Foundations of Computing

Lecture 14

Arkady Yerukhimovich

March 5, 2024

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Outline

© Lecture 13 Review

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Lecture 13 Review

@ More Turing Machines
@ Turing Machine Variants

o Multi-tape Turing Machines
e Non-deterministic Turing Machines

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Outline

@ Specification of a Turing Machine

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Important TM Notation / Observations

@ TM always takes a string as input

e Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)

e To do so, we must serialize the object into a string
o Notation: (G)

Arkady Yerukhimovich

CS 3313 — Foundations of Computing

March 5, 2024

Important TM Notation / Observations

@ TM always takes a string as input

e Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
e To do so, we must serialize the object into a string
o Notation: (G)
@ We can "mark” cells on the tape
o Notation: x
e Technically, this is adding a symbol to I'

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Important TM Notation / Observations

@ TM always takes a string as input
e Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
e To do so, we must serialize the object into a string
o Notation: (G)

@ We can "mark” cells on the tape

o Notation: x
e Technically, this is adding a symbol to I'

@ Can use multiple tapes if it's useful

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Important TM Notation / Observations

@ TM always takes a string as input

e Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
e To do so, we must serialize the object into a string
o Notation: (G)
@ We can "mark” cells on the tape
o Notation: x
e Technically, this is adding a symbol to I'
@ Can use multiple tapes if it's useful
@ Can give a machine as an input to another machine
o All machines we have seen can be written as finite tuples, e.g.

(Q7 Zv rv 57 40, Gaccept » qreject)
e So, we can write this as a string and pass it toa TM
@ TM can then run the machine from this description

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Important TM Notation / Observations

@ TM always takes a string as input

e Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
e To do so, we must serialize the object into a string
o Notation: (G)
@ We can "mark” cells on the tape

o Notation: x
e Technically, this is adding a symbol to I'

@ Can use multiple tapes if it's useful
@ Can give a machine as an input to another machine

o All machines we have seen can be written as finite tuples, e.g.

(Q7 Zv rv 57 40, Gaccept » qreject)
e So, we can write this as a string and pass it toa TM
@ TM can then run the machine from this description
e A TM that takes ANY TM as input and runs it is called a universal TM

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Outline

9 Decidable and Turing-recognizable Languages

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

What Does It Mean to Compute?

@ We have modeled computation as recognizing a language L

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

What Does It Mean to Compute?

@ We have modeled computation as recognizing a language L

e That is, given a string w, an algorithm (aka. a Turing Machine)
should tell us whether w € L or not.

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

What Does It Mean to Compute?

@ We have modeled computation as recognizing a language L

e That is, given a string w, an algorithm (aka. a Turing Machine)
should tell us whether w € L or not.

@ Can all languages be computed in this way?

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

What Does It Mean to Compute?

@ We have modeled computation as recognizing a language L

e That is, given a string w, an algorithm (aka. a Turing Machine)
should tell us whether w € L or not.

@ Can all languages be computed in this way?

@ Are there some problems that inherently do not have any algorithmic
solution?

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024 7/28

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

@ M halts on ALL inputs, accepting those in L and rejecting those not
in L

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

@ M halts on ALL inputs, accepting those in L and rejecting those not
in L

@ Seems to match informal definition we wanted before

v

Definition: Turing-recognizable languages

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024 8/28

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

@ M halts on ALL inputs, accepting those in L and rejecting those not
in L
@ Seems to match informal definition we wanted before)
A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes strings in L

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024 8/28

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

@ M halts on ALL inputs, accepting those in L and rejecting those not
in L
@ Seems to match informal definition we wanted before)
A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes strings in L

@ M halts and accepts all strings in L

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024 8/28

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

@ M halts on ALL inputs, accepting those in L and rejecting those not
in L
@ Seems to match informal definition we wanted before)

Definition: Turing-recognizable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes strings in L

@ M halts and accepts all strings in L

@ M may not halt on strings not in L — does not necessarily have to
reject

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024 8/28

Characterizing Computability of Languages
Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it
@ M halts on ALL inputs, accepting those in L and rejecting those not
in L
@ Seems to match informal definition we wanted before

Definition: Turing-recognizable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes strings in L

@ M halts and accepts all strings in L

@ M may not halt on strings not in L — does not necessarily have to
reject

Every Decidable language is also Turing-recognizable, but the reverse
direction may not be true.

T = = = SaRs

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024 8/28

The Question
Are there problems that are undecidable?

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

The Big Question

The Question
Are there problems that are undecidable?

What would this mean:

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

The Big Question

The Question

Are there problems that are undecidable?

What would this mean:

@ Such a problem is not solvable by any algorithm

Arkady Yerukhimovich

CS 3313 — Foundations of Computing

March 5, 2024

The Big Question

The Question

Are there problems that are undecidable?

What would this mean:
@ Such a problem is not solvable by any algorithm

o If you believe Church-Turing thesis, it cannot be solved by any
computer

Arkady Yerukhimovich

CS 3313 — Foundations of Computing

March 5, 2024

The Big Question

The Question

Are there problems that are undecidable?

What would this mean:
@ Such a problem is not solvable by any algorithm

o If you believe Church-Turing thesis, it cannot be solved by any
computer

@ We will see that even relatively natural problems can be undecidable

Arkady Yerukhimovich

CS 3313 — Foundations of Computing

March 5, 2024

The Big Question
The Question
Are there problems that are undecidable?

What would this mean:

@ Such a problem is not solvable by any algorithm

o If you believe Church-Turing thesis, it cannot be solved by any
computer

@ We will see that even relatively natural problems can be undecidable

A Second Question
What about Turing-unrecognizable languages?

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024 9/28

Outline

@ Languages With Machines as Input

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Taking Machines as Input

@ Recall that we have defined machines as tuples:

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Taking Machines as Input

@ Recall that we have defined machines as tuples:
@ DFA/NFA M =(Q,%,0,q1,F)
Q@ PDAM=(Q,%,T,d,qo, F)
9 T™M M = (Q7 Zu I', 67 4o, Gaccept > qreject)

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Taking Machines as Input

@ Recall that we have defined machines as tuples:
@ DFA/NFA M =(Q,%,0,q1,F)
Q@ PDAM=(Q,%,T,d,qo, F)
9 T™M M = (Qa Zu I', 67 4o, Gaccept > qreject)
@ This means that any such machine can be written down as a finite
length string

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Taking Machines as Input

@ Recall that we have defined machines as tuples:
@ DFA/NFA M =(Q,%,0,q1,F)
Q@ PDAM=(Q,%,T,d,qo, F)
9 T™M M = (Qa Zu I', 67 4o, Gaccept > qreject)
@ This means that any such machine can be written down as a finite
length string
@ So, can give a description of a machine M to another machine M’

March 5, 2024

Arkady Yerukhimovich CS 3313 — Foundations of Computing

Taking Machines as Input

Recall that we have defined machines as tuples:

@ DFA/NFA M =(Q,%,0,q1,F)

@ PDAM=(Q,X,T,d,qo,F)

9 T™M M = (Qa Zu I', 67 4o, Gaccept > qreject)
@ This means that any such machine can be written down as a finite
length string

So, can give a description of a machine M to another machine M’

Today, we will talk about TM'’s that run another machine M’

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Apra = {(B,w) | B is a DFA that accepts input string w}

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Apra = {(B,w) | B is a DFA that accepts input string w}

Algorithm to decide Apga:
On input (B, w)

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Apra = {(B,w) | B is a DFA that accepts input string w}

Algorithm to decide Apga:
On input (B, w)
© Simulate B on input w \L

174 |
@\JAO—-» &4

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Apra = {(B,w) | B is a DFA that accepts input string w}

Algorithm to decide Apga:
On input (B, w)
© Simulate B on input w

@ |If simulation ends in an accept, then accept. If it ends in a
non-accepting state, then reject

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Anea = {(B,w) | B is a NFA that accepts input string w}

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Anea = {(B,w) | B is a NFA that accepts input string w}

Algorithm to decide Anga:
On input (B, w)

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Anea = {(B,w) | B is a NFA that accepts input string w}

Algorithm to decide Anga:
On input (B, w)
@ Convert NFA B to equivalent DFA C

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Anea = {(B,w) | B is a NFA that accepts input string w}

Algorithm to decide Anga:

On input (B, w)
@ Convert NFA B to equivalent DFA C
@ Run TM from previous slide on input (C, w)
© Output what this TM outputs

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Arex = {(R,w) | R is a reg. exp. that generates the string w}

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Arex = {(R,w) | R is a reg. exp. that generates the string w}

Algorithm to decide Agrex:
On input (R, w)

| Gueerb R il aqe’ vadant

DFA M’
Z- Ruan decrd o ML

{

Y. Om}pm} wLaAﬂ—Vb’ M QM}‘/IWL/

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Epra = {(A) | Alis a DFA and L(A) = 0}

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Epra = {(A) | Alis a DFA and L(A) = 0}

Intuition:

@ Remember, for a DFA to accept some string there must be a path
from the start state to an accept state

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Epra = {(A) | Alis a DFA and L(A) = 0}

Intuition:

@ Remember, for a DFA to accept some string there must be a path
from the start state to an accept state

@ We need to figure out if such a path exists

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Epra = {(A) | Alis a DFA and L(A) = 0}

Intuition:

@ Remember, for a DFA to accept some string there must be a path
from the start state to an accept state

@ We need to figure out if such a path exists

Algorithm to decide Epfga:
On input (A)

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Epra = {(A) | Alis a DFA and L(A) = 0}

Intuition:

@ Remember, for a DFA to accept some string there must be a path
from the start state to an accept state

@ We need to figure out if such a path exists
Algorithm to decide Epfga:
On input (A)

@ Mark the start state of A

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Epra={(A) | Ais a DFAgi L(A) = g)}
Intuition:

o e
@ Remember, for a DFA to accept some string there must be a path

from the start state to an accept state

@ We need to figure out if such a path exists

Algorithm to decide Epfga:
On input (A)
© Mark the start state of A
© Repeat until no new states get marked:

e Mark any state that has an incoming transition from any state already
marked

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

Epra = {(A) | Alis a DFA and L(A) = 0}

Intuition:

@ Remember, for a DFA to accept some string there must be a path
from the start state to an accept state

@ We need to figure out if such a path exists

Algorithm to decide Epfga:
On input (A)
© Mark the start state of A
© Repeat until no new states get marked:

e Mark any state that has an incoming transition from any state already
marked

© If no accept state is marked, accept, else, reject

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

EQpra = {(A,B) | A, B are DFAs and L(A) = L(B)}

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

EQpra = {(A,B) | A, B are DFAs and L(A) = L(B)}
Intuition:

e Construct regular language that is empty if and only if L(A) = L(B)

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

EQpra = {(A,B) | A, B are DFAs and L(A) = L(B)}
Intuition:

e Construct regular language that is empty if and only if L(A) = L(B)
@ Since this language is regular, there is a DFA C that decides it

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

EQpra = {(A,B) | A, B are DFAs and L(A) = L(B)}
Intuition:

e Construct regular language that is empty if and only if L(A) = L(B)
@ Since this language is regular, there is a DFA C that decides it

@ Use TM from previous example on input (C) to decide this language

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

EQpra = {(A,B) | A, B are DFAs and L(A) = L(B)}
Intuition:

e Construct regular language that is empty if and only if L(A) = L(B)
@ Since this language is regular, there is a DFA C that decides it

@ Use TM from previous example on input (C) to decide this language

Constructing L(C):
@ We need to find all the differences between L(A) and L(B)

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

EQpra = {(A,B) | A, B are DFAs and L(A) = L(B)}
Intuition:

e Construct regular language that is empty if and only if L(A) = L(B)
@ Since this language is regular, there is a DFA C that decides it

@ Use TM from previous example on input (C) to decide this language

Constructing L(C):
@ We need to find all the differences between L(A) and L(B)
o Consider all items x € L(A) s.t. x ¢ L(B)

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Regular Languages

EQpra = {(A,B) | A, B are DFAs and L(A) = L(B)}
Intuition:

e Construct regular language that is empty if and only if L(A) = L(B)
@ Since this language is regular, there is a DFA C that decides it

@ Use TM from previous example on input (C) to decide this language

Constructing L(C):
@ We need to find all the differences between L(A) and L(B)
o Consider all items x € L(A) s.t. x ¢ L(B)

L(A)\ L(B) = L(A) N L(B) contains all such items

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024 16 /28

Problems About Regular Languages

EQpra = {(A,B) | A, B are DFAs and L(A) = L(B)}
Intuition:

e Construct regular language that is empty if and only if L(A) = L(B)
@ Since this language is regular, there is a DFA C that decides it

@ Use TM from previous example on input (C) to decide this language

Constructing L(C):
@ We need to find all the differences between L(A) and L(B)
o Consider all items x € L(A) s.t. x ¢ L(B)

L(A)\ L(B) = L(A) N L(B) contains all such items
@ Need to also consider items in L(B) that are not in L(A)

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024 16 /28

Problems About Regular Languages

EQpra = {(A,B) | A, B are DFAs and L(A) = L(B)}
Intuition:

e Construct regular language that is empty if and only if L(A) = L(B)
@ Since this language is regular, there is a DFA C that decides it

@ Use TM from previous example on input (C) to decide this language

Constructing L(C):
@ We need to find all the differences between L(A) and L(B)
o Consider all items x € L(A) s.t. x ¢ L(B)

L(A)\ L(B) = L(A) N L(B) contains all such items
@ Need to also consider items in L(B) that are not in L(A)

L(C) = (L(A) N L(B)) U (@m L(B))

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024 16 /28

Problems About Context-Free Languages

Acre = {(G,w) | G is a CFG that generates w}

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Context-Free Languages

Acre = {(G,w) | G is a CFG that generates w}

Try 1:
@ Every CFG has an equivalent PDA
@ Use a TM to run the PDA (easy to simulate stack using TM's tape)

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Context-Free Languages

Acre = {(G,w) | G is a CFG that generates w}

Try 1:

@ Every CFG has an equivalent PDA

@ Use a TM to run the PDA (easy to simulate stack using TM's tape)
But, there is a problem:

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Context-Free Languages

Acre = {(G,w) | G is a CFG that generates w}

Try 1:
@ Every CFG has an equivalent PDA
@ Use a TM to run the PDA (easy to simulate stack using TM's tape)
But, there is a problem:
@ A PDA may have some branches that go on forever — keep pushing
and popping things on the stack
@ This would mean that on such an input the resulting TM would not
halt — i.e., not be a decider

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Context-Free Languages

Lere = {(G,w) | G is a CFG that generates w}
Try 2:
e Fortunately, when given a CFG in a certain form (Chomsky Normal

Form), can prove that any derivation of w € L(G) has at most
2|w| — 1 steps

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Context-Free Languages

Lere = {(G,w) | G is a CFG that generates w}
Try 2:
e Fortunately, when given a CFG in a certain form (Chomsky Normal
Form), can prove that any derivation of w € L(G) has at most
2|w| — 1 steps

@ Moreover, any CFG can be converted into Chomsky Normal Form

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Context-Free Languages

Lere = {(G,w) | G is a CFG that generates w}

Try 2:

e Fortunately, when given a CFG in a certain form (Chomsky Normal
Form), can prove that any derivation of w € L(G) has at most
2|w| — 1 steps

@ Moreover, any CFG can be converted into Chomsky Normal Form

@ Use a TM to list all derivations with < 2|w| — 1 steps
Can do this in finite time, since grammar is finite

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Context-Free Languages

Lere = {(G,w) | G is a CFG that generates w}
Try 2:

e Fortunately, when given a CFG in a certain form (Chomsky Normal
Form), can prove that any derivation of w € L(G) has at most
2|w| — 1 steps

@ Moreover, any CFG can be converted into Chomsky Normal Form

@ Use a TM to list all derivations with < 2|w| — 1 steps
Can do this in finite time, since grammar is finite

@ If any of these derivations produce w, accept. Otherwise, reject.

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024 18 /28

Problems About Context-Free Languages

Lere = {(G,w) | G is a CFG that generates w}
Try 2:

e Fortunately, when given a CFG in a certain form (Chomsky Normal
Form), can prove that any derivation of w € L(G) has at most
2|w| — 1 steps

@ Moreover, any CFG can be converted into Chomsky Normal Form

@ Use a TM to list all derivations with < 2|w| — 1 steps
Can do this in finite time, since grammar is finite

@ If any of these derivations produce w, accept. Otherwise, reject.

Every CFL is decidable \

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024 18 /28

Problems About Context-Free Languages

Ecre = {(G) | Gis a CFG and L(G) = 0}

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Context-Free Languages

Ecre = {(G) | Gis a CFG and L(G) = 0}

Intuition:

@ Need to test if the start variable can ever generate a string of all
terminals

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Context-Free Languages

Ecre = {(G) | Gis a CFG and L(G) = 0}

Intuition:

@ Need to test if the start variable can ever generate a string of all
terminals

@ ldea: For each variable determine if it can be converted to terminals

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Context-Free Languages

Ecre = {(G) | Gis a CFG and L(G) = 0}

Intuition:
@ Need to test if the start variable can ever generate a string of all
terminals
@ ldea: For each variable determine if it can be converted to terminals

o Keep track of which variables can do so, and see if it includes the
start variable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Context-Free Languages

Ecre = {(G) | Gis a CFG and L(G) = 0}

Intuition:
@ Need to test if the start variable can ever generate a string of all
terminals
@ ldea: For each variable determine if it can be converted to terminals

o Keep track of which variables can do so, and see if it includes the
start variable

On input (G)

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Context-Free Languages

Ecre = {(G) | Gis a CFG and L(G) = 0}

Intuition:
@ Need to test if the start variable can ever generate a string of all
terminals
@ ldea: For each variable determine if it can be converted to terminals

o Keep track of which variables can do so, and see if it includes the
start variable

On input (G)
@ Mark all terminalsin G

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Context-Free Languages

Ecre = {(G) | Gis a CFG and L(G) = 0}

Intuition:
@ Need to test if the start variable can ever generate a string of all
terminals
@ ldea: For each variable determine if it can be converted to terminals
o Keep track of which variables can do so, and see if it includes the
start variable
On input (G)
@ Mark all terminalsin G
@ Repeat until no new variable gets marked:

e Mark any variable A where G has a rule A — Uy U, --- Ux and each
symbol Uy, Uy, ..., U has already been marked

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024 19/28

Problems About Context-Free Languages

Ecre = {(G) | Gis a CFG and L(G) = 0}

Intuition:
@ Need to test if the start variable can ever generate a string of all
terminals
@ ldea: For each variable determine if it can be converted to terminals
o Keep track of which variables can do so, and see if it includes the
start variable
On input (G)
@ Mark all terminalsin G
@ Repeat until no new variable gets marked:

e Mark any variable A where G has a rule A — Uy U, --- Ux and each
symbol Uy, Uy, ..., U has already been marked

© If starts symbol is not marked, accept. Otherwise, reject

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024 19/28

Problems About Turing Machines

Arm ={(M,w) | Misa TM and M(w) = 1}

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Turing Machines

Arm ={(M,w) | Misa TM and M(w) = 1}

Is ATy Turing-recognizable?

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Turing Machines

Arm ={(M,w) | Misa TM and M(w) = 1}

Is ATy Turing-recognizable?
On input (M, w):

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Turing Machines

Arm ={(M,w) | Misa TM and M(w) = 1}
Is ATy Turing-recognizable?
On input (M, w):
@ Simulate M on input w

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Turing Machines

Arm = {(M,w) | Mis a TM and M(w) = 1}
Is ATy Turing-recognizable?
On input (M, w):
@ Simulate M on input w
@ If M ever enters its accept state, halt and accept. If M ever enters its
reject state, halt and reject

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Turing Machines

Arm = {(M,w) | Mis a TM and M(w) = 1}
Is ATy Turing-recognizable?
On input (M, w):
@ Simulate M on input w

@ If M ever enters its accept state, halt and accept. If M ever enters its
reject state, halt and reject
The Problem:

Arkady Yerukhimovich

CS 3313 — Foundations of Computing March 5, 2024

Problems About Turing Machines

Arm = {(M,w) | Mis a TM and M(w) = 1}
Is ATy Turing-recognizable?
On input (M, w):
@ Simulate M on input w

@ If M ever enters its accept state, halt and accept. If M ever enters its
reject state, halt and reject
The Problem:

@ M may never halt

Arkady Yerukhimovich

CS 3313 — Foundations of Computing March 5, 2024

Problems About Turing Machines

Arm = {(M,w) | Mis a TM and M(w) = 1}
Is ATy Turing-recognizable?
On input (M, w):
@ Simulate M on input w

@ If M ever enters its accept state, halt and accept. If M ever enters its
reject state, halt and reject
The Problem:

@ M may never halt
@ In this case, above algorithm will never output accept or reject

Arkady Yerukhimovich

CS 3313 — Foundations of Computing March 5, 2024

Problems About Turing Machines

Arm = {(M,w) | Mis a TM and M(w) = 1}
Is ATy Turing-recognizable?
On input (M, w):
@ Simulate M on input w
@ If M ever enters its accept state, halt and accept. If M ever enters its
reject state, halt and reject
The Problem:
@ M may never halt
@ In this case, above algorithm will never output accept or reject
o If could determine that M will never halt (i.e, it has entered an
infinite loop), could reject.

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

Problems About Turing Machines

Arm = {(M,w) | Mis a TM and M(w) = 1}
Is ATy Turing-recognizable?
On input (M, w):
@ Simulate M on input w
@ If M ever enters its accept state, halt and accept. If M ever enters its
reject state, halt and reject
The Problem:
@ M may never halt
@ In this case, above algorithm will never output accept or reject
o If could determine that M will never halt (i.e, it has entered an
infinite loop), could reject.

The HALTING Problem
@ This is known as the HALTING problem

@ We will prove that it is undecidable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024 20/28

Relationships Among Language Classes

Regular Context-free Decidable Turing-recognizable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 5, 2024

