
Foundations of Computing
Lecture 14

Arkady Yerukhimovich

March 5, 2024

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 1 / 28

Outline

1 Lecture 13 Review

2 Specification of a Turing Machine

3 Decidable and Turing-recognizable Languages

4 Languages With Machines as Input

5 Preliminaries – Countable and Uncountable Sets

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 2 / 28

Lecture 13 Review

More Turing Machines

Turing Machine Variants
Multi-tape Turing Machines
Non-deterministic Turing Machines

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 3 / 28

Outline

1 Lecture 13 Review

2 Specification of a Turing Machine

3 Decidable and Turing-recognizable Languages

4 Languages With Machines as Input

5 Preliminaries – Countable and Uncountable Sets

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 4 / 28

Important TM Notation / Observations

TM always takes a string as input
Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
To do so, we must serialize the object into a string
Notation: hG i

We can “mark” cells on the tape
Notation: ẋ
Technically, this is adding a symbol to �

Can use multiple tapes if it’s useful

Can give a machine as an input to another machine
All machines we have seen can be written as finite tuples, e.g.
(Q,⌃, �, �, q0, qaccept , qreject)
So, we can write this as a string and pass it to a TM
TM can then run the machine from this description
A TM that takes ANY TM as input and runs it is called a universal TM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 5 / 28

Important TM Notation / Observations

TM always takes a string as input
Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
To do so, we must serialize the object into a string
Notation: hG i

We can “mark” cells on the tape
Notation: ẋ
Technically, this is adding a symbol to �

Can use multiple tapes if it’s useful

Can give a machine as an input to another machine
All machines we have seen can be written as finite tuples, e.g.
(Q,⌃, �, �, q0, qaccept , qreject)
So, we can write this as a string and pass it to a TM
TM can then run the machine from this description
A TM that takes ANY TM as input and runs it is called a universal TM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 5 / 28

Important TM Notation / Observations

TM always takes a string as input
Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
To do so, we must serialize the object into a string
Notation: hG i

We can “mark” cells on the tape
Notation: ẋ
Technically, this is adding a symbol to �

Can use multiple tapes if it’s useful

Can give a machine as an input to another machine
All machines we have seen can be written as finite tuples, e.g.
(Q,⌃, �, �, q0, qaccept , qreject)
So, we can write this as a string and pass it to a TM
TM can then run the machine from this description
A TM that takes ANY TM as input and runs it is called a universal TM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 5 / 28

Important TM Notation / Observations

TM always takes a string as input
Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
To do so, we must serialize the object into a string
Notation: hG i

We can “mark” cells on the tape
Notation: ẋ
Technically, this is adding a symbol to �

Can use multiple tapes if it’s useful

Can give a machine as an input to another machine
All machines we have seen can be written as finite tuples, e.g.
(Q,⌃, �, �, q0, qaccept , qreject)
So, we can write this as a string and pass it to a TM
TM can then run the machine from this description

A TM that takes ANY TM as input and runs it is called a universal TM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 5 / 28

Important TM Notation / Observations

TM always takes a string as input
Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
To do so, we must serialize the object into a string
Notation: hG i

We can “mark” cells on the tape
Notation: ẋ
Technically, this is adding a symbol to �

Can use multiple tapes if it’s useful

Can give a machine as an input to another machine
All machines we have seen can be written as finite tuples, e.g.
(Q,⌃, �, �, q0, qaccept , qreject)
So, we can write this as a string and pass it to a TM
TM can then run the machine from this description
A TM that takes ANY TM as input and runs it is called a universal TM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 5 / 28

Outline

1 Lecture 13 Review

2 Specification of a Turing Machine

3 Decidable and Turing-recognizable Languages

4 Languages With Machines as Input

5 Preliminaries – Countable and Uncountable Sets

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 6 / 28

What Does It Mean to Compute?

We have modeled computation as recognizing a language L

That is, given a string w , an algorithm (aka. a Turing Machine)
should tell us whether w 2 L or not.

Question(s)

Can all languages be computed in this way?

Are there some problems that inherently do not have any algorithmic
solution?

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 7 / 28

What Does It Mean to Compute?

We have modeled computation as recognizing a language L

That is, given a string w , an algorithm (aka. a Turing Machine)
should tell us whether w 2 L or not.

Question(s)

Can all languages be computed in this way?

Are there some problems that inherently do not have any algorithmic
solution?

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 7 / 28

What Does It Mean to Compute?

We have modeled computation as recognizing a language L

That is, given a string w , an algorithm (aka. a Turing Machine)
should tell us whether w 2 L or not.

Question(s)

Can all languages be computed in this way?

Are there some problems that inherently do not have any algorithmic
solution?

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 7 / 28

What Does It Mean to Compute?

We have modeled computation as recognizing a language L

That is, given a string w , an algorithm (aka. a Turing Machine)
should tell us whether w 2 L or not.

Question(s)

Can all languages be computed in this way?

Are there some problems that inherently do not have any algorithmic
solution?

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 7 / 28

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on ALL inputs, accepting those in L and rejecting those not
in L

Seems to match informal definition we wanted before

Definition: Turing-recognizable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes strings in L

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Observation
Every Decidable language is also Turing-recognizable, but the reverse
direction may not be true.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 8 / 28

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on ALL inputs, accepting those in L and rejecting those not
in L

Seems to match informal definition we wanted before

Definition: Turing-recognizable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes strings in L

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Observation
Every Decidable language is also Turing-recognizable, but the reverse
direction may not be true.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 8 / 28

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on ALL inputs, accepting those in L and rejecting those not
in L

Seems to match informal definition we wanted before

Definition: Turing-recognizable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes strings in L

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Observation
Every Decidable language is also Turing-recognizable, but the reverse
direction may not be true.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 8 / 28

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on ALL inputs, accepting those in L and rejecting those not
in L

Seems to match informal definition we wanted before

Definition: Turing-recognizable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes strings in L

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Observation
Every Decidable language is also Turing-recognizable, but the reverse
direction may not be true.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 8 / 28

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on ALL inputs, accepting those in L and rejecting those not
in L

Seems to match informal definition we wanted before

Definition: Turing-recognizable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes strings in L

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Observation
Every Decidable language is also Turing-recognizable, but the reverse
direction may not be true.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 8 / 28

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on ALL inputs, accepting those in L and rejecting those not
in L

Seems to match informal definition we wanted before

Definition: Turing-recognizable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes strings in L

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Observation
Every Decidable language is also Turing-recognizable, but the reverse
direction may not be true.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 8 / 28

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on ALL inputs, accepting those in L and rejecting those not
in L

Seems to match informal definition we wanted before

Definition: Turing-recognizable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes strings in L

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Observation
Every Decidable language is also Turing-recognizable, but the reverse
direction may not be true.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 8 / 28

The Big Question

The Question
Are there problems that are undecidable?

What would this mean:

Such a problem is not solvable by any algorithm

If you believe Church-Turing thesis, it cannot be solved by any
computer

We will see that even relatively natural problems can be undecidable

A Second Question
What about Turing-unrecognizable languages?

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 9 / 28

The Big Question

The Question
Are there problems that are undecidable?

What would this mean:

Such a problem is not solvable by any algorithm

If you believe Church-Turing thesis, it cannot be solved by any
computer

We will see that even relatively natural problems can be undecidable

A Second Question
What about Turing-unrecognizable languages?

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 9 / 28

The Big Question

The Question
Are there problems that are undecidable?

What would this mean:

Such a problem is not solvable by any algorithm

If you believe Church-Turing thesis, it cannot be solved by any
computer

We will see that even relatively natural problems can be undecidable

A Second Question
What about Turing-unrecognizable languages?

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 9 / 28

The Big Question

The Question
Are there problems that are undecidable?

What would this mean:

Such a problem is not solvable by any algorithm

If you believe Church-Turing thesis, it cannot be solved by any
computer

We will see that even relatively natural problems can be undecidable

A Second Question
What about Turing-unrecognizable languages?

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 9 / 28

The Big Question

The Question
Are there problems that are undecidable?

What would this mean:

Such a problem is not solvable by any algorithm

If you believe Church-Turing thesis, it cannot be solved by any
computer

We will see that even relatively natural problems can be undecidable

A Second Question
What about Turing-unrecognizable languages?

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 9 / 28

The Big Question

The Question
Are there problems that are undecidable?

What would this mean:

Such a problem is not solvable by any algorithm

If you believe Church-Turing thesis, it cannot be solved by any
computer

We will see that even relatively natural problems can be undecidable

A Second Question
What about Turing-unrecognizable languages?

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 9 / 28

Outline

1 Lecture 13 Review

2 Specification of a Turing Machine

3 Decidable and Turing-recognizable Languages

4 Languages With Machines as Input

5 Preliminaries – Countable and Uncountable Sets

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 10 / 28

Taking Machines as Input

Recall that we have defined machines as tuples:

1 DFA/NFA M = (Q,⌃, �, q1,F)
2 PDA M = (Q,⌃, �, �, q0,F)
3 TM M = (Q,⌃, �, �, q0, qaccept , qreject)

This means that any such machine can be written down as a finite
length string

So, can give a description of a machine M to another machine M 0

Today, we will talk about TM’s that run another machine M 0

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 11 / 28

Taking Machines as Input

Recall that we have defined machines as tuples:
1 DFA/NFA M = (Q,⌃, �, q1,F)
2 PDA M = (Q,⌃, �, �, q0,F)
3 TM M = (Q,⌃, �, �, q0, qaccept , qreject)

This means that any such machine can be written down as a finite
length string

So, can give a description of a machine M to another machine M 0

Today, we will talk about TM’s that run another machine M 0

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 11 / 28

Taking Machines as Input

Recall that we have defined machines as tuples:
1 DFA/NFA M = (Q,⌃, �, q1,F)
2 PDA M = (Q,⌃, �, �, q0,F)
3 TM M = (Q,⌃, �, �, q0, qaccept , qreject)

This means that any such machine can be written down as a finite
length string

So, can give a description of a machine M to another machine M 0

Today, we will talk about TM’s that run another machine M 0

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 11 / 28

Taking Machines as Input

Recall that we have defined machines as tuples:
1 DFA/NFA M = (Q,⌃, �, q1,F)
2 PDA M = (Q,⌃, �, �, q0,F)
3 TM M = (Q,⌃, �, �, q0, qaccept , qreject)

This means that any such machine can be written down as a finite
length string

So, can give a description of a machine M to another machine M 0

Today, we will talk about TM’s that run another machine M 0

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 11 / 28

Taking Machines as Input

Recall that we have defined machines as tuples:
1 DFA/NFA M = (Q,⌃, �, q1,F)
2 PDA M = (Q,⌃, �, �, q0,F)
3 TM M = (Q,⌃, �, �, q0, qaccept , qreject)

This means that any such machine can be written down as a finite
length string

So, can give a description of a machine M to another machine M 0

Today, we will talk about TM’s that run another machine M 0

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 11 / 28

Problems About Regular Languages

ADFA = {hB ,wi | B is a DFA that accepts input string w}

Algorithm to decide ADFA:
On input hB ,wi

1 Simulate B on input w

2 If simulation ends in an accept, then accept. If it ends in a
non-accepting state, then reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 12 / 28

Problems About Regular Languages

ADFA = {hB ,wi | B is a DFA that accepts input string w}

Algorithm to decide ADFA:
On input hB ,wi

1 Simulate B on input w

2 If simulation ends in an accept, then accept. If it ends in a
non-accepting state, then reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 12 / 28

Problems About Regular Languages

ADFA = {hB ,wi | B is a DFA that accepts input string w}

Algorithm to decide ADFA:
On input hB ,wi

1 Simulate B on input w

2 If simulation ends in an accept, then accept. If it ends in a
non-accepting state, then reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 12 / 28

d
O

C 07 O->

-

⑭
↳

*

Problems About Regular Languages

ADFA = {hB ,wi | B is a DFA that accepts input string w}

Algorithm to decide ADFA:
On input hB ,wi

1 Simulate B on input w

2 If simulation ends in an accept, then accept. If it ends in a
non-accepting state, then reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 12 / 28

Problems About Regular Languages

ANFA = {hB ,wi | B is a NFA that accepts input string w}

Algorithm to decide ANFA:
On input hB ,wi

1 Convert NFA B to equivalent DFA C

2 Run TM from previous slide on input hC ,wi
3 Output what this TM outputs

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 13 / 28

Problems About Regular Languages

ANFA = {hB ,wi | B is a NFA that accepts input string w}

Algorithm to decide ANFA:
On input hB ,wi

1 Convert NFA B to equivalent DFA C

2 Run TM from previous slide on input hC ,wi
3 Output what this TM outputs

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 13 / 28

Problems About Regular Languages

ANFA = {hB ,wi | B is a NFA that accepts input string w}

Algorithm to decide ANFA:
On input hB ,wi

1 Convert NFA B to equivalent DFA C

2 Run TM from previous slide on input hC ,wi
3 Output what this TM outputs

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 13 / 28

Problems About Regular Languages

ANFA = {hB ,wi | B is a NFA that accepts input string w}

Algorithm to decide ANFA:
On input hB ,wi

1 Convert NFA B to equivalent DFA C

2 Run TM from previous slide on input hC ,wi
3 Output what this TM outputs

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 13 / 28

Problems About Regular Languages

AREX = {hR ,wi | R is a reg. exp. that generates the string w}

Algorithm to decide AREX :
On input hR ,wi

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 14 / 28

Problems About Regular Languages

AREX = {hR ,wi | R is a reg. exp. that generates the string w}

Algorithm to decide AREX :
On input hR ,wi

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 14 / 28

1 . Convert R into equivalent

DFA MI

2 .

Run decider
on

M'
,
W

2. Output whatever M' outputs

Problems About Regular Languages

EDFA = {hAi | A is a DFA and L(A) = ;}

Intuition:

Remember, for a DFA to accept some string there must be a path
from the start state to an accept state

We need to figure out if such a path exists

Algorithm to decide EDFA:
On input hAi

1 Mark the start state of A
2 Repeat until no new states get marked:

Mark any state that has an incoming transition from any state already
marked

3 If no accept state is marked, accept, else, reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 15 / 28

Problems About Regular Languages

EDFA = {hAi | A is a DFA and L(A) = ;}

Intuition:

Remember, for a DFA to accept some string there must be a path
from the start state to an accept state

We need to figure out if such a path exists

Algorithm to decide EDFA:
On input hAi

1 Mark the start state of A
2 Repeat until no new states get marked:

Mark any state that has an incoming transition from any state already
marked

3 If no accept state is marked, accept, else, reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 15 / 28

Problems About Regular Languages

EDFA = {hAi | A is a DFA and L(A) = ;}

Intuition:

Remember, for a DFA to accept some string there must be a path
from the start state to an accept state

We need to figure out if such a path exists

Algorithm to decide EDFA:
On input hAi

1 Mark the start state of A
2 Repeat until no new states get marked:

Mark any state that has an incoming transition from any state already
marked

3 If no accept state is marked, accept, else, reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 15 / 28

Problems About Regular Languages

EDFA = {hAi | A is a DFA and L(A) = ;}

Intuition:

Remember, for a DFA to accept some string there must be a path
from the start state to an accept state

We need to figure out if such a path exists

Algorithm to decide EDFA:
On input hAi

1 Mark the start state of A
2 Repeat until no new states get marked:

Mark any state that has an incoming transition from any state already
marked

3 If no accept state is marked, accept, else, reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 15 / 28

Problems About Regular Languages

EDFA = {hAi | A is a DFA and L(A) = ;}

Intuition:

Remember, for a DFA to accept some string there must be a path
from the start state to an accept state

We need to figure out if such a path exists

Algorithm to decide EDFA:
On input hAi

1 Mark the start state of A

2 Repeat until no new states get marked:
Mark any state that has an incoming transition from any state already
marked

3 If no accept state is marked, accept, else, reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 15 / 28

Problems About Regular Languages

EDFA = {hAi | A is a DFA and L(A) = ;}

Intuition:

Remember, for a DFA to accept some string there must be a path
from the start state to an accept state

We need to figure out if such a path exists

Algorithm to decide EDFA:
On input hAi

1 Mark the start state of A
2 Repeat until no new states get marked:

Mark any state that has an incoming transition from any state already
marked

3 If no accept state is marked, accept, else, reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 15 / 28

Xo-ox
O- ->O->Ox

->
->OX

Problems About Regular Languages

EDFA = {hAi | A is a DFA and L(A) = ;}

Intuition:

Remember, for a DFA to accept some string there must be a path
from the start state to an accept state

We need to figure out if such a path exists

Algorithm to decide EDFA:
On input hAi

1 Mark the start state of A
2 Repeat until no new states get marked:

Mark any state that has an incoming transition from any state already
marked

3 If no accept state is marked, accept, else, reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 15 / 28

Problems About Regular Languages

EQDFA = {hA,Bi | A,B are DFAs and L(A) = L(B)}

Intuition:

Construct regular language that is empty if and only if L(A) = L(B)

Since this language is regular, there is a DFA C that decides it

Use TM from previous example on input hC i to decide this language

Constructing L(C):

We need to find all the di↵erences between L(A) and L(B)

Consider all items x 2 L(A) s.t. x /2 L(B)
L(A) \ L(B) = L(A) \ L(B) contains all such items

Need to also consider items in L(B) that are not in L(A)

L(C) =
⇣
L(A) \ L(B)

⌘
[
⇣
L(A) \ L(B)

⌘

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 16 / 28

Problems About Regular Languages

EQDFA = {hA,Bi | A,B are DFAs and L(A) = L(B)}

Intuition:

Construct regular language that is empty if and only if L(A) = L(B)

Since this language is regular, there is a DFA C that decides it

Use TM from previous example on input hC i to decide this language

Constructing L(C):

We need to find all the di↵erences between L(A) and L(B)

Consider all items x 2 L(A) s.t. x /2 L(B)
L(A) \ L(B) = L(A) \ L(B) contains all such items

Need to also consider items in L(B) that are not in L(A)

L(C) =
⇣
L(A) \ L(B)

⌘
[
⇣
L(A) \ L(B)

⌘

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 16 / 28

Problems About Regular Languages

EQDFA = {hA,Bi | A,B are DFAs and L(A) = L(B)}

Intuition:

Construct regular language that is empty if and only if L(A) = L(B)

Since this language is regular, there is a DFA C that decides it

Use TM from previous example on input hC i to decide this language

Constructing L(C):

We need to find all the di↵erences between L(A) and L(B)

Consider all items x 2 L(A) s.t. x /2 L(B)
L(A) \ L(B) = L(A) \ L(B) contains all such items

Need to also consider items in L(B) that are not in L(A)

L(C) =
⇣
L(A) \ L(B)

⌘
[
⇣
L(A) \ L(B)

⌘

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 16 / 28

Problems About Regular Languages

EQDFA = {hA,Bi | A,B are DFAs and L(A) = L(B)}

Intuition:

Construct regular language that is empty if and only if L(A) = L(B)

Since this language is regular, there is a DFA C that decides it

Use TM from previous example on input hC i to decide this language

Constructing L(C):

We need to find all the di↵erences between L(A) and L(B)

Consider all items x 2 L(A) s.t. x /2 L(B)
L(A) \ L(B) = L(A) \ L(B) contains all such items

Need to also consider items in L(B) that are not in L(A)

L(C) =
⇣
L(A) \ L(B)

⌘
[
⇣
L(A) \ L(B)

⌘

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 16 / 28

Problems About Regular Languages

EQDFA = {hA,Bi | A,B are DFAs and L(A) = L(B)}

Intuition:

Construct regular language that is empty if and only if L(A) = L(B)

Since this language is regular, there is a DFA C that decides it

Use TM from previous example on input hC i to decide this language

Constructing L(C):

We need to find all the di↵erences between L(A) and L(B)

Consider all items x 2 L(A) s.t. x /2 L(B)
L(A) \ L(B) = L(A) \ L(B) contains all such items

Need to also consider items in L(B) that are not in L(A)

L(C) =
⇣
L(A) \ L(B)

⌘
[
⇣
L(A) \ L(B)

⌘

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 16 / 28

Problems About Regular Languages

EQDFA = {hA,Bi | A,B are DFAs and L(A) = L(B)}

Intuition:

Construct regular language that is empty if and only if L(A) = L(B)

Since this language is regular, there is a DFA C that decides it

Use TM from previous example on input hC i to decide this language

Constructing L(C):

We need to find all the di↵erences between L(A) and L(B)

Consider all items x 2 L(A) s.t. x /2 L(B)

L(A) \ L(B) = L(A) \ L(B) contains all such items

Need to also consider items in L(B) that are not in L(A)

L(C) =
⇣
L(A) \ L(B)

⌘
[
⇣
L(A) \ L(B)

⌘

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 16 / 28

Problems About Regular Languages

EQDFA = {hA,Bi | A,B are DFAs and L(A) = L(B)}

Intuition:

Construct regular language that is empty if and only if L(A) = L(B)

Since this language is regular, there is a DFA C that decides it

Use TM from previous example on input hC i to decide this language

Constructing L(C):

We need to find all the di↵erences between L(A) and L(B)

Consider all items x 2 L(A) s.t. x /2 L(B)
L(A) \ L(B) = L(A) \ L(B) contains all such items

Need to also consider items in L(B) that are not in L(A)

L(C) =
⇣
L(A) \ L(B)

⌘
[
⇣
L(A) \ L(B)

⌘

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 16 / 28

Problems About Regular Languages

EQDFA = {hA,Bi | A,B are DFAs and L(A) = L(B)}

Intuition:

Construct regular language that is empty if and only if L(A) = L(B)

Since this language is regular, there is a DFA C that decides it

Use TM from previous example on input hC i to decide this language

Constructing L(C):

We need to find all the di↵erences between L(A) and L(B)

Consider all items x 2 L(A) s.t. x /2 L(B)
L(A) \ L(B) = L(A) \ L(B) contains all such items

Need to also consider items in L(B) that are not in L(A)

L(C) =
⇣
L(A) \ L(B)

⌘
[
⇣
L(A) \ L(B)

⌘

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 16 / 28

Problems About Regular Languages

EQDFA = {hA,Bi | A,B are DFAs and L(A) = L(B)}

Intuition:

Construct regular language that is empty if and only if L(A) = L(B)

Since this language is regular, there is a DFA C that decides it

Use TM from previous example on input hC i to decide this language

Constructing L(C):

We need to find all the di↵erences between L(A) and L(B)

Consider all items x 2 L(A) s.t. x /2 L(B)
L(A) \ L(B) = L(A) \ L(B) contains all such items

Need to also consider items in L(B) that are not in L(A)

L(C) =
⇣
L(A) \ L(B)

⌘
[
⇣
L(A) \ L(B)

⌘

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 16 / 28

Problems About Context-Free Languages

ACFG = {hG ,wi | G is a CFG that generates w}

Try 1:

Every CFG has an equivalent PDA

Use a TM to run the PDA (easy to simulate stack using TM’s tape)

But, there is a problem:

A PDA may have some branches that go on forever – keep pushing
and popping things on the stack

This would mean that on such an input the resulting TM would not
halt – i.e., not be a decider

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 17 / 28

Problems About Context-Free Languages

ACFG = {hG ,wi | G is a CFG that generates w}

Try 1:

Every CFG has an equivalent PDA

Use a TM to run the PDA (easy to simulate stack using TM’s tape)

But, there is a problem:

A PDA may have some branches that go on forever – keep pushing
and popping things on the stack

This would mean that on such an input the resulting TM would not
halt – i.e., not be a decider

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 17 / 28

Problems About Context-Free Languages

ACFG = {hG ,wi | G is a CFG that generates w}

Try 1:

Every CFG has an equivalent PDA

Use a TM to run the PDA (easy to simulate stack using TM’s tape)

But, there is a problem:

A PDA may have some branches that go on forever – keep pushing
and popping things on the stack

This would mean that on such an input the resulting TM would not
halt – i.e., not be a decider

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 17 / 28

Problems About Context-Free Languages

ACFG = {hG ,wi | G is a CFG that generates w}

Try 1:

Every CFG has an equivalent PDA

Use a TM to run the PDA (easy to simulate stack using TM’s tape)

But, there is a problem:

A PDA may have some branches that go on forever – keep pushing
and popping things on the stack

This would mean that on such an input the resulting TM would not
halt – i.e., not be a decider

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 17 / 28

Problems About Context-Free Languages

LCFG = {hG ,wi | G is a CFG that generates w}

Try 2:

Fortunately, when given a CFG in a certain form (Chomsky Normal
Form), can prove that any derivation of w 2 L(G) has at most
2|w |� 1 steps

Moreover, any CFG can be converted into Chomsky Normal Form

Use a TM to list all derivations with 2|w |� 1 steps
Can do this in finite time, since grammar is finite

If any of these derivations produce w , accept. Otherwise, reject.

Corollary

Every CFL is decidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 18 / 28

Problems About Context-Free Languages

LCFG = {hG ,wi | G is a CFG that generates w}

Try 2:

Fortunately, when given a CFG in a certain form (Chomsky Normal
Form), can prove that any derivation of w 2 L(G) has at most
2|w |� 1 steps

Moreover, any CFG can be converted into Chomsky Normal Form

Use a TM to list all derivations with 2|w |� 1 steps
Can do this in finite time, since grammar is finite

If any of these derivations produce w , accept. Otherwise, reject.

Corollary

Every CFL is decidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 18 / 28

Problems About Context-Free Languages

LCFG = {hG ,wi | G is a CFG that generates w}

Try 2:

Fortunately, when given a CFG in a certain form (Chomsky Normal
Form), can prove that any derivation of w 2 L(G) has at most
2|w |� 1 steps

Moreover, any CFG can be converted into Chomsky Normal Form

Use a TM to list all derivations with 2|w |� 1 steps
Can do this in finite time, since grammar is finite

If any of these derivations produce w , accept. Otherwise, reject.

Corollary

Every CFL is decidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 18 / 28

Problems About Context-Free Languages

LCFG = {hG ,wi | G is a CFG that generates w}

Try 2:

Fortunately, when given a CFG in a certain form (Chomsky Normal
Form), can prove that any derivation of w 2 L(G) has at most
2|w |� 1 steps

Moreover, any CFG can be converted into Chomsky Normal Form

Use a TM to list all derivations with 2|w |� 1 steps
Can do this in finite time, since grammar is finite

If any of these derivations produce w , accept. Otherwise, reject.

Corollary

Every CFL is decidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 18 / 28

Problems About Context-Free Languages

LCFG = {hG ,wi | G is a CFG that generates w}

Try 2:

Fortunately, when given a CFG in a certain form (Chomsky Normal
Form), can prove that any derivation of w 2 L(G) has at most
2|w |� 1 steps

Moreover, any CFG can be converted into Chomsky Normal Form

Use a TM to list all derivations with 2|w |� 1 steps
Can do this in finite time, since grammar is finite

If any of these derivations produce w , accept. Otherwise, reject.

Corollary

Every CFL is decidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 18 / 28

Problems About Context-Free Languages

ECFG = {hG i | G is a CFG and L(G) = ;}

Intuition:

Need to test if the start variable can ever generate a string of all
terminals

Idea: For each variable determine if it can be converted to terminals

Keep track of which variables can do so, and see if it includes the
start variable

On input hG i
1 Mark all terminals in G
2 Repeat until no new variable gets marked:

Mark any variable A where G has a rule A ! U1U2 · · ·Uk and each
symbol U1,U2, . . . ,Uk has already been marked

3 If starts symbol is not marked, accept. Otherwise, reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 19 / 28

Problems About Context-Free Languages

ECFG = {hG i | G is a CFG and L(G) = ;}

Intuition:

Need to test if the start variable can ever generate a string of all
terminals

Idea: For each variable determine if it can be converted to terminals

Keep track of which variables can do so, and see if it includes the
start variable

On input hG i
1 Mark all terminals in G
2 Repeat until no new variable gets marked:

Mark any variable A where G has a rule A ! U1U2 · · ·Uk and each
symbol U1,U2, . . . ,Uk has already been marked

3 If starts symbol is not marked, accept. Otherwise, reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 19 / 28

Problems About Context-Free Languages

ECFG = {hG i | G is a CFG and L(G) = ;}

Intuition:

Need to test if the start variable can ever generate a string of all
terminals

Idea: For each variable determine if it can be converted to terminals

Keep track of which variables can do so, and see if it includes the
start variable

On input hG i
1 Mark all terminals in G
2 Repeat until no new variable gets marked:

Mark any variable A where G has a rule A ! U1U2 · · ·Uk and each
symbol U1,U2, . . . ,Uk has already been marked

3 If starts symbol is not marked, accept. Otherwise, reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 19 / 28

Problems About Context-Free Languages

ECFG = {hG i | G is a CFG and L(G) = ;}

Intuition:

Need to test if the start variable can ever generate a string of all
terminals

Idea: For each variable determine if it can be converted to terminals

Keep track of which variables can do so, and see if it includes the
start variable

On input hG i
1 Mark all terminals in G
2 Repeat until no new variable gets marked:

Mark any variable A where G has a rule A ! U1U2 · · ·Uk and each
symbol U1,U2, . . . ,Uk has already been marked

3 If starts symbol is not marked, accept. Otherwise, reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 19 / 28

Problems About Context-Free Languages

ECFG = {hG i | G is a CFG and L(G) = ;}

Intuition:

Need to test if the start variable can ever generate a string of all
terminals

Idea: For each variable determine if it can be converted to terminals

Keep track of which variables can do so, and see if it includes the
start variable

On input hG i

1 Mark all terminals in G
2 Repeat until no new variable gets marked:

Mark any variable A where G has a rule A ! U1U2 · · ·Uk and each
symbol U1,U2, . . . ,Uk has already been marked

3 If starts symbol is not marked, accept. Otherwise, reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 19 / 28

Problems About Context-Free Languages

ECFG = {hG i | G is a CFG and L(G) = ;}

Intuition:

Need to test if the start variable can ever generate a string of all
terminals

Idea: For each variable determine if it can be converted to terminals

Keep track of which variables can do so, and see if it includes the
start variable

On input hG i
1 Mark all terminals in G

2 Repeat until no new variable gets marked:
Mark any variable A where G has a rule A ! U1U2 · · ·Uk and each
symbol U1,U2, . . . ,Uk has already been marked

3 If starts symbol is not marked, accept. Otherwise, reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 19 / 28

Problems About Context-Free Languages

ECFG = {hG i | G is a CFG and L(G) = ;}

Intuition:

Need to test if the start variable can ever generate a string of all
terminals

Idea: For each variable determine if it can be converted to terminals

Keep track of which variables can do so, and see if it includes the
start variable

On input hG i
1 Mark all terminals in G
2 Repeat until no new variable gets marked:

Mark any variable A where G has a rule A ! U1U2 · · ·Uk and each
symbol U1,U2, . . . ,Uk has already been marked

3 If starts symbol is not marked, accept. Otherwise, reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 19 / 28

Problems About Context-Free Languages

ECFG = {hG i | G is a CFG and L(G) = ;}

Intuition:

Need to test if the start variable can ever generate a string of all
terminals

Idea: For each variable determine if it can be converted to terminals

Keep track of which variables can do so, and see if it includes the
start variable

On input hG i
1 Mark all terminals in G
2 Repeat until no new variable gets marked:

Mark any variable A where G has a rule A ! U1U2 · · ·Uk and each
symbol U1,U2, . . . ,Uk has already been marked

3 If starts symbol is not marked, accept. Otherwise, reject
Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 19 / 28

Problems About Turing Machines

ATM = {hM,wi | M is a TM and M(w) = 1}

Is ATM Turing-recognizable?
On input hM,wi:

1 Simulate M on input w
2 If M ever enters its accept state, halt and accept. If M ever enters its

reject state, halt and reject
The Problem:

M may never halt
In this case, above algorithm will never output accept or reject
If could determine that M will never halt (i.e, it has entered an
infinite loop), could reject.

The HALTING Problem
This is known as the HALTING problem

We will prove that it is undecidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 20 / 28

Problems About Turing Machines

ATM = {hM,wi | M is a TM and M(w) = 1}
Is ATM Turing-recognizable?

On input hM,wi:
1 Simulate M on input w
2 If M ever enters its accept state, halt and accept. If M ever enters its

reject state, halt and reject
The Problem:

M may never halt
In this case, above algorithm will never output accept or reject
If could determine that M will never halt (i.e, it has entered an
infinite loop), could reject.

The HALTING Problem
This is known as the HALTING problem

We will prove that it is undecidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 20 / 28

Problems About Turing Machines

ATM = {hM,wi | M is a TM and M(w) = 1}
Is ATM Turing-recognizable?
On input hM,wi:

1 Simulate M on input w
2 If M ever enters its accept state, halt and accept. If M ever enters its

reject state, halt and reject
The Problem:

M may never halt
In this case, above algorithm will never output accept or reject
If could determine that M will never halt (i.e, it has entered an
infinite loop), could reject.

The HALTING Problem
This is known as the HALTING problem

We will prove that it is undecidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 20 / 28

Problems About Turing Machines

ATM = {hM,wi | M is a TM and M(w) = 1}
Is ATM Turing-recognizable?
On input hM,wi:

1 Simulate M on input w

2 If M ever enters its accept state, halt and accept. If M ever enters its
reject state, halt and reject

The Problem:
M may never halt
In this case, above algorithm will never output accept or reject
If could determine that M will never halt (i.e, it has entered an
infinite loop), could reject.

The HALTING Problem
This is known as the HALTING problem

We will prove that it is undecidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 20 / 28

Problems About Turing Machines

ATM = {hM,wi | M is a TM and M(w) = 1}
Is ATM Turing-recognizable?
On input hM,wi:

1 Simulate M on input w
2 If M ever enters its accept state, halt and accept. If M ever enters its

reject state, halt and reject

The Problem:
M may never halt
In this case, above algorithm will never output accept or reject
If could determine that M will never halt (i.e, it has entered an
infinite loop), could reject.

The HALTING Problem
This is known as the HALTING problem

We will prove that it is undecidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 20 / 28

Problems About Turing Machines

ATM = {hM,wi | M is a TM and M(w) = 1}
Is ATM Turing-recognizable?
On input hM,wi:

1 Simulate M on input w
2 If M ever enters its accept state, halt and accept. If M ever enters its

reject state, halt and reject
The Problem:

M may never halt
In this case, above algorithm will never output accept or reject
If could determine that M will never halt (i.e, it has entered an
infinite loop), could reject.

The HALTING Problem
This is known as the HALTING problem

We will prove that it is undecidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 20 / 28

Problems About Turing Machines

ATM = {hM,wi | M is a TM and M(w) = 1}
Is ATM Turing-recognizable?
On input hM,wi:

1 Simulate M on input w
2 If M ever enters its accept state, halt and accept. If M ever enters its

reject state, halt and reject
The Problem:

M may never halt

In this case, above algorithm will never output accept or reject
If could determine that M will never halt (i.e, it has entered an
infinite loop), could reject.

The HALTING Problem
This is known as the HALTING problem

We will prove that it is undecidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 20 / 28

Problems About Turing Machines

ATM = {hM,wi | M is a TM and M(w) = 1}
Is ATM Turing-recognizable?
On input hM,wi:

1 Simulate M on input w
2 If M ever enters its accept state, halt and accept. If M ever enters its

reject state, halt and reject
The Problem:

M may never halt
In this case, above algorithm will never output accept or reject

If could determine that M will never halt (i.e, it has entered an
infinite loop), could reject.

The HALTING Problem
This is known as the HALTING problem

We will prove that it is undecidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 20 / 28

Problems About Turing Machines

ATM = {hM,wi | M is a TM and M(w) = 1}
Is ATM Turing-recognizable?
On input hM,wi:

1 Simulate M on input w
2 If M ever enters its accept state, halt and accept. If M ever enters its

reject state, halt and reject
The Problem:

M may never halt
In this case, above algorithm will never output accept or reject
If could determine that M will never halt (i.e, it has entered an
infinite loop), could reject.

The HALTING Problem
This is known as the HALTING problem

We will prove that it is undecidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 20 / 28

Problems About Turing Machines

ATM = {hM,wi | M is a TM and M(w) = 1}
Is ATM Turing-recognizable?
On input hM,wi:

1 Simulate M on input w
2 If M ever enters its accept state, halt and accept. If M ever enters its

reject state, halt and reject
The Problem:

M may never halt
In this case, above algorithm will never output accept or reject
If could determine that M will never halt (i.e, it has entered an
infinite loop), could reject.

The HALTING Problem
This is known as the HALTING problem

We will prove that it is undecidable
Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 20 / 28

Relationships Among Language Classes

Turing-recognizableDecidableContext-freeRegular

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 5, 2024 21 / 28

