# Foundations of Computing <br> Lecture 15 

Arkady Yerukhimovich

March 7, 2024

## Outline

## (1) Lecture 14 Review

(2) Review: Decidable Languages
(3) Preliminaries - Countable and Uncountable Sets

4 Proving $A_{T M}$ Undecidable
(5) Reductions between Languages

## Lecture 14 Review

- Decidable and Turing-recognizable languages
- Decidability of regular and context-free languages


## Outline

## (1) Lecture 14 Review

(2) Review: Decidable Languages

## (3) Preliminaries - Countable and Uncountable Sets

(4) Proving $A_{T M}$ Undecidable
(5) Reductions between Languages

## Characterizing Computability of Languages

## Definition: Decidable languages

A language $L$ is decidable or recursive if some TM $M$ decides it

- $M$ halts on ALL inputs, accepts those in $L$ and rejects those not in $L$
- Seems to match informal definition we wanted before


## Definition: Turing-recognizable languages

A language $L$ is Turing-recognizable or recursively enumerable if some TM $M$ recognizes it

- $M$ halts and accepts all strings in $L$
- $M$ may not halt on strings not in $L$ - does not necessarily have to reject


## Observation

Every Decidable language is also Turing-recognizable, but the reverse direction is not true.

## Decidable Languages

We showed the following languages are decidable:

- Languages about Finite Automata
(1) $A_{D F A}=\{\langle B, w\rangle \mid B$ is a DFA that accepts input string $w\}$
(2) $A_{\text {NFA }}=\{\langle B, w\rangle \mid B$ is a NFA that accepts input string $w\}$
(3) $A_{R E X}=\{\langle R, w\rangle \mid R$ is a reg. exp. that generates the string $w\}$
(9) $E_{D F A}=\{\langle A\rangle \mid A$ is a DFA and $L(A)=\emptyset\}$
(5) $E Q_{D F A}=\{\langle A, B\rangle \mid A, B$ are DFAs and $L(A)=L(B)\}$
- Languages about CFGs
(1) $A_{C F G}=\{\langle G, w\rangle \mid G$ is a CFG that generates $w\}$
(2) $E_{\text {CFG }}=\{\langle G\rangle \mid G$ is a CFG and $L(G)=\emptyset\}$


## A Language About Turing Machines

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a TM and } M(w)=1\}
$$

## A Language About Turing Machines

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a TM and } M(w)=1\}
$$

- Observation: $A_{T M}$ is Turing-recognizable On input $\langle M, w\rangle$ :
(1) Simulate $M$ on input $w$
(2) If $M$ ever enters its accept state, halt and accept. If $M$ ever enters its reject state, halt and reject


## A Language About Turing Machines

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M(w)=1\}
$$

- Observation: $A_{T M}$ is Turing-recognizable On input $\langle M, w\rangle$ :
(1) Simulate $M$ on input $w$
(2) If $M$ ever enters its accept state, halt and accept. If $M$ ever enters its reject state, halt and reject
- Is $A_{T M}$ Decidable?
- The problem: $M$ may never halt
- In this case, above algorithm will never output accept or reject
- If could determine that $M$ will never halt (i.e, it has entered an infinite loop), could reject.


## A Language About Turing Machines

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a TM and } M(w)=1\}
$$

- Observation: $A_{T M}$ is Turing-recognizable On input $\langle M, w\rangle$ :
(1) Simulate $M$ on input $w$
(2) If $M$ ever enters its accept state, halt and accept. If $M$ ever enters its reject state, halt and reject
- Is $A_{T M}$ Decidable?
- The problem: $M$ may never halt
- In this case, above algorithm will never output accept or reject
- If could determine that $M$ will never halt (i.e, it has entered an infinite loop), could reject.


## An Undecidable Problem

- We will prove today that $A_{T M}$ is undecidable


## Relationships Among Language Classes



## Outline

## (1) Lecture 14 Review

(2) Review: Decidable Languages
(3) Preliminaries - Countable and Uncountable Sets
(4) Proving $A_{T M}$ Undecidable
(5) Reductions between Languages

## Set Cardinality

- Cardinality of a set $S$ is the number of elements in that set $(|S|)$


## Set Cardinality

- Cardinality of a set $S$ is the number of elements in that set $(|S|)$
- A set $S$ can be finite $(|S|<\infty)$ or infinite $(|S|=\infty)$


## Set Cardinality

- Cardinality of a set $S$ is the number of elements in that set $(|S|)$
- A set $S$ can be finite $(|S|<\infty)$ or infinite $(|S|=\infty)$
- $\left|S_{1}\right|=\left|S_{2}\right|$ if there's a one-to-one and onto mapping from $S_{1}$ to $S_{2}$


## Set Cardinality

- Cardinality of a set $S$ is the number of elements in that set $(|S|)$
- A set $S$ can be finite $(|S|<\infty)$ or infinite $(|S|=\infty)$
- $\left|S_{1}\right|=\left|S_{2}\right|$ if there's a one-to-one and onto mapping from $S_{1}$ to $S_{2}$
- Example:

$$
\begin{aligned}
& A=\{0,1,2,3\} \\
& B=\{a, b, c, d\} \\
& f(0)=a, f(1)=b, f(2)=c, f(3)=d
\end{aligned}
$$

## Countable and Uncountable (Infinite) Sets

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

## Countable and Uncountable (Infinite) Sets

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

- An infinite set $A$ is countably infinite if it has the same cardinality as the natural numbers: $\mathcal{N}=1,2,3, \ldots$


## Countable and Uncountable (Infinite) Sets

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

- An infinite set $A$ is countably infinite if it has the same cardinality as the natural numbers: $\mathcal{N}=1,2,3, \ldots$
- A set $A$ is countable if it is finite or countably infinite


## Countable and Uncountable (Infinite) Sets

Intuition: Countable sets are ones where we can arrange elements into a "first element", "second element", and so on.

- An infinite set $A$ is countably infinite if it has the same cardinality as the natural numbers: $\mathcal{N}=1,2,3, \ldots$
- A set $A$ is countable if it is finite or countably infinite
- A set that is not countable is uncountable


## Example 1: Evens

## Evens

The set of even numbers is

## Example 1: Evens

## Evens

The set of even numbers iscountable

$$
f(x)=\frac{x}{2}
$$

## Example 2: Rationals

## Rationals

The set of rational numbers is

## Example 2: Rationals

## Rationals

The set of rational numbers is countable


## Example 2: Rationals

## Rationals

The set of rational numbers is countable

|  | 1 | 2 | 3 | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $1 / 1$ | $1 / 2$ | $1 / 3$ |  |
| 2 | $2 / 1$ | $52 / 2$ | $2 / 3$ | $\cdots$ |
| $3)^{2}$ | $3 / 1$ | $3 / 2$ | $3 / 3$ |  |
| 4 | $4 / 1$ | $4 / 2$ | $\vdots$ |  |

## Example 3: Strings

## Strings

The set of strings in $\{0,1\}^{*}$ is

## Example 3: Strings

## Strings

The set of strings in $\{0,1\}^{*}$ is countable

$$
\begin{aligned}
& 1_{E} \\
& 2010
\end{aligned}
$$

$$
100 \text { 501 } 10 \text { 11 }
$$

## Diagonalization

## Real Numbers

The set of real numbers $(\mathcal{R})$ is uncountable

## Diagonalization

## Real Numbers

The set of real numbers $(\mathcal{R})$ is uncountable
Proof: By diagonalization

## Diagonalization

## Real Numbers

The set of real numbers $(\mathcal{R})$ is uncountable
Proof: By diagonalization

- Assume that $\mathcal{R}$ is countable


## Diagonalization

## Real Numbers

The set of real numbers $(\mathcal{R})$ is uncountable
Proof: By diagonalization

- Assume that $\mathcal{R}$ is countable
- Then there is a one-to-one and onto mapping $f$ from $\mathcal{N}$ to $\mathcal{R}$


## Diagonalization

## Real Numbers

The set of real numbers $(\mathcal{R})$ is uncountable
Proof: By diagonalization

- Assume that $\mathcal{R}$ is countable
- Then there is a one-to-one and onto mapping $f$ from $\mathcal{N}$ to $\mathcal{R}$

| n | $\mathrm{f}(\mathrm{n})$ |
| :---: | :---: |
| 1 | $1.234 \ldots$ |
| 2 | $3.141 \ldots$ |
| 3 | $5.556 \ldots$ |
| $\vdots$ | $\vdots$ |

## Diagonalization

## Real Numbers

The set of real numbers $(\mathcal{R})$ is uncountable
Proof: By diagonalization

- Assume that $\mathcal{R}$ is countable
- Then there is a one-to-one and onto mapping $f$ from $\mathcal{N}$ to $\mathcal{R}$

| n | $\mathrm{f}(\mathrm{n})$ |
| :---: | :---: |
| 1 | $1.234 \ldots$ |
| 2 | $3.041 \ldots$ |
| 3 | $5.556 \ldots$ |
| $\vdots$ | $\vdots$ |

2.42

- We construct a value $x \in \mathcal{R}$ s.t $x \neq f(n)$ for any $n$ Idea: For all $i \in \mathcal{N}$, make $x_{i} \neq f(i)_{i}$


## Diagonalization

## Real Numbers

The set of real numbers $(\mathcal{R})$ is uncountable
Proof: By diagonalization

- Assume that $\mathcal{R}$ is countable
- Then there is a one-to-one and onto mapping $f$ from $\mathcal{N}$ to $\mathcal{R}$

| n | $\mathrm{f}(\mathrm{n})$ |
| :---: | :---: |
| 1 | $1.234 \ldots$ |
| 2 | $3.141 \ldots$ |
| 3 | $5.556 \ldots$ |
| $\vdots$ | $\vdots$ |

- We construct a value $x \in \mathcal{R}$ s.t $x \neq f(n)$ for any $n$ Idea: For all $i \in \mathcal{N}$, make $x_{i} \neq f(i)_{i}$
- Contradiction - $f$ is not mapping between $\mathcal{R}$ and $\mathcal{N}$


## Outline

## (1) Lecture 14 Review

(2) Review: Decidable Languages
(3) Preliminaries - Countable and Uncountable Sets
(4) Proving $A_{T M}$ Undecidable
(5) Reductions between Languages

## The Set of Turing Machines

Turing Machines<br>The set of all Turing Machines is

## The Set of Turing Machines

## Turing Machines

The set of all Turing Machines is countable

## The Set of Turing Machines

## Turing Machines <br> The set of all Turing Machines is countable

- We already showed that the set of strings $\{0,1\}^{*}$ is countable


## The Set of Turing Machines

## Turing Machines

The set of all Turing Machines is countable

- We already showed that the set of strings $\{0,1\}^{*}$ is countable
- Can similarly show that for any finite alphabet $\Sigma, \Sigma^{*}$ is countable


## The Set of Turing Machines

## Turing Machines

The set of all Turing Machines is countable

- We already showed that the set of strings $\{0,1\}^{*}$ is countable
- Can similarly show that for any finite alphabet $\Sigma, \Sigma^{*}$ is countable
- But, a TM $M$ can be written as a string $\langle M\rangle \in \Sigma^{*}$


## The Set of Turing Machines

## Turing Machines

The set of all Turing Machines is countable

- We already showed that the set of strings $\{0,1\}^{*}$ is countable
- Can similarly show that for any finite alphabet $\Sigma, \Sigma^{*}$ is countable
- But, a TM $M$ can be written as a string $\langle M\rangle \in \Sigma^{*}$
- Hence, by omitting all strings that are not encodings of valid TMs we get a mapping of TMs to $\mathcal{N}$


## The Set of Languages

## Languages over alphabet $\Sigma$

$\mathcal{L}$ - the set of all languages over alphabet $\Sigma$ is

## The Set of Languages

## Languages over alphabet $\Sigma$

$\mathcal{L}$ - the set of all languages over alphabet $\Sigma$ is uncountable

## The Set of Languages

## Languages over alphabet $\Sigma$

$\mathcal{L}$ - the set of all languages over alphabet $\Sigma$ is uncountable

## Proof:

(1) Consider the set $B$ of infinite binary sequences

- An infinite binary sequence is an infinite length string of 0's and 1's


## The Set of Languages

## Languages over alphabet $\Sigma$

$\mathcal{L}$ - the set of all languages over alphabet $\Sigma$ is uncountable

## Proof:

(1) Consider the set $B$ of infinite binary sequences

- An infinite binary sequence is an infinite length string of 0's and 1's
- $B$ is uncountable



## The Set of Languages

## Languages over alphabet $\Sigma$

$\mathcal{L}$ - the set of all languages over alphabet $\Sigma$ is uncountable

## Proof:

(1) Consider the set $B$ of infinite binary sequences

- An infinite binary sequence is an infinite length string of 0's and 1's
- $B$ is uncountable
(2) $|\mathcal{L}|=|B|$


## The Set of Languages

## Languages over alphabet $\Sigma$

$\mathcal{L}$ - the set of all languages over alphabet $\Sigma$ is uncountable

## Proof:

(1) Consider the set $B$ of infinite binary sequences

- An infinite binary sequence is an infinite length string of 0's and 1's
- $B$ is uncountable
(2) $|\mathcal{L}|=|B|$
- Define the characteristic sequence $\chi_{A}$ of language $A \in \mathcal{L}$

$$
\begin{aligned}
\Sigma^{*} & =\left\{\begin{array}{lllllllll}
\epsilon & 0 & 1 & 00 & 01 & 11 & 000 & \cdots & \} \\
A & =\left\{\begin{array}{llllclccc} 
& & 1 & 00 & & & 000 & \cdots & \} \\
\chi_{A} & = & 0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right. & \cdots &
\end{array}\right\}
\end{aligned}
$$

## The Set of Languages

## Languages over alphabet $\Sigma$

$\mathcal{L}$ - the set of all languages over alphabet $\Sigma$ is uncountable

## Proof:

(1) Consider the set $B$ of infinite binary sequences

- An infinite binary sequence is an infinite length string of 0's and 1's
- $B$ is uncountable
(2) $|\mathcal{L}|=|B|$
- Define the characteristic sequence $\chi_{A}$ of language $A \in \mathcal{L}$

$$
\begin{aligned}
\Sigma^{*} & =\left\{\begin{array}{lllllllll}
\epsilon & 0 & 1 & 00 & 01 & 11 & 000 & \cdots & \} \\
A & =\left\{\begin{array}{llllclccc}
1 & 00 & & & 000 & \cdots & \} \\
\chi_{A} & = & 0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right. & \cdots &
\end{array}\right\}
\end{aligned}
$$

- This is a one-to-one and onto mapping from $\mathcal{L}$ to $B$, so $|\mathcal{L}|=|B|$


## The Set of Languages

## Languages over alphabet $\Sigma$

$\mathcal{L}$ - the set of all languages over alphabet $\Sigma$ is uncountable

## Proof:

(1) Consider the set $B$ of infinite binary sequences

- An infinite binary sequence is an infinite length string of 0's and 1's
- $B$ is uncountable
(2) $|\mathcal{L}|=|B|$
- Define the characteristic sequence $\chi_{A}$ of language $A \in \mathcal{L}$

$$
\begin{aligned}
\Sigma^{*} & =\left\{\begin{array}{lllllllll}
\epsilon & 0 & 1 & 00 & 01 & 11 & 000 & \cdots & \} \\
A & =\left\{\begin{array}{llllclccc}
1 & 00 & & & 000 & \cdots & \} \\
\chi_{A} & = & 0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right. & \cdots &
\end{array}\right\}
\end{aligned}
$$

- This is a one-to-one and onto mapping from $\mathcal{L}$ to $B$, so $|\mathcal{L}|=|B|$
(3) Therefore, $\mathcal{L}$ is uncountable


## Some Languages are not Turing-recognizable

We have proven:
(1) The set of Turing Machines is countable
(2) The set of languages is uncountable

## Some Languages are not Turing-recognizable

We have proven:
(1) The set of Turing Machines is countable
(2) The set of languages is uncountable

Therefore:

## Some Languages are not Turing-recognizable

We have proven:
(1) The set of Turing Machines is countable
(2) The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines


## Some Languages are not Turing-recognizable

We have proven:
(1) The set of Turing Machines is countable
(2) The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines
- Thus, there exist languages that have no corresponding TM that recognizes them


## Some Languages are not Turing-recognizable

We have proven:
(1) The set of Turing Machines is countable
(2) The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines
- Thus, there exist languages that have no corresponding TM that recognizes them
- Note, that such languages are also undecidable


## Where are we now?

## Some Languages are not Turing-recognizable

We have proven:
(1) The set of Turing Machines is countable
(2) The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines
- Thus, there exist languages that have no corresponding TM that recognizes them
- Note, that such languages are also undecidable


## Where are we now?

- We have proven that some languages are not Turing-recognizable


## Some Languages are not Turing-recognizable

We have proven:
(1) The set of Turing Machines is countable
(2) The set of languages is uncountable

Therefore:

- There is no one-to-one and onto mapping from languages to Turing Machines
- Thus, there exist languages that have no corresponding TM that recognizes them
- Note, that such languages are also undecidable


## Where are we now?

- We have proven that some languages are not Turing-recognizable
- But, we have not given any examples of such a language


## $A_{T M}$ is Undecidable

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M(w)=1\}
$$

## $A_{T M}$ is Undecidable

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M(w)=1\}
$$

Proof: By contradiction

## $A_{T M}$ is Undecidable

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M(w)=1\}
$$

Proof: By contradiction

- Assume that $A_{T M}$ is decided by a TM $H$

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

## $A_{T M}$ is Undecidable

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M(w)=1\}
$$

Proof: By contradiction

- Assume that $A_{T M}$ is decided by a TM $H$

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

- Use $H$ to build the following TM $D$ :


## $A_{T M}$ is Undecidable

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M(w)=1\}
$$

Proof: By contradiction

- Assume that $A_{T M}$ is decided by a TM $H$

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

- Use $H$ to build the following TM $D$ :

On Input $\langle M\rangle$, where $M$ is a TM
(1) Run $H$ on input $\langle M,\langle M\rangle\rangle$
(2) Output the opposite of what $H$ outputs

## $A_{T M}$ is Undecidable

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M(w)=1\}
$$

Proof: By contradiction

- Assume that $A_{T M}$ is decided by a TM $H$

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

- Use $H$ to build the following TM $D$ :

On Input $\langle M\rangle$, where $M$ is a TM
(1) Run $H$ on input $\langle M,\langle M\rangle\rangle$
(2) Output the opposite of what $H$ outputs

$$
D(\langle M\rangle)= \begin{cases}\text { accept } & \text { if } M \text { does not accept }\langle M\rangle \\ \text { reject } & \text { if } M \text { accepts }\langle M\rangle\end{cases}
$$

## $A_{T M}$ is Undecidable

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M(w)=1\}
$$

Proof: By contradiction

- Assume that $A_{T M}$ is decided by a TM $H$

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

- Use $H$ to build the following TM $D$ :
$R_{4}, D .<(D\rangle$
On Input $\langle M\rangle$, where $M$ is a TM $\quad D(\langle 0\rangle)$ :
(1) Run $H$ on input $\langle M,\langle M\rangle\rangle$
(2) Output the opposite of what $H$ outputs

$$
D(\langle M\rangle)= \begin{cases}\text { accept } & \text { if } M \text { does not accept }\langle M\rangle \\ \text { reject } & \text { if } M \text { accepts }\langle M\rangle\end{cases}
$$

- Now consider what happens if we run $D$ on $\langle D\rangle$

$$
D(\langle D\rangle)= \begin{cases}\text { accept } & \text { if } D \text { does not accept }\langle D\rangle \\ \text { reject } & \text { if } D \text { accepts }\langle D\rangle\end{cases}
$$

- Contradiction!


## How Is This a Diagonalization?

## How Is This a Diagonalization?

|  | $\left\langle M_{1}\right\rangle$ | $\left\langle M_{2}\right\rangle$ | $\left\langle M_{3}\right\rangle$ | $\ldots$ | $\langle D\rangle$ | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{1}$ | accept | reject | accept |  | accept |  |
| $\vec{M}_{2}$ | reject | reject | reject | $\ldots$ | accept | $\ldots$ |
| $M_{3}$ | accept | accept | accept |  | reject |  |
| $\vdots$ |  | $\vdots$ |  | $\ddots$ |  |  |
| $D$ | reject | accept | reject |  | $?$ |  |

- We have defined $D$ to do the opposite of what $M_{i}$ does on input $\left\langle M_{i}\right\rangle$
- But what does $D$ do on input $\langle D\rangle$ ??


## A Turing-unrecognizable Language

$!-T M$
The language

$$
\overline{A_{T M}}=\{\langle M, w\rangle \mid M \text { is a TM and } M(w) \neq 1\}
$$

is not Turing-recognizable

## Outline

## (1) Lecture 14 Review

(2) Review: Decidable Languages
(3) Preliminaries - Countable and Uncountable Sets
(4) Proving $A_{T M}$ Undecidable
(5) Reductions between Languages

## Another Way to Prove Undecidability

## Reductions Between Problems

## Another Way to Prove Undecidability

## Reductions Between Problems

There is a reduction from a problem $A$ to a problem $B$ if we can use a solution to problem $B$ to solve problem $A$

$$
A \leq B
$$

## Another Way to Prove Undecidability

## Reductions Between Problems

There is a reduction from a problem $A$ to a problem $B$ if we can use a solution to problem $B$ to solve problem $A$

$$
A \leq B
$$

Examples:
(1) Finding area of a rectangle $\leq$ Finding its length and width

## Another Way to Prove Undecidability

## Reductions Between Problems

There is a reduction from a problem $A$ to a problem $B$ if we can use a solution to problem $B$ to solve problem $A$

$$
A \leq B
$$

Examples:
(1) Finding area of a rectangle $\leq$ Finding its length and width
(2) Finding temperature outside $\leq$ Reading a thermometer

## Another Way to Prove Undecidability

## Reductions Between Problems

There is a reduction from a problem $A$ to a problem $B$ if we can use a solution to problem $B$ to solve problem $A$

$$
A \leq B
$$

Examples:
(1) Finding area of a rectangle $\leq$ Finding its length and width
(2) Finding temperature outside $\leq$ Reading a thermometer Observations:

## Another Way to Prove Undecidability

## Reductions Between Problems

There is a reduction from a problem $A$ to a problem $B$ if we can use a solution to problem $B$ to solve problem $A$

$$
A \leq B
$$

Examples:
(1) Finding area of a rectangle $\leq$ Finding its length and width
(2) Finding temperature outside $\leq$ Reading a thermometer Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$


## Another Way to Prove Undecidability

## Reductions Between Problems

There is a reduction from a problem $A$ to a problem $B$ if we can use a solution to problem $B$ to solve problem $A$

$$
A \leq B
$$

Examples:
(1) Finding area of a rectangle $\leq$ Finding its length and width
(2) Finding temperature outside $\leq$ Reading a thermometer Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works


## Another Way to Prove Undecidability

## Reductions Between Problems

There is a reduction from a problem $A$ to a problem $B$ if we can use a solution to problem $B$ to solve problem $A$

$$
A \leq B
$$

## Examples:

(1) Finding area of a rectangle $\leq$ Finding its length and width
(2) Finding temperature outside $\leq$ Reading a thermometer Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works


## Intuition

$A \leq B$ means that:

## Another Way to Prove Undecidability

## Reductions Between Problems

There is a reduction from a problem $A$ to a problem $B$ if we can use a solution to problem $B$ to solve problem $A$

$$
A \leq B
$$

## Examples:

(1) Finding area of a rectangle $\leq$ Finding its length and width
(2) Finding temperature outside $\leq$ Reading a thermometer Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works


## Intuition

$A \leq B$ means that:

- problem $A$ is no harder than problem $B$.


## Another Way to Prove Undecidability

## Reductions Between Problems

There is a reduction from a problem $A$ to a problem $B$ if we can use a solution to problem $B$ to solve problem $A$

$$
A \leq B
$$

## Examples:

(1) Finding area of a rectangle $\leq$ Finding its length and width
(2) Finding temperature outside $\leq$ Reading a thermometer Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works


## Intuition

$A \leq B$ means that:

- problem $A$ is no harder than problem $B$.
- Equivalently, problem $B$ is no easier than problem $A$


## Reductions and Undecidability

## Main Observation

Suppose that $A \leq B$, then:

## Reductions and Undecidability

## Main Observation

Suppose that $A \leq B$, then:

- If $A$ is undecidable
- $B$ must also be undecidable


## Reductions and Undecidability

## Main Observation

Suppose that $A \leq B$, then:

- If $A$ is undecidable
- $B$ must also be undecidable

Proof: (by contradiction)

## Reductions and Undecidability

## Main Observation

Suppose that $A \leq B$, then:

- If $A$ is undecidable
- $B$ must also be undecidable

Proof: (by contradiction)

- Suppose that $B$ is decidable


## Reductions and Undecidability

## Main Observation

Suppose that $A \leq B$, then:

- If $A$ is undecidable
- $B$ must also be undecidable

Proof: (by contradiction)

- Suppose that $B$ is decidable
- Since $A \leq B$, there exists an algorithm (i.e., a reduction) that uses a solution to $B$ to solve $A$


## Reductions and Undecidability

## Main Observation

Suppose that $A \leq B$, then:

- If $A$ is undecidable
- $B$ must also be undecidable

Proof: (by contradiction)

- Suppose that $B$ is decidable
- Since $A \leq B$, there exists an algorithm (i.e., a reduction) that uses a solution to $B$ to solve $A$
- But, this means that $A$ is decidable by running the machine for $B$ as needed by the reduction


## Undecidability of HALT

$$
H_{A L T}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M \text { halts on input } w\}
$$

## Undecidability of HALT

$$
H_{A L T}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M \text { halts on input } w\}
$$

Theorem: HALT is undecidable

## Undecidability of HALT

$$
\operatorname{HALT}_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M \text { halts on input } w\}
$$

Theorem: HALT is undecidable Proof Sketch:

- We show that $A_{T M} \leq H A L T$


## Undecidability of HALT

$$
\operatorname{HALT}_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M \text { halts on input } w\}
$$

Theorem: HALT is undecidable Proof Sketch:

- We show that $A_{T M} \leq H A L T$
- Since we know that $A_{T M}$ is undecidable, this shows that $H A L T$ is also undecidable


## Undecidability of HALT

$$
\operatorname{HALT}_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M \text { halts on input } w\}
$$

Theorem: HALT is undecidable
Proof Sketch:

- We show that $A_{T M} \leq H A L T$
- Since we know that $A_{T M}$ is undecidable, this shows that HALT is also undecidable

Proof:
Construct algorithm $S$ that decides $A_{T M}$ given a TM $R$ that decides HALT

## Undecidability of HALT

$$
\operatorname{HALT}_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M \text { halts on input } w\}
$$

Theorem: HALT is undecidable
Proof Sketch:

- We show that $A_{T M} \leq H A L T$
- Since we know that $A_{T M}$ is undecidable, this shows that HALT is also undecidable

Proof:
Construct algorithm $S$ that decides $A_{T M}$ given a TM $R$ that decides HALT On input $\langle M, w\rangle, S$ does the following:

## Undecidability of HALT

$$
\operatorname{HALT}_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M \text { halts on input } w\}
$$

Theorem: HALT is undecidable
Proof Sketch:

- We show that $A_{T M} \leq H A L T$
- Since we know that $A_{T M}$ is undecidable, this shows that HALT is also undecidable

Proof:
Construct algorithm $S$ that decides $A_{T M}$ given a TM $R$ that decides HALT On input $\langle M, w\rangle, S$ does the following:

- Run $R(\langle M, w\rangle)$


## Undecidability of HALT

$$
H^{H L} T_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M \text { halts on input } w\}
$$

Theorem: HALT is undecidable
Proof Sketch:

- We show that $A_{T M} \leq H A L T$
- Since we know that $A_{T M}$ is undecidable, this shows that HALT is also undecidable

Proof:
Construct algorithm $S$ that decides $A_{T M}$ given a TM $R$ that decides HALT On input $\langle M, w\rangle, S$ does the following:

- Run $R(\langle M, w\rangle)$
- If $R$ rejects - $M(w)$ doesn't halt - halt and reject


## Undecidability of HALT

$$
H^{H L} T_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M \text { halts on input } w\}
$$

Theorem: HALT is undecidable
Proof Sketch:

- We show that $A_{T M} \leq H A L T$
- Since we know that $A_{T M}$ is undecidable, this shows that HALT is also undecidable

Proof:
Construct algorithm $S$ that decides $A_{T M}$ given a TM $R$ that decides HALT On input $\langle M, w\rangle, S$ does the following:

- Run $R(\langle M, w\rangle)$
- If $R$ rejects - $M(w)$ doesn't halt - halt and reject
- if $R$ accepts - $M(w)$ halts - Simulate $M(w)$ until it halts


## Undecidability of HALT

$$
H^{H L} T_{T M}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M \text { halts on input } w\}
$$

Theorem: HALT is undecidable
Proof Sketch:

- We show that $A_{T M} \leq H A L T$
- Since we know that $A_{T M}$ is undecidable, this shows that HALT is also undecidable

Proof:
Construct algorithm $S$ that decides $A_{T M}$ given a TM $R$ that decides HALT On input $\langle M, w\rangle, S$ does the following:

- Run $R(\langle M, w\rangle)$
- If $R$ rejects - $M(w)$ doesn't halt - halt and reject
- if $R$ accepts - $M(w)$ halts - Simulate $M(w)$ until it halts
- Output whatever $M$ output

