Foundations of Computing Lecture 15

Arkady Yerukhimovich

March 7, 2024

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

March 7, 2024

3)) J

1 Lecture 14 Review

- 2 Review: Decidable Languages
- 3 Preliminaries Countable and Uncountable Sets
- Proving A_{TM} Undecidable
- 6 Reductions between Languages

- Decidable and Turing-recognizable languages
- Decidability of regular and context-free languages

1 Lecture 14 Review

3 Preliminaries – Countable and Uncountable Sets

Proving A_{TM} Undecidable

5 Reductions between Languages

Characterizing Computability of Languages

Definition: Decidable languages

A language L is *decidable* or *recursive* if some TM M decides it

- M halts on ALL inputs, accepts those in L and rejects those not in L
- Seems to match informal definition we wanted before

Definition: Turing-recognizable languages

A language L is *Turing-recognizable* or *recursively enumerable* if some TM M recognizes it

- *M* halts and accepts all strings in *L*
- M may not halt on strings not in L does not necessarily have to reject

Observation

Every Decidable language is also Turing-recognizable, but the reverse direction is not true.

Arkady Yerukhimovich

Decidable Languages

We showed the following languages are decidable:

• Languages about Finite Automata

- 2 $A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is a NFA that accepts input string } w \}$
- $A_{REX} = \{ \langle R, w \rangle \mid R \text{ is a reg. exp. that generates the string } w \}$

•
$$E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$$

Languages about CFGs

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

< □ > < 同 >

æ

∃ →

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

- Observation: A_{TM} is Turing-recognizable On input (M, w):
 - Simulate *M* on input *w*
 - If M ever enters its accept state, halt and accept. If M ever enters its reject state, halt and reject

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Observation: A_{TM} is Turing-recognizable On input (M, w):

- Simulate *M* on input *w*
- If M ever enters its accept state, halt and accept. If M ever enters its reject state, halt and reject
- Is A_{TM} Decidable?
 - The problem: *M* may never halt
 - In this case, above algorithm will never output accept or reject
 - If could determine that *M* will never halt (i.e, it has entered an infinite loop), could reject.

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Observation: A_{TM} is Turing-recognizable On input (M, w):

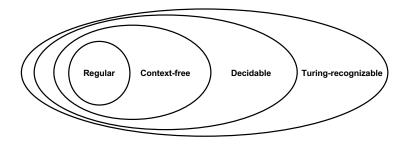
- Simulate *M* on input *w*
- If M ever enters its accept state, halt and accept. If M ever enters its reject state, halt and reject
- Is A_{TM} Decidable?
 - The problem: *M* may never halt
 - In this case, above algorithm will never output accept or reject
 - If could determine that *M* will never halt (i.e, it has entered an infinite loop), could reject.

An Undecidable Problem

• We will prove today that A_{TM} is undecidable

March 7, 2024

Relationships Among Language Classes



1 Lecture 14 Review

2 Review: Decidable Languages

3 Preliminaries – Countable and Uncountable Sets

- Proving A_{TM} Undecidable
- 5 Reductions between Languages

• Cardinality of a set S is the number of elements in that set (|S|)

< 47 ▶

3 N 3

- Cardinality of a set S is the number of elements in that set (|S|)
- A set S can be finite $(|S| < \infty)$ or infinite $(|S| = \infty)$

- Cardinality of a set S is the number of elements in that set (|S|)
- A set S can be finite $(|S| < \infty)$ or infinite $(|S| = \infty)$
- $\bullet \ |S_1| = |S_2|$ if there's a one-to-one and onto mapping from S_1 to S_2

э

- Cardinality of a set S is the number of elements in that set (|S|)
- A set S can be finite $(|S| < \infty)$ or infinite $(|S| = \infty)$
- $\bullet \ |S_1| = |S_2|$ if there's a one-to-one and onto mapping from S_1 to S_2
- Example:

$$A = \{0, 1, 2, 3\}$$

$$B = \{a, b, c, d\}$$

$$f(0) = a, f(1) = b, f(2) = c, f(3) = d$$

э

• An infinite set A is *countably infinite* if it has the same cardinality as the natural numbers: $\mathcal{N} = 1, 2, 3, \dots$

- An infinite set A is *countably infinite* if it has the same cardinality as the natural numbers: $\mathcal{N} = 1, 2, 3, \dots$
- A set A is countable if it is finite or countably infinite

- An infinite set A is *countably infinite* if it has the same cardinality as the natural numbers: $\mathcal{N} = 1, 2, 3, \dots$
- A set A is countable if it is finite or countably infinite
- A set that is not countable is uncountable

Example 1: Evens

Evens

The set of even numbers is

→ ∃ →

æ

Evens

The set of even numbers iscountable

Arkady Yerukhimovich

< A >

< ∃⇒

æ

Example 2: Rationals

Rationals

The set of rational numbers is

< 1 k

문 🛌 🖻

Example 2: Rationals

Rationals

The set of rational numbers is countable

< 4 ₽ >

æ

< ∃⇒

Rationals

The set of rational numbers is countable

문 문 문

Example 3: Strings

Strings

The set of strings in $\{0,1\}^*$ is

æ

★ ∃ >

Example 3: Strings

Strings

The set of strings in $\{0,1\}^*$ is countable

< 1 k

문 🛌 🖻

The set of real numbers (\mathcal{R}) is uncountable

문 문 문

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

Arkady Yerukhimovich

э

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

• Assume that $\mathcal R$ is countable

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- Assume that $\mathcal R$ is countable
- Then there is a one-to-one and onto mapping f from ${\mathcal N}$ to ${\mathcal R}$

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- Assume that $\mathcal R$ is countable
- \bullet Then there is a one-to-one and onto mapping f from ${\cal N}$ to ${\cal R}$

$$\begin{array}{c|cccc} n & f(n) \\ \hline 1 & 1.234... \\ 2 & 3.141... \\ 3 & 5.556... \\ \vdots & \vdots \end{array}$$

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- Assume that $\mathcal R$ is countable
- Then there is a one-to-one and onto mapping f from ${\mathcal N}$ to ${\mathcal R}$

$$\begin{array}{c|c} n & f(n) \\\hline 1 & 1 & 234... \\2 & 3.041... \\3 & 5.556... \\\vdots & \vdots \\\vdots \\ \end{array}$$

We construct a value $x \in \mathcal{R}$ s.t $x \neq f(n)$ for any n
Idea: For all $i \in \mathcal{N}$, make $x_i \neq f(i)_i$

The set of real numbers (\mathcal{R}) is uncountable

Proof: By diagonalization

- Assume that $\mathcal R$ is countable
- Then there is a one-to-one and onto mapping f from $\mathcal N$ to $\mathcal R$

- We construct a value $x \in \mathcal{R}$ s.t $x \neq f(n)$ for any nIdea: For all $i \in \mathcal{N}$, make $x_i \neq f(i)_i$
- Contradiction f is not mapping between $\mathcal R$ and $\mathcal N$

1 Lecture 14 Review

2 Review: Decidable Languages

3 Preliminaries – Countable and Uncountable Sets

- Proving A_{TM} Undecidable
- 5 Reductions between Languages

The Set of Turing Machines

Turing Machines

The set of all Turing Machines is

∃⊳

The Set of Turing Machines

Turing Machines

The Set of Turing Machines

Turing Machines

The set of all Turing Machines is countable

 \bullet We already showed that the set of strings $\{0,1\}^*$ is countable

Turing Machines

- \bullet We already showed that the set of strings $\{0,1\}^*$ is countable
- Can similarly show that for any finite alphabet Σ , Σ^* is countable

Turing Machines

- \bullet We already showed that the set of strings $\{0,1\}^*$ is countable
- Can similarly show that for any finite alphabet Σ , Σ^* is countable
- But, a TM M can be written as a string $\langle M
 angle \in \Sigma^*$

Turing Machines

- We already showed that the set of strings $\{0,1\}^*$ is countable
- Can similarly show that for any finite alphabet $\Sigma,\,\Sigma^*$ is countable
- But, a TM M can be written as a string $\langle M
 angle \in \Sigma^*$
- \bullet Hence, by omitting all strings that are not encodings of valid TMs we get a mapping of TMs to ${\cal N}$

The Set of Languages

Languages over alphabet Σ

 $\mathcal L$ – the set of all languages over alphabet Σ is

$\mathcal L$ – the set of all languages over alphabet Σ is uncountable

 $\mathcal L$ – the set of all languages over alphabet Σ is uncountable

- - An infinite binary sequence is an infinite length string of 0's and 1's

 $\mathcal L$ – the set of all languages over alphabet Σ is uncountable

- Consider the set B of infinite binary sequences
 - An infinite binary sequence is an infinite length string of 0's and 1's
 - B is uncountable

Assume
$$f(x) = \frac{f(x)}{1 0 0 0}$$

 $f(x) = \frac{1}{1 0 0 0}$
 $\frac{1}{1 0 0 0}$
 $\frac{1}{1 0 0 0}$

 $\mathcal L$ – the set of all languages over alphabet Σ is uncountable

- Consider the set B of infinite binary sequences
 - An infinite binary sequence is an infinite length string of 0's and 1's
 - B is uncountable
- **2** $|\mathcal{L}| = |B|$

 $\mathcal L$ – the set of all languages over alphabet Σ is uncountable

- Consider the set B of infinite binary sequences
 - An infinite binary sequence is an infinite length string of 0's and 1's
 - B is uncountable
- **2** $|\mathcal{L}| = |B|$
 - Define the characteristic sequence χ_A of language $A \in \mathcal{L}$

$$\begin{split} \Sigma^* &= \{ \ \epsilon \ 0 \ 1 \ 00 \ 01 \ 11 \ 000 \ \cdots \ \} \\ A &= \{ \ 1 \ 00 \ 0 \ 1 \ 1 \ 000 \ \cdots \ \} \\ \chi_A &= \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ \cdots \end{split}$$

 $\mathcal L$ – the set of all languages over alphabet Σ is uncountable

Proof:

- Consider the set B of infinite binary sequences
 - An infinite binary sequence is an infinite length string of 0's and 1's
 - B is uncountable
- $|\mathcal{L}| = |B|$
 - Define the characteristic sequence χ_A of language $A \in \mathcal{L}$

Σ^*	=	{	ϵ	0	1	00	01	11	000	• • •	}
Α	=	{			1	00			000	• • •	}
χ_A	=		0	0	1	1	0	0	1	• • •	

• This is a one-to-one and onto mapping from $\mathcal L$ to B, so $|\mathcal L| = |B|$

 $\mathcal L$ – the set of all languages over alphabet Σ is uncountable

Proof:

- Consider the set B of infinite binary sequences
 - An infinite binary sequence is an infinite length string of 0's and 1's
 - B is uncountable
- $|\mathcal{L}| = |B|$
 - Define the characteristic sequence $\chi_{\mathcal{A}}$ of language $\mathcal{A} \in \mathcal{L}$

Σ^*	=	{	ϵ	0	1	00	01	11	000	•••	}
Α	=	{			1	00			000	•••	}
χ_A	=		0	0	1	1	0	0	1	• • •	

This is a one-to-one and onto mapping from L to B, so |L| = |B|
Therefore, L is uncountable

Some Languages are not Turing-recognizable

We have proven:

- The set of Turing Machines is countable
- The set of languages is uncountable

Some Languages are not Turing-recognizable

We have proven:

- The set of Turing Machines is countable
- 2 The set of languages is uncountable

Therefore:

- The set of Turing Machines is countable
- The set of languages is uncountable

Therefore:

• There is no one-to-one and onto mapping from languages to Turing Machines

- The set of Turing Machines is countable
- 2 The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines
- Thus, there exist languages that have no corresponding TM that recognizes them

- The set of Turing Machines is countable
- 2 The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines
- Thus, there exist languages that have no corresponding TM that recognizes them
- Note, that such languages are also undecidable

Where are we now?

- The set of Turing Machines is countable
- 2 The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines
- Thus, there exist languages that have no corresponding TM that recognizes them
- Note, that such languages are also undecidable

Where are we now?

• We have proven that some languages are not Turing-recognizable

- The set of Turing Machines is countable
- 2 The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines
- Thus, there exist languages that have no corresponding TM that recognizes them
- Note, that such languages are also undecidable

Where are we now?

- We have proven that some languages are not Turing-recognizable
- But, we have not given any examples of such a language

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

→ < ∃ →</p>

• • • • • • • •

3

A_{TM} is Undecidable

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

Arkady Yerukhimovich

Image: A matched black

2

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that A_{TM} is decided by a TM H

$$H(\langle \underline{M}, \underline{w} \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

< 行

э

∃ >

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that A_{TM} is decided by a TM H

$$H(\langle M, w \rangle) = \left\{ egin{array}{ll} {accept} & {
m if} \ M \ {
m accepts} \ w \ reject & {
m if} \ M \ {
m does} \ {
m not} \ {
m accept} \ w \end{array}
ight.$$

• Use *H* to build the following TM *D*:

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that A_{TM} is decided by a TM H

$$H(\langle M, w \rangle) = \left\{ egin{array}{ll} {accept} & {
m if} \ M \ {
m accepts} \ w \ reject & {
m if} \ M \ {
m does} \ {
m not} \ {
m accept} \ w \end{array}
ight.$$

- Use *H* to build the following TM *D*: On Input ⟨*M*⟩, where *M* is a TM
 - **1** Run *H* on input $\langle M, \langle M \rangle \rangle$
 - 2 Output the opposite of what H outputs

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that A_{TM} is decided by a TM H

$$H(\langle M,w
angle)=\left\{egin{array}{ll} {accept} & ext{if }M ext{ accepts }w \ reject & ext{if }M ext{ does not accept }w \end{array}
ight.$$

• Use *H* to build the following TM *D*: On Input $\langle M \rangle$, where *M* is a TM

1 Run *H* on input $\langle M, \langle M \rangle \rangle$

Output the opposite of what H outputs

 $D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$

A_{TM} is Undecidable

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

Assume that A_{TM} is decided by a TM H

- Use H to build the following TM D: On Input $\langle M \rangle$, where M is a TM
 - **1** Run *H* on input $\langle M, \langle M \rangle \rangle$
 - Output the opposite of what H outputs

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

• Now consider what happens if we run D on $\langle D \rangle$

$$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$$

Contradiction!

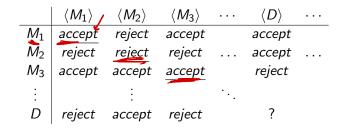
Arkady Yerukhimovich

Arkady Yerukhimovich

< ∃⇒

Image: A matched black

æ



• We have defined D to do the opposite of what M_i does on input $\langle M_i \rangle$

But what does D do on input (D)??

A Turing-unrecognizable Language

The language

$$\overline{\mathbf{A}_{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) \neq 1 \}$$

is not Turing-recognizable

э

1 Lecture 14 Review

- 2 Review: Decidable Languages
- 3 Preliminaries Countable and Uncountable Sets
- Proving A_{TM} Undecidable
- 5 Reductions between Languages

Another Way to Prove Undecidability

Reductions Between Problems

3 N 3

March 7, 2024

Another Way to Prove Undecidability

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

 $A \leq B$

Another Way to Prove Undecidability

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

 $A \leq B$

Examples:

() Finding area of a rectangle \leq Finding its length and width

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

 $A \leq B$

Examples:

- $\textbf{ I Finding area of a rectangle} \leq \textbf{ Finding its length and width }$
- **②** Finding temperature outside \leq Reading a thermometer

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

 $A \leq B$

Examples:

 $\textbf{0} \ \ \text{Finding area of a rectangle} \leq \text{Finding its length and width}$

2 Finding temperature outside \leq Reading a thermometer

Observations:

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$A \leq B$

Examples:

- $\textbf{ I Finding area of a rectangle} \leq \textbf{ Finding its length and width }$
- **②** Finding temperature outside \leq Reading a thermometer

Observations:

• Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$A \leq B$

Examples:

- $\textbf{0} \ \ \text{Finding area of a rectangle} \leq \text{Finding its length and width}$
- **②** Finding temperature outside \leq Reading a thermometer

Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$A \leq B$

Examples:

- **(**) Finding area of a rectangle \leq Finding its length and width
- **②** Finding temperature outside \leq Reading a thermometer

Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works

Intuition

 $A \leq B$ means that:

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$A \leq B$

Examples:

- $\textbf{0} \ \ \text{Finding area of a rectangle} \leq \text{Finding its length and width}$
- **②** Finding temperature outside \leq Reading a thermometer

Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works

Intuition

 $A \leq B$ means that:

• problem A is no harder than problem B.

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$A \leq B$

Examples:

- $\textbf{ § Finding area of a rectangle} \leq \textbf{ Finding its length and width}$
- **②** Finding temperature outside \leq Reading a thermometer

Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works

Intuition

- $A \leq B$ means that:
 - problem A is no harder than problem B.
 - Equivalently, problem B is no easier than problem A

Arkady Yerukhimovich

Suppose that $A \leq B$, then:

э

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

Arkady Yerukhimovich

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

• Suppose that *B* is decidable

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

- Suppose that *B* is decidable
- Since A ≤ B, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

- Suppose that *B* is decidable
- Since A ≤ B, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A
- But, this means that A is decidable by running the machine for B as needed by the reduction

Undecidability of HALT

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

→

æ

Theorem: HALT is undecidable

< 4[™] ▶

3. 3

Theorem: *HALT* is undecidable Proof Sketch:

• We show that $A_{TM} \leq HALT$

э

Theorem: *HALT* is undecidable Proof Sketch:

- We show that $A_{TM} \leq HALT$
- Since we know that A_{TM} is undecidable, this shows that HALT is also undecidable

Theorem: *HALT* is undecidable Proof Sketch:

- We show that $A_{TM} \leq HALT$
- Since we know that A_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

Construct algorithm S that decides A_{TM} given a TM R that decides HALT

Theorem: *HALT* is undecidable Proof Sketch:

- We show that $A_{TM} \leq HALT$
- Since we know that A_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

Theorem: *HALT* is undecidable Proof Sketch:

- We show that $A_{TM} \leq HALT$
- Since we know that A_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

Construct algorithm S that decides A_{TM} given a TM R that decides HALT On input $\langle M, w \rangle$, S does the following:

• Run $R(\langle M, w \rangle)$

Theorem: *HALT* is undecidable Proof Sketch:

- We show that $A_{TM} \leq HALT$
- Since we know that A_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

- Run $R(\langle M, w \rangle)$
- If R rejects M(w) doesn't halt halt and reject

Theorem: *HALT* is undecidable Proof Sketch:

- We show that $A_{TM} \leq HALT$
- Since we know that A_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

- Run $R(\langle M, w \rangle)$
- If R rejects -M(w) doesn't halt halt and reject
- if R accepts M(w) halts Simulate M(w) until it halts

Theorem: *HALT* is undecidable Proof Sketch:

- We show that $A_{TM} \leq HALT$
- Since we know that A_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

- Run $R(\langle M, w \rangle)$
- If R rejects M(w) doesn't halt halt and reject
- if R accepts M(w) halts Simulate M(w) until it halts
- Output whatever M output