
Foundations of Computing
Lecture 15

Arkady Yerukhimovich

March 7, 2024

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 1 / 26

Outline

1 Lecture 14 Review

2 Review: Decidable Languages

3 Preliminaries – Countable and Uncountable Sets

4 Proving ATM Undecidable

5 Reductions between Languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 2 / 26

Lecture 14 Review

Decidable and Turing-recognizable languages

Decidability of regular and context-free languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 3 / 26

Outline

1 Lecture 14 Review

2 Review: Decidable Languages

3 Preliminaries – Countable and Uncountable Sets

4 Proving ATM Undecidable

5 Reductions between Languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 4 / 26

Characterizing Computability of Languages

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on ALL inputs, accepts those in L and rejects those not in L

Seems to match informal definition we wanted before

Definition: Turing-recognizable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Observation
Every Decidable language is also Turing-recognizable, but the reverse
direction is not true.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 5 / 26

Decidable Languages

We showed the following languages are decidable:

Languages about Finite Automata
1 ADFA = {hB ,wi | B is a DFA that accepts input string w}
2 ANFA = {hB ,wi | B is a NFA that accepts input string w}
3 AREX = {hR ,wi | R is a reg. exp. that generates the string w}
4 EDFA = {hAi | A is a DFA and L(A) = ;}
5 EQDFA = {hA,Bi | A,B are DFAs and L(A) = L(B)}

Languages about CFGs
1 ACFG = {hG ,wi | G is a CFG that generates w}
2 ECFG = {hG i | G is a CFG and L(G) = ;}

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 6 / 26

A Language About Turing Machines

ATM = {hM,wi | M is a TM and M(w) = 1}

Observation: ATM is Turing-recognizable
On input hM,wi:

1 Simulate M on input w
2 If M ever enters its accept state, halt and accept. If M ever enters its

reject state, halt and reject

Is ATM Decidable?
The problem: M may never halt
In this case, above algorithm will never output accept or reject
If could determine that M will never halt (i.e, it has entered an infinite
loop), could reject.

An Undecidable Problem
We will prove today that ATM is undecidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 7 / 26

A Language About Turing Machines

ATM = {hM,wi | M is a TM and M(w) = 1}

Observation: ATM is Turing-recognizable
On input hM,wi:

1 Simulate M on input w
2 If M ever enters its accept state, halt and accept. If M ever enters its

reject state, halt and reject

Is ATM Decidable?
The problem: M may never halt
In this case, above algorithm will never output accept or reject
If could determine that M will never halt (i.e, it has entered an infinite
loop), could reject.

An Undecidable Problem
We will prove today that ATM is undecidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 7 / 26

A Language About Turing Machines

ATM = {hM,wi | M is a TM and M(w) = 1}

Observation: ATM is Turing-recognizable
On input hM,wi:

1 Simulate M on input w
2 If M ever enters its accept state, halt and accept. If M ever enters its

reject state, halt and reject

Is ATM Decidable?
The problem: M may never halt
In this case, above algorithm will never output accept or reject
If could determine that M will never halt (i.e, it has entered an infinite
loop), could reject.

An Undecidable Problem
We will prove today that ATM is undecidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 7 / 26

A Language About Turing Machines

ATM = {hM,wi | M is a TM and M(w) = 1}

Observation: ATM is Turing-recognizable
On input hM,wi:

1 Simulate M on input w
2 If M ever enters its accept state, halt and accept. If M ever enters its

reject state, halt and reject

Is ATM Decidable?
The problem: M may never halt
In this case, above algorithm will never output accept or reject
If could determine that M will never halt (i.e, it has entered an infinite
loop), could reject.

An Undecidable Problem
We will prove today that ATM is undecidable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 7 / 26

Relationships Among Language Classes

Turing-recognizableDecidableContext-freeRegular

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 8 / 26

Outline

1 Lecture 14 Review

2 Review: Decidable Languages

3 Preliminaries – Countable and Uncountable Sets

4 Proving ATM Undecidable

5 Reductions between Languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 9 / 26

Set Cardinality

Cardinality of a set S is the number of elements in that set (|S |)

A set S can be finite (|S | < 1) or infinite (|S | = 1)

|S1| = |S2| if there’s a one-to-one and onto mapping from S1 to S2

Example:
A = {0, 1, 2, 3}
B = {a, b, c , d}
f (0) = a, f (1) = b, f (2) = c , f (3) = d

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 10 / 26

Set Cardinality

Cardinality of a set S is the number of elements in that set (|S |)
A set S can be finite (|S | < 1) or infinite (|S | = 1)

|S1| = |S2| if there’s a one-to-one and onto mapping from S1 to S2

Example:
A = {0, 1, 2, 3}
B = {a, b, c , d}
f (0) = a, f (1) = b, f (2) = c , f (3) = d

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 10 / 26

Set Cardinality

Cardinality of a set S is the number of elements in that set (|S |)
A set S can be finite (|S | < 1) or infinite (|S | = 1)

|S1| = |S2| if there’s a one-to-one and onto mapping from S1 to S2

Example:
A = {0, 1, 2, 3}
B = {a, b, c , d}
f (0) = a, f (1) = b, f (2) = c , f (3) = d

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 10 / 26

Set Cardinality

Cardinality of a set S is the number of elements in that set (|S |)
A set S can be finite (|S | < 1) or infinite (|S | = 1)

|S1| = |S2| if there’s a one-to-one and onto mapping from S1 to S2

Example:
A = {0, 1, 2, 3}
B = {a, b, c , d}
f (0) = a, f (1) = b, f (2) = c , f (3) = d

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 10 / 26

Countable and Uncountable (Infinite) Sets

Intuition: Countable sets are ones where we can arrange elements into a
“first element”, “second element”, and so on.

An infinite set A is countably infinite if it has the same cardinality as
the natural numbers: N = 1, 2, 3, . . .

A set A is countable if it is finite or countably infinite

A set that is not countable is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 11 / 26

Countable and Uncountable (Infinite) Sets

Intuition: Countable sets are ones where we can arrange elements into a
“first element”, “second element”, and so on.

An infinite set A is countably infinite if it has the same cardinality as
the natural numbers: N = 1, 2, 3, . . .

A set A is countable if it is finite or countably infinite

A set that is not countable is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 11 / 26

Countable and Uncountable (Infinite) Sets

Intuition: Countable sets are ones where we can arrange elements into a
“first element”, “second element”, and so on.

An infinite set A is countably infinite if it has the same cardinality as
the natural numbers: N = 1, 2, 3, . . .

A set A is countable if it is finite or countably infinite

A set that is not countable is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 11 / 26

Countable and Uncountable (Infinite) Sets

Intuition: Countable sets are ones where we can arrange elements into a
“first element”, “second element”, and so on.

An infinite set A is countably infinite if it has the same cardinality as
the natural numbers: N = 1, 2, 3, . . .

A set A is countable if it is finite or countably infinite

A set that is not countable is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 11 / 26

Example 1: Evens

Evens
The set of even numbers is

countable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 12 / 26

Example 1: Evens

Evens
The set of even numbers iscountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 12 / 26

f(x) = Ey

Example 2: Rationals

Rationals
The set of rational numbers is

countable

1 2 3 · · ·
1 1/1 1/2 1/3
2 2/1 2/2 2/3 · · ·
3 3/1 3/2 3/3

4 4/1 4/2
...

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 13 / 26

Example 2: Rationals

Rationals
The set of rational numbers is countable

1 2 3 · · ·
1 1/1 1/2 1/3
2 2/1 2/2 2/3 · · ·
3 3/1 3/2 3/3

4 4/1 4/2
...

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 13 / 26

+ 2 1 + x 5 =

Example 2: Rationals

Rationals
The set of rational numbers is countable

1 2 3 · · ·
1 1/1 1/2 1/3
2 2/1 2/2 2/3 · · ·
3 3/1 3/2 3/3

4 4/1 4/2
...

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 13 / 26

I I ↓

M 5

-
i

Example 3: Strings

Strings

The set of strings in {0, 1}⇤ is

countable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 14 / 26

Example 3: Strings

Strings

The set of strings in {0, 1}⇤ is countable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 14 / 26

I
E-

I
20 ↑

T 6 7

100 Ol 10 I

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization

Assume that R is countable
Then there is a one-to-one and onto mapping f from N to R

n f(n)
1 1.234. . .
2 3.141. . .
3 5.556. . .
...

...

We construct a value x 2 R s.t x 6= f (n) for any n

Idea: For all i 2 N , make xi 6= f (i)i
Contradiction – f is not mapping between R and N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 15 / 26

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization

Assume that R is countable
Then there is a one-to-one and onto mapping f from N to R

n f(n)
1 1.234. . .
2 3.141. . .
3 5.556. . .
...

...

We construct a value x 2 R s.t x 6= f (n) for any n

Idea: For all i 2 N , make xi 6= f (i)i
Contradiction – f is not mapping between R and N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 15 / 26

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization

Assume that R is countable

Then there is a one-to-one and onto mapping f from N to R

n f(n)
1 1.234. . .
2 3.141. . .
3 5.556. . .
...

...

We construct a value x 2 R s.t x 6= f (n) for any n

Idea: For all i 2 N , make xi 6= f (i)i
Contradiction – f is not mapping between R and N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 15 / 26

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization

Assume that R is countable
Then there is a one-to-one and onto mapping f from N to R

n f(n)
1 1.234. . .
2 3.141. . .
3 5.556. . .
...

...

We construct a value x 2 R s.t x 6= f (n) for any n

Idea: For all i 2 N , make xi 6= f (i)i
Contradiction – f is not mapping between R and N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 15 / 26

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization

Assume that R is countable
Then there is a one-to-one and onto mapping f from N to R

n f(n)
1 1.234. . .
2 3.141. . .
3 5.556. . .
...

...

We construct a value x 2 R s.t x 6= f (n) for any n

Idea: For all i 2 N , make xi 6= f (i)i
Contradiction – f is not mapping between R and N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 15 / 26

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization

Assume that R is countable
Then there is a one-to-one and onto mapping f from N to R

n f(n)
1 1.234. . .
2 3.141. . .
3 5.556. . .
...

...

We construct a value x 2 R s.t x 6= f (n) for any n

Idea: For all i 2 N , make xi 6= f (i)i

Contradiction – f is not mapping between R and N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 15 / 26

Oo
-

2
. 22

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization

Assume that R is countable
Then there is a one-to-one and onto mapping f from N to R

n f(n)
1 1.234. . .
2 3.141. . .
3 5.556. . .
...

...

We construct a value x 2 R s.t x 6= f (n) for any n

Idea: For all i 2 N , make xi 6= f (i)i
Contradiction – f is not mapping between R and N
Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 15 / 26

Outline

1 Lecture 14 Review

2 Review: Decidable Languages

3 Preliminaries – Countable and Uncountable Sets

4 Proving ATM Undecidable

5 Reductions between Languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 16 / 26

The Set of Turing Machines

Turing Machines

The set of all Turing Machines is

countable

We already showed that the set of strings {0, 1}⇤ is countable

Can similarly show that for any finite alphabet ⌃, ⌃⇤ is countable

But, a TM M can be written as a string hMi 2 ⌃⇤

Hence, by omitting all strings that are not encodings of valid TMs we
get a mapping of TMs to N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 17 / 26

The Set of Turing Machines

Turing Machines

The set of all Turing Machines is countable

We already showed that the set of strings {0, 1}⇤ is countable

Can similarly show that for any finite alphabet ⌃, ⌃⇤ is countable

But, a TM M can be written as a string hMi 2 ⌃⇤

Hence, by omitting all strings that are not encodings of valid TMs we
get a mapping of TMs to N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 17 / 26

The Set of Turing Machines

Turing Machines

The set of all Turing Machines is countable

We already showed that the set of strings {0, 1}⇤ is countable

Can similarly show that for any finite alphabet ⌃, ⌃⇤ is countable

But, a TM M can be written as a string hMi 2 ⌃⇤

Hence, by omitting all strings that are not encodings of valid TMs we
get a mapping of TMs to N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 17 / 26

The Set of Turing Machines

Turing Machines

The set of all Turing Machines is countable

We already showed that the set of strings {0, 1}⇤ is countable

Can similarly show that for any finite alphabet ⌃, ⌃⇤ is countable

But, a TM M can be written as a string hMi 2 ⌃⇤

Hence, by omitting all strings that are not encodings of valid TMs we
get a mapping of TMs to N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 17 / 26

The Set of Turing Machines

Turing Machines

The set of all Turing Machines is countable

We already showed that the set of strings {0, 1}⇤ is countable

Can similarly show that for any finite alphabet ⌃, ⌃⇤ is countable

But, a TM M can be written as a string hMi 2 ⌃⇤

Hence, by omitting all strings that are not encodings of valid TMs we
get a mapping of TMs to N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 17 / 26

The Set of Turing Machines

Turing Machines

The set of all Turing Machines is countable

We already showed that the set of strings {0, 1}⇤ is countable

Can similarly show that for any finite alphabet ⌃, ⌃⇤ is countable

But, a TM M can be written as a string hMi 2 ⌃⇤

Hence, by omitting all strings that are not encodings of valid TMs we
get a mapping of TMs to N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 17 / 26

The Set of Languages

Languages over alphabet ⌃

L – the set of all languages over alphabet ⌃ is

uncountable

Proof:
1 Consider the set B of infinite binary sequences

An infinite binary sequence is an infinite length string of 0’s and 1’s
B is uncountable

2 |L| = |B |
Define the characteristic sequence �A of language A 2 L

⌃⇤ = { ✏ 0 1 00 01 11 000 · · · }
A = { 1 00 000 · · · }
�A = 0 0 1 1 0 0 1 · · ·

This is a one-to-one and onto mapping from L to B , so |L| = |B |
3 Therefore, L is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 18 / 26

The Set of Languages

Languages over alphabet ⌃

L – the set of all languages over alphabet ⌃ is uncountable

Proof:
1 Consider the set B of infinite binary sequences

An infinite binary sequence is an infinite length string of 0’s and 1’s
B is uncountable

2 |L| = |B |
Define the characteristic sequence �A of language A 2 L

⌃⇤ = { ✏ 0 1 00 01 11 000 · · · }
A = { 1 00 000 · · · }
�A = 0 0 1 1 0 0 1 · · ·

This is a one-to-one and onto mapping from L to B , so |L| = |B |
3 Therefore, L is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 18 / 26

The Set of Languages

Languages over alphabet ⌃

L – the set of all languages over alphabet ⌃ is uncountable

Proof:
1 Consider the set B of infinite binary sequences

An infinite binary sequence is an infinite length string of 0’s and 1’s

B is uncountable
2 |L| = |B |

Define the characteristic sequence �A of language A 2 L

⌃⇤ = { ✏ 0 1 00 01 11 000 · · · }
A = { 1 00 000 · · · }
�A = 0 0 1 1 0 0 1 · · ·

This is a one-to-one and onto mapping from L to B , so |L| = |B |
3 Therefore, L is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 18 / 26

The Set of Languages

Languages over alphabet ⌃

L – the set of all languages over alphabet ⌃ is uncountable

Proof:
1 Consider the set B of infinite binary sequences

An infinite binary sequence is an infinite length string of 0’s and 1’s
B is uncountable

2 |L| = |B |
Define the characteristic sequence �A of language A 2 L

⌃⇤ = { ✏ 0 1 00 01 11 000 · · · }
A = { 1 00 000 · · · }
�A = 0 0 1 1 0 0 1 · · ·

This is a one-to-one and onto mapping from L to B , so |L| = |B |
3 Therefore, L is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 18 / 26

f()

Assumef

,f.R

-

-

->

I
: 'B00 ...

The Set of Languages

Languages over alphabet ⌃

L – the set of all languages over alphabet ⌃ is uncountable

Proof:
1 Consider the set B of infinite binary sequences

An infinite binary sequence is an infinite length string of 0’s and 1’s
B is uncountable

2 |L| = |B |

Define the characteristic sequence �A of language A 2 L

⌃⇤ = { ✏ 0 1 00 01 11 000 · · · }
A = { 1 00 000 · · · }
�A = 0 0 1 1 0 0 1 · · ·

This is a one-to-one and onto mapping from L to B , so |L| = |B |
3 Therefore, L is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 18 / 26

The Set of Languages

Languages over alphabet ⌃

L – the set of all languages over alphabet ⌃ is uncountable

Proof:
1 Consider the set B of infinite binary sequences

An infinite binary sequence is an infinite length string of 0’s and 1’s
B is uncountable

2 |L| = |B |
Define the characteristic sequence �A of language A 2 L

⌃⇤ = { ✏ 0 1 00 01 11 000 · · · }
A = { 1 00 000 · · · }
�A = 0 0 1 1 0 0 1 · · ·

This is a one-to-one and onto mapping from L to B , so |L| = |B |
3 Therefore, L is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 18 / 26

The Set of Languages

Languages over alphabet ⌃

L – the set of all languages over alphabet ⌃ is uncountable

Proof:
1 Consider the set B of infinite binary sequences

An infinite binary sequence is an infinite length string of 0’s and 1’s
B is uncountable

2 |L| = |B |
Define the characteristic sequence �A of language A 2 L

⌃⇤ = { ✏ 0 1 00 01 11 000 · · · }
A = { 1 00 000 · · · }
�A = 0 0 1 1 0 0 1 · · ·

This is a one-to-one and onto mapping from L to B , so |L| = |B |

3 Therefore, L is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 18 / 26

The Set of Languages

Languages over alphabet ⌃

L – the set of all languages over alphabet ⌃ is uncountable

Proof:
1 Consider the set B of infinite binary sequences

An infinite binary sequence is an infinite length string of 0’s and 1’s
B is uncountable

2 |L| = |B |
Define the characteristic sequence �A of language A 2 L

⌃⇤ = { ✏ 0 1 00 01 11 000 · · · }
A = { 1 00 000 · · · }
�A = 0 0 1 1 0 0 1 · · ·

This is a one-to-one and onto mapping from L to B , so |L| = |B |
3 Therefore, L is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 18 / 26

Some Languages are not Turing-recognizable

We have proven:

1 The set of Turing Machines is countable

2 The set of languages is uncountable

Therefore:

There is no one-to-one and onto mapping from languages to Turing
Machines

Thus, there exist languages that have no corresponding TM that
recognizes them

Note, that such languages are also undecidable

Where are we now?
We have proven that some languages are not Turing-recognizable

But, we have not given any examples of such a language

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 19 / 26

Some Languages are not Turing-recognizable

We have proven:

1 The set of Turing Machines is countable

2 The set of languages is uncountable

Therefore:

There is no one-to-one and onto mapping from languages to Turing
Machines

Thus, there exist languages that have no corresponding TM that
recognizes them

Note, that such languages are also undecidable

Where are we now?
We have proven that some languages are not Turing-recognizable

But, we have not given any examples of such a language

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 19 / 26

Some Languages are not Turing-recognizable

We have proven:

1 The set of Turing Machines is countable

2 The set of languages is uncountable

Therefore:

There is no one-to-one and onto mapping from languages to Turing
Machines

Thus, there exist languages that have no corresponding TM that
recognizes them

Note, that such languages are also undecidable

Where are we now?
We have proven that some languages are not Turing-recognizable

But, we have not given any examples of such a language

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 19 / 26

Some Languages are not Turing-recognizable

We have proven:

1 The set of Turing Machines is countable

2 The set of languages is uncountable

Therefore:

There is no one-to-one and onto mapping from languages to Turing
Machines

Thus, there exist languages that have no corresponding TM that
recognizes them

Note, that such languages are also undecidable

Where are we now?
We have proven that some languages are not Turing-recognizable

But, we have not given any examples of such a language

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 19 / 26

Some Languages are not Turing-recognizable

We have proven:

1 The set of Turing Machines is countable

2 The set of languages is uncountable

Therefore:

There is no one-to-one and onto mapping from languages to Turing
Machines

Thus, there exist languages that have no corresponding TM that
recognizes them

Note, that such languages are also undecidable

Where are we now?

We have proven that some languages are not Turing-recognizable

But, we have not given any examples of such a language

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 19 / 26

Some Languages are not Turing-recognizable

We have proven:

1 The set of Turing Machines is countable

2 The set of languages is uncountable

Therefore:

There is no one-to-one and onto mapping from languages to Turing
Machines

Thus, there exist languages that have no corresponding TM that
recognizes them

Note, that such languages are also undecidable

Where are we now?
We have proven that some languages are not Turing-recognizable

But, we have not given any examples of such a language

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 19 / 26

Some Languages are not Turing-recognizable

We have proven:

1 The set of Turing Machines is countable

2 The set of languages is uncountable

Therefore:

There is no one-to-one and onto mapping from languages to Turing
Machines

Thus, there exist languages that have no corresponding TM that
recognizes them

Note, that such languages are also undecidable

Where are we now?
We have proven that some languages are not Turing-recognizable

But, we have not given any examples of such a language

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 19 / 26

ATM is Undecidable

ATM = {hM,wi | M is a TM and M(w) = 1}

Proof: By contradiction
Assume that ATM is decided by a TM H

H(hM,wi) =
⇢

accept if M accepts w
reject if M does not accept w

Use H to build the following TM D:
On Input hMi, where M is a TM

1 Run H on input hM, hMii
2 Output the opposite of what H outputs

D(hMi) =
⇢

accept if M does not accept hMi
reject if M accepts hMi

Now consider what happens if we run D on hDi

D(hDi) =
⇢

accept if D does not accept hDi
reject if D accepts hDi

Contradiction!

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 20 / 26

ATM is Undecidable

ATM = {hM,wi | M is a TM and M(w) = 1}
Proof: By contradiction

Assume that ATM is decided by a TM H

H(hM,wi) =
⇢

accept if M accepts w
reject if M does not accept w

Use H to build the following TM D:
On Input hMi, where M is a TM

1 Run H on input hM, hMii
2 Output the opposite of what H outputs

D(hMi) =
⇢

accept if M does not accept hMi
reject if M accepts hMi

Now consider what happens if we run D on hDi

D(hDi) =
⇢

accept if D does not accept hDi
reject if D accepts hDi

Contradiction!

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 20 / 26

ATM is Undecidable

ATM = {hM,wi | M is a TM and M(w) = 1}
Proof: By contradiction

Assume that ATM is decided by a TM H

H(hM,wi) =
⇢

accept if M accepts w
reject if M does not accept w

Use H to build the following TM D:
On Input hMi, where M is a TM

1 Run H on input hM, hMii
2 Output the opposite of what H outputs

D(hMi) =
⇢

accept if M does not accept hMi
reject if M accepts hMi

Now consider what happens if we run D on hDi

D(hDi) =
⇢

accept if D does not accept hDi
reject if D accepts hDi

Contradiction!

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 20 / 26

--

ATM is Undecidable

ATM = {hM,wi | M is a TM and M(w) = 1}
Proof: By contradiction

Assume that ATM is decided by a TM H

H(hM,wi) =
⇢

accept if M accepts w
reject if M does not accept w

Use H to build the following TM D:

On Input hMi, where M is a TM
1 Run H on input hM, hMii
2 Output the opposite of what H outputs

D(hMi) =
⇢

accept if M does not accept hMi
reject if M accepts hMi

Now consider what happens if we run D on hDi

D(hDi) =
⇢

accept if D does not accept hDi
reject if D accepts hDi

Contradiction!

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 20 / 26

ATM is Undecidable

ATM = {hM,wi | M is a TM and M(w) = 1}
Proof: By contradiction

Assume that ATM is decided by a TM H

H(hM,wi) =
⇢

accept if M accepts w
reject if M does not accept w

Use H to build the following TM D:
On Input hMi, where M is a TM

1 Run H on input hM, hMii
2 Output the opposite of what H outputs

D(hMi) =
⇢

accept if M does not accept hMi
reject if M accepts hMi

Now consider what happens if we run D on hDi

D(hDi) =
⇢

accept if D does not accept hDi
reject if D accepts hDi

Contradiction!

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 20 / 26

ATM is Undecidable

ATM = {hM,wi | M is a TM and M(w) = 1}
Proof: By contradiction

Assume that ATM is decided by a TM H

H(hM,wi) =
⇢

accept if M accepts w
reject if M does not accept w

Use H to build the following TM D:
On Input hMi, where M is a TM

1 Run H on input hM, hMii
2 Output the opposite of what H outputs

D(hMi) =
⇢

accept if M does not accept hMi
reject if M accepts hMi

Now consider what happens if we run D on hDi

D(hDi) =
⇢

accept if D does not accept hDi
reject if D accepts hDi

Contradiction!

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 20 / 26

ATM is Undecidable

ATM = {hM,wi | M is a TM and M(w) = 1}
Proof: By contradiction

Assume that ATM is decided by a TM H

H(hM,wi) =
⇢

accept if M accepts w
reject if M does not accept w

Use H to build the following TM D:
On Input hMi, where M is a TM

1 Run H on input hM, hMii
2 Output the opposite of what H outputs

D(hMi) =
⇢

accept if M does not accept hMi
reject if M accepts hMi

Now consider what happens if we run D on hDi

D(hDi) =
⇢

accept if D does not accept hDi
reject if D accepts hDi

Contradiction!
Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 20 / 26

D(<D2) :
Run Don <D

How Is This a Diagonalization?

hM1i hM2i hM3i · · · hDi · · ·
M1 accept reject accept accept

M2 reject reject reject . . . accept . . .
M3 accept accept accept reject

...
...

. . .
D reject accept reject ?

We have defined D to do the opposite of what Mi does on input hMi i
But what does D do on input hDi??

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 21 / 26

How Is This a Diagonalization?

hM1i hM2i hM3i · · · hDi · · ·
M1 accept reject accept accept

M2 reject reject reject . . . accept . . .
M3 accept accept accept reject

...
...

. . .
D reject accept reject ?

We have defined D to do the opposite of what Mi does on input hMi i
But what does D do on input hDi??

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 21 / 26

d
· =

T

-

A Turing-unrecognizable Language

LTM
The language

LTM = {hM,wi | M is a TM and M(w) 6= 1}

is not Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 22 / 26

A

A

Outline

1 Lecture 14 Review

2 Review: Decidable Languages

3 Preliminaries – Countable and Uncountable Sets

4 Proving ATM Undecidable

5 Reductions between Languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 23 / 26

Another Way to Prove Undecidability

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a
solution to problem B to solve problem A

A B

Examples:
1 Finding area of a rectangle Finding its length and width
2 Finding temperature outside Reading a thermometer

Observations:
Reductions not always symmetrical: A B does not mean B A

For now, no restriction on how the reduction works

Intuition
A B means that:

problem A is no harder than problem B .

Equivalently, problem B is no easier than problem A

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 24 / 26

Another Way to Prove Undecidability

Reductions Between Problems
There is a reduction from a problem A to a problem B if we can use a
solution to problem B to solve problem A

A B

Examples:
1 Finding area of a rectangle Finding its length and width
2 Finding temperature outside Reading a thermometer

Observations:
Reductions not always symmetrical: A B does not mean B A

For now, no restriction on how the reduction works

Intuition
A B means that:

problem A is no harder than problem B .

Equivalently, problem B is no easier than problem A

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 24 / 26

Another Way to Prove Undecidability

Reductions Between Problems
There is a reduction from a problem A to a problem B if we can use a
solution to problem B to solve problem A

A B

Examples:
1 Finding area of a rectangle Finding its length and width

2 Finding temperature outside Reading a thermometer
Observations:

Reductions not always symmetrical: A B does not mean B A

For now, no restriction on how the reduction works

Intuition
A B means that:

problem A is no harder than problem B .

Equivalently, problem B is no easier than problem A

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 24 / 26

Another Way to Prove Undecidability

Reductions Between Problems
There is a reduction from a problem A to a problem B if we can use a
solution to problem B to solve problem A

A B

Examples:
1 Finding area of a rectangle Finding its length and width
2 Finding temperature outside Reading a thermometer

Observations:
Reductions not always symmetrical: A B does not mean B A

For now, no restriction on how the reduction works

Intuition
A B means that:

problem A is no harder than problem B .

Equivalently, problem B is no easier than problem A

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 24 / 26

Another Way to Prove Undecidability

Reductions Between Problems
There is a reduction from a problem A to a problem B if we can use a
solution to problem B to solve problem A

A B

Examples:
1 Finding area of a rectangle Finding its length and width
2 Finding temperature outside Reading a thermometer

Observations:

Reductions not always symmetrical: A B does not mean B A

For now, no restriction on how the reduction works

Intuition
A B means that:

problem A is no harder than problem B .

Equivalently, problem B is no easier than problem A

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 24 / 26

Another Way to Prove Undecidability

Reductions Between Problems
There is a reduction from a problem A to a problem B if we can use a
solution to problem B to solve problem A

A B

Examples:
1 Finding area of a rectangle Finding its length and width
2 Finding temperature outside Reading a thermometer

Observations:
Reductions not always symmetrical: A B does not mean B A

For now, no restriction on how the reduction works

Intuition
A B means that:

problem A is no harder than problem B .

Equivalently, problem B is no easier than problem A

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 24 / 26

Another Way to Prove Undecidability

Reductions Between Problems
There is a reduction from a problem A to a problem B if we can use a
solution to problem B to solve problem A

A B

Examples:
1 Finding area of a rectangle Finding its length and width
2 Finding temperature outside Reading a thermometer

Observations:
Reductions not always symmetrical: A B does not mean B A

For now, no restriction on how the reduction works

Intuition
A B means that:

problem A is no harder than problem B .

Equivalently, problem B is no easier than problem A

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 24 / 26

Another Way to Prove Undecidability

Reductions Between Problems
There is a reduction from a problem A to a problem B if we can use a
solution to problem B to solve problem A

A B

Examples:
1 Finding area of a rectangle Finding its length and width
2 Finding temperature outside Reading a thermometer

Observations:
Reductions not always symmetrical: A B does not mean B A

For now, no restriction on how the reduction works

Intuition
A B means that:

problem A is no harder than problem B .

Equivalently, problem B is no easier than problem A

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 24 / 26

Another Way to Prove Undecidability

Reductions Between Problems
There is a reduction from a problem A to a problem B if we can use a
solution to problem B to solve problem A

A B

Examples:
1 Finding area of a rectangle Finding its length and width
2 Finding temperature outside Reading a thermometer

Observations:
Reductions not always symmetrical: A B does not mean B A

For now, no restriction on how the reduction works

Intuition
A B means that:

problem A is no harder than problem B .

Equivalently, problem B is no easier than problem A

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 24 / 26

Another Way to Prove Undecidability

Reductions Between Problems
There is a reduction from a problem A to a problem B if we can use a
solution to problem B to solve problem A

A B

Examples:
1 Finding area of a rectangle Finding its length and width
2 Finding temperature outside Reading a thermometer

Observations:
Reductions not always symmetrical: A B does not mean B A

For now, no restriction on how the reduction works

Intuition
A B means that:

problem A is no harder than problem B .

Equivalently, problem B is no easier than problem A

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 24 / 26

Reductions and Undecidability

Main Observation
Suppose that A B , then:

If A is undecidable

B must also be undecidable

Proof: (by contradiction)

Suppose that B is decidable

Since A B , there exists an algorithm (i.e., a reduction) that uses a
solution to B to solve A

But, this means that A is decidable by running the machine for B as
needed by the reduction

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 25 / 26

Reductions and Undecidability

Main Observation
Suppose that A B , then:

If A is undecidable

B must also be undecidable

Proof: (by contradiction)

Suppose that B is decidable

Since A B , there exists an algorithm (i.e., a reduction) that uses a
solution to B to solve A

But, this means that A is decidable by running the machine for B as
needed by the reduction

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 25 / 26

Reductions and Undecidability

Main Observation
Suppose that A B , then:

If A is undecidable

B must also be undecidable

Proof: (by contradiction)

Suppose that B is decidable

Since A B , there exists an algorithm (i.e., a reduction) that uses a
solution to B to solve A

But, this means that A is decidable by running the machine for B as
needed by the reduction

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 25 / 26

Reductions and Undecidability

Main Observation
Suppose that A B , then:

If A is undecidable

B must also be undecidable

Proof: (by contradiction)

Suppose that B is decidable

Since A B , there exists an algorithm (i.e., a reduction) that uses a
solution to B to solve A

But, this means that A is decidable by running the machine for B as
needed by the reduction

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 25 / 26

Reductions and Undecidability

Main Observation
Suppose that A B , then:

If A is undecidable

B must also be undecidable

Proof: (by contradiction)

Suppose that B is decidable

Since A B , there exists an algorithm (i.e., a reduction) that uses a
solution to B to solve A

But, this means that A is decidable by running the machine for B as
needed by the reduction

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 25 / 26

Reductions and Undecidability

Main Observation
Suppose that A B , then:

If A is undecidable

B must also be undecidable

Proof: (by contradiction)

Suppose that B is decidable

Since A B , there exists an algorithm (i.e., a reduction) that uses a
solution to B to solve A

But, this means that A is decidable by running the machine for B as
needed by the reduction

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 25 / 26

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct algorithm S that decides ATM given a TM R that decides HALT
On input hM,wi, S does the following:

Run R(hM,wi)
If R rejects – M(w) doesn’t halt – halt and reject

if R accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 26 / 26

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable

Proof Sketch:

We show that ATM HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct algorithm S that decides ATM given a TM R that decides HALT
On input hM,wi, S does the following:

Run R(hM,wi)
If R rejects – M(w) doesn’t halt – halt and reject

if R accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 26 / 26

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct algorithm S that decides ATM given a TM R that decides HALT
On input hM,wi, S does the following:

Run R(hM,wi)
If R rejects – M(w) doesn’t halt – halt and reject

if R accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 26 / 26

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct algorithm S that decides ATM given a TM R that decides HALT
On input hM,wi, S does the following:

Run R(hM,wi)
If R rejects – M(w) doesn’t halt – halt and reject

if R accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 26 / 26

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct algorithm S that decides ATM given a TM R that decides HALT

On input hM,wi, S does the following:

Run R(hM,wi)
If R rejects – M(w) doesn’t halt – halt and reject

if R accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 26 / 26

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct algorithm S that decides ATM given a TM R that decides HALT
On input hM,wi, S does the following:

Run R(hM,wi)
If R rejects – M(w) doesn’t halt – halt and reject

if R accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 26 / 26

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct algorithm S that decides ATM given a TM R that decides HALT
On input hM,wi, S does the following:

Run R(hM,wi)

If R rejects – M(w) doesn’t halt – halt and reject

if R accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 26 / 26

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct algorithm S that decides ATM given a TM R that decides HALT
On input hM,wi, S does the following:

Run R(hM,wi)
If R rejects – M(w) doesn’t halt – halt and reject

if R accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 26 / 26

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct algorithm S that decides ATM given a TM R that decides HALT
On input hM,wi, S does the following:

Run R(hM,wi)
If R rejects – M(w) doesn’t halt – halt and reject

if R accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 26 / 26

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct algorithm S that decides ATM given a TM R that decides HALT
On input hM,wi, S does the following:

Run R(hM,wi)
If R rejects – M(w) doesn’t halt – halt and reject

if R accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 7, 2024 26 / 26

