+ j

For every a, remove j c ’s

If there are no c ’s left when done then accept

3 Cross o↵ an a and scan to the right until you find a b. Zig zag

between b’s and c ’s crossing o↵ one of each until all b’s are gone.

4 Restore all the b’s, find next uncrossed o↵ a and repeat Step 3.

5 If all a’s are crossed o↵, check if all c ’s are crossed o↵. Accept if yes,

reject if no.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 7 / 16

Example 1: L = {aibjck | i ⇥ j = k and i , j , k � 1}

Machine M deciding L

On input string w :

1 Check format of the input – scan input left to right and check that it

is a member of a⇤b⇤c⇤, reject if it isn’t

2 Return the head back to the beginning of the input

Intuition:

Want to check if k = i ⇥ j . Equivalently, k =

i timesz }| {
j + j + · · ·+ j

For every a, remove j c ’s

If there are no c ’s left when done then accept

3 Cross o↵ an a and scan to the right until you find a b. Zig zag

between b’s and c ’s crossing o↵ one of each until all b’s are gone.

4 Restore all the b’s, find next uncrossed o↵ a and repeat Step 3.

5 If all a’s are crossed o↵, check if all c ’s are crossed o↵. Accept if yes,

reject if no.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 7 / 16

Example 1: L = {aibjck | i ⇥ j = k and i , j , k � 1}

Machine M deciding L

On input string w :

1 Check format of the input – scan input left to right and check that it

is a member of a⇤b⇤c⇤, reject if it isn’t

2 Return the head back to the beginning of the input

Intuition:

Want to check if k = i ⇥ j . Equivalently, k =

i timesz }| {
j + j + · · ·+ j

For every a, remove j c ’s

If there are no c ’s left when done then accept

3 Cross o↵ an a and scan to the right until you find a b. Zig zag

between b’s and c ’s crossing o↵ one of each until all b’s are gone.

4 Restore all the b’s, find next uncrossed o↵ a and repeat Step 3.

5 If all a’s are crossed o↵, check if all c ’s are crossed o↵. Accept if yes,

reject if no.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 7 / 16

Example 1: L = {aibjck | i ⇥ j = k and i , j , k � 1}

Machine M deciding L

On input string w :

1 Check format of the input – scan input left to right and check that it

is a member of a⇤b⇤c⇤, reject if it isn’t

2 Return the head back to the beginning of the input

Intuition:

Want to check if k = i ⇥ j . Equivalently, k =

i timesz }| {
j + j + · · ·+ j

For every a, remove j c ’s

If there are no c ’s left when done then accept

3 Cross o↵ an a and scan to the right until you find a b. Zig zag

between b’s and c ’s crossing o↵ one of each until all b’s are gone.

4 Restore all the b’s, find next uncrossed o↵ a and repeat Step 3.

5 If all a’s are crossed o↵, check if all c ’s are crossed o↵. Accept if yes,

reject if no.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 7 / 16

Example 1: L = {aibjck | i ⇥ j = k and i , j , k � 1}

Machine M deciding L

On input string w :

1 Check format of the input – scan input left to right and check that it

is a member of a⇤b⇤c⇤, reject if it isn’t

2 Return the head back to the beginning of the input

Intuition:

Want to check if k = i ⇥ j . Equivalently, k =

i timesz }| {
j + j + · · ·+ j

For every a, remove j c ’s

If there are no c ’s left when done then accept

3 Cross o↵ an a and scan to the right until you find a b. Zig zag

between b’s and c ’s crossing o↵ one of each until all b’s are gone.

4 Restore all the b’s, find next uncrossed o↵ a and repeat Step 3.

5 If all a’s are crossed o↵, check if all c ’s are crossed o↵. Accept if yes,

reject if no.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 7 / 16

Example 1: L = {aibjck | i ⇥ j = k and i , j , k � 1}

Machine M deciding L

On input string w :

1 Check format of the input – scan input left to right and check that it

is a member of a⇤b⇤c⇤, reject if it isn’t

2 Return the head back to the beginning of the input

Intuition:

Want to check if k = i ⇥ j . Equivalently, k =

i timesz }| {
j + j + · · ·+ j

For every a, remove j c ’s

If there are no c ’s left when done then accept

3 Cross o↵ an a and scan to the right until you find a b. Zig zag

between b’s and c ’s crossing o↵ one of each until all b’s are gone.

4 Restore all the b’s, find next uncrossed o↵ a and repeat Step 3.

5 If all a’s are crossed o↵, check if all c ’s are crossed o↵. Accept if yes,

reject if no.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 7 / 16

Example 1: L = {aibjck | i ⇥ j = k and i , j , k � 1}

Machine M deciding L

On input string w :

1 Check format of the input – scan input left to right and check that it

is a member of a⇤b⇤c⇤, reject if it isn’t

2 Return the head back to the beginning of the input

Intuition:

Want to check if k = i ⇥ j . Equivalently, k =

i timesz }| {
j + j + · · ·+ j

For every a, remove j c ’s

If there are no c ’s left when done then accept

3 Cross o↵ an a and scan to the right until you find a b. Zig zag

between b’s and c ’s crossing o↵ one of each until all b’s are gone.

4 Restore all the b’s, find next uncrossed o↵ a and repeat Step 3.

5 If all a’s are crossed o↵, check if all c ’s are crossed o↵. Accept if yes,

reject if no.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 7 / 16

Example 2 – Build a TM deciding L Below

L = {#x1#x2# · · ·#x` | each xi 2 {0, 1}⇤ and xi 6= xj for all i 6= j}

M deciding L

On input sting w :

1 Look at first symbol, If t, accept. If # goto step 2. Else, reject

2 Place mark on top of first # and scan to next # and mark it. If no

second # found, accept.

3 By zig-zagging compare the two strings to the right of marked #’s. If

they are equal, reject

4 Move right mark to next #, if there isn’t one move left mark one #

to the right and right mark to # after that (if there isn’t one, accept)

5 Goto step 3

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 8 / 16

Example 2 – Build a TM deciding L Below

L = {#x1#x2# · · ·#x` | each xi 2 {0, 1}⇤ and xi 6= xj for all i 6= j}

M deciding L

On input sting w :

1 Look at first symbol, If t, accept. If # goto step 2. Else, reject

2 Place mark on top of first # and scan to next # and mark it. If no

second # found, accept.

3 By zig-zagging compare the two strings to the right of marked #’s. If

they are equal, reject

4 Move right mark to next #, if there isn’t one move left mark one #

to the right and right mark to # after that (if there isn’t one, accept)

5 Goto step 3

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 8 / 16

Example 2 – Build a TM deciding L Below

L = {#x1#x2# · · ·#x` | each xi 2 {0, 1}⇤ and xi 6= xj for all i 6= j}

M deciding L

On input sting w :

1 Look at first symbol, If t, accept. If # goto step 2. Else, reject

2 Place mark on top of first # and scan to next # and mark it. If no

second # found, accept.

3 By zig-zagging compare the two strings to the right of marked #’s. If

they are equal, reject

4 Move right mark to next #, if there isn’t one move left mark one #

to the right and right mark to # after that (if there isn’t one, accept)

5 Goto step 3

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 8 / 16

Example 2 – Build a TM deciding L Below

L = {#x1#x2# · · ·#x` | each xi 2 {0, 1}⇤ and xi 6= xj for all i 6= j}

M deciding L

On input sting w :

1 Look at first symbol, If t, accept. If # goto step 2. Else, reject

2 Place mark on top of first # and scan to next # and mark it. If no

second # found, accept.

3 By zig-zagging compare the two strings to the right of marked #’s. If

they are equal, reject

4 Move right mark to next #, if there isn’t one move left mark one #

to the right and right mark to # after that (if there isn’t one, accept)

5 Goto step 3

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 8 / 16

Example 2 – Build a TM deciding L Below

L = {#x1#x2# · · ·#x` | each xi 2 {0, 1}⇤ and xi 6= xj for all i 6= j}

M deciding L

On input sting w :

1 Look at first symbol, If t, accept. If # goto step 2. Else, reject

2 Place mark on top of first # and scan to next # and mark it. If no

second # found, accept.

3 By zig-zagging compare the two strings to the right of marked #’s. If

they are equal, reject

4 Move right mark to next #, if there isn’t one move left mark one #

to the right and right mark to # after that (if there isn’t one, accept)

5 Goto step 3

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 8 / 16

Example 2 – Build a TM deciding L Below

L = {#x1#x2# · · ·#x` | each xi 2 {0, 1}⇤ and xi 6= xj for all i 6= j}

M deciding L

On input sting w :

1 Look at first symbol, If t, accept. If # goto step 2. Else, reject

2 Place mark on top of first # and scan to next # and mark it. If no

second # found, accept.

3 By zig-zagging compare the two strings to the right of marked #’s. If

they are equal, reject

4 Move right mark to next #, if there isn’t one move left mark one #

to the right and right mark to # after that (if there isn’t one, accept)

5 Goto step 3

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 8 / 16

Outline

1 Lecture 12 Review

2 Some More Turing Machines

3 Turing Machine Variants

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 9 / 16

Multi-Tape Turing Machines

In each step:

M can read each tape

M can write to each tape

M can move each tape head Left or Right

Formally, for k tapes

� : Q ⇥ �
k ! Q ⇥ �

k ⇥ {L,R}k

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 10 / 16

Multi-Tape Turing Machines

In each step:

M can read each tape

M can write to each tape

M can move each tape head Left or Right

Formally, for k tapes

� : Q ⇥ �
k ! Q ⇥ �

k ⇥ {L,R}k

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 10 / 16

Multi-Tape Turing Machines

In each step:

M can read each tape

M can write to each tape

M can move each tape head Left or Right

Formally, for k tapes

� : Q ⇥ �
k ! Q ⇥ �

k ⇥ {L,R}k

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 10 / 16

Multi-Tape Turing Machines

Theorem

Every multi-tape TM has an equivalent single-tape TM

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 11 / 16

- Contis
, Consti

, -
Ronhis
#

↳

Nondeterministic Turing Machines

Formally,

� : Q ⇥ � ! P(Q ⇥ �⇥ {L,R})

Intuition:

The control unit is non-deterministic - many transitions possible on

each input

Execution corresponds to a tree of possible executions

Accept if any of possible execution leads to accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 12 / 16

Nondeterministic Turing Machines

Formally,

� : Q ⇥ � ! P(Q ⇥ �⇥ {L,R})

Intuition:

The control unit is non-deterministic - many transitions possible on

each input

Execution corresponds to a tree of possible executions

Accept if any of possible execution leads to accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 12 / 16

Nondeterministic Turing Machines

Formally,

� : Q ⇥ � ! P(Q ⇥ �⇥ {L,R})

Intuition:

The control unit is non-deterministic - many transitions possible on

each input

Execution corresponds to a tree of possible executions

Accept if any of possible execution leads to accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 12 / 16

Nondeterministic Turing Machine

Theorem

Every nondeterministic TM has an equivalent deterministic TM.

C0

C1 C2 C3

C11 C12 C13

C111 C112 C113

start

Recall that an execution of a DTM is a

sequence of configurations

Execution of an NTM is a tree of

configurations (branches correspond to

non-deterministic choices)

If any node in the tree is an accept

node, the NTM accepts

To simulate an NTM by a DTM, need

to try all configurations in the tree to

see if we find an accepting one

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 13 / 16

Nondeterministic Turing Machine

Theorem

Every nondeterministic TM has an equivalent deterministic TM.

C0

C1 C2 C3

C11 C12 C13

C111 C112 C113

start

Recall that an execution of a DTM is a

sequence of configurations

Execution of an NTM is a tree of

configurations (branches correspond to

non-deterministic choices)

If any node in the tree is an accept

node, the NTM accepts

To simulate an NTM by a DTM, need

to try all configurations in the tree to

see if we find an accepting one

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 13 / 16

&

Nondeterministic Turing Machine

Theorem

Every nondeterministic TM has an equivalent deterministic TM.

C0

C1 C2 C3

C11 C12 C13

C111 C112 C113

start

Recall that an execution of a DTM is a

sequence of configurations

Execution of an NTM is a tree of

configurations (branches correspond to

non-deterministic choices)

If any node in the tree is an accept

node, the NTM accepts

To simulate an NTM by a DTM, need

to try all configurations in the tree to

see if we find an accepting one

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 13 / 16

Nondeterministic Turing Machine

Theorem

Every nondeterministic TM has an equivalent deterministic TM.

C0

C1 C2 C3

C11 C12 C13

C111 C112 C113

start

Recall that an execution of a DTM is a

sequence of configurations

Execution of an NTM is a tree of

configurations (branches correspond to

non-deterministic choices)

If any node in the tree is an accept

node, the NTM accepts

To simulate an NTM by a DTM, need

to try all configurations in the tree to

see if we find an accepting one

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 13 / 16

Nondeterministic Turing Machine

Theorem

Every nondeterministic TM has an equivalent deterministic TM.

C0

C1 C2 C3

C11 C12 C13

C111 C112 C113

start

Recall that an execution of a DTM is a

sequence of configurations

Execution of an NTM is a tree of

configurations (branches correspond to

non-deterministic choices)

If any node in the tree is an accept

node, the NTM accepts

To simulate an NTM by a DTM, need

to try all configurations in the tree to

see if we find an accepting one

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 13 / 16

Nondeterministic Turing Machine

Theorem

Every nondeterministic TM has an equivalent deterministic TM.

C0

C1 C2 C3

C11 C12 C13

C111 C112 C113

start

Recall that an execution of a DTM is a

sequence of configurations

Execution of an NTM is a tree of

configurations (branches correspond to

non-deterministic choices)

If any node in the tree is an accept

node, the NTM accepts

To simulate an NTM by a DTM, need

to try all configurations in the tree to

see if we find an accepting one

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 13 / 16

Nondeterministic Turing Machines

To simulate an NTM N by a DTM D, we use three tapes:

1 Input tape – stores the input and doesn’t change

2 Simulation tape – work tape for the NTM on one branch of

nondeterminism

3 Address tape – use to store which nondeterministic branch you are on

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 14 / 16

Nondeterministic Turing Machines

To simulate an NTM N by a DTM D, we use three tapes:

1 Input tape – stores the input and doesn’t change

2 Simulation tape – work tape for the NTM on one branch of

nondeterminism

3 Address tape – use to store which nondeterministic branch you are on

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 14 / 16

Nondeterministic Turing Machines

To simulate an NTM N by a DTM D, we use three tapes:

1 Input tape – stores the input and doesn’t change

2 Simulation tape – work tape for the NTM on one branch of

nondeterminism

3 Address tape – use to store which nondeterministic branch you are on

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 14 / 16

Nondeterministic Turing Machines

To simulate an NTM N by a DTM D, we use three tapes:

1 Input tape – stores the input and doesn’t change

2 Simulation tape – work tape for the NTM on one branch of

nondeterminism

3 Address tape – use to store which nondeterministic branch you are on

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 14 / 16

Nondeterministic Turing Machines

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a

non-deterministic choice, see next symbol on tape 3 for which branch

to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move

onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

Important

Must traverse NTM tree in breadth-first, not depth-first order

Depth-first traversal may get stuck in an infinite loop, and not detect

terminating branch

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 15 / 16

Nondeterministic Turing Machines

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a

non-deterministic choice, see next symbol on tape 3 for which branch

to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move

onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

Important

Must traverse NTM tree in breadth-first, not depth-first order

Depth-first traversal may get stuck in an infinite loop, and not detect

terminating branch

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 15 / 16

Nondeterministic Turing Machines

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a

non-deterministic choice, see next symbol on tape 3 for which branch

to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move

onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

Important

Must traverse NTM tree in breadth-first, not depth-first order

Depth-first traversal may get stuck in an infinite loop, and not detect

terminating branch

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 15 / 16

Nondeterministic Turing Machines

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a

non-deterministic choice, see next symbol on tape 3 for which branch

to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move

onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

Important

Must traverse NTM tree in breadth-first, not depth-first order

Depth-first traversal may get stuck in an infinite loop, and not detect

terminating branch

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 15 / 16

Nondeterministic Turing Machines

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a

non-deterministic choice, see next symbol on tape 3 for which branch

to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move

onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

Important

Must traverse NTM tree in breadth-first, not depth-first order

Depth-first traversal may get stuck in an infinite loop, and not detect

terminating branch

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 15 / 16

Nondeterministic Turing Machines

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a

non-deterministic choice, see next symbol on tape 3 for which branch

to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move

onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

Important

Must traverse NTM tree in breadth-first, not depth-first order

Depth-first traversal may get stuck in an infinite loop, and not detect

terminating branch

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 15 / 16

Lo

,

e
O

Nondeterministic Turing Machines

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a

non-deterministic choice, see next symbol on tape 3 for which branch

to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move

onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

Important

Must traverse NTM tree in breadth-first, not depth-first order

Depth-first traversal may get stuck in an infinite loop, and not detect

terminating branch

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 15 / 16

Next Week

Languages about machines

Decidable and undecidable languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 29, 2024 16 / 16

