Foundations of Computing Lecture 16

Arkady Yerukhimovich

March 18, 2025

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

March 18, 2025

∃⊳

2 Proofs by Reduction

Arkady Yerukhimovich

3 Example Proofs by Reduction

CS 3313 - Foundations of Computing

< ∃⇒

æ

- Countable and Uncountable Sets
 - Diagonalization
- Proving A_{TM} is Undecidable

3)) J

Announcements

Homework 6 is out

- Due at 5PM on Monday, March 24
- Early deadline by midnight on Friday, March 21.

∃ >

Announcements

Homework 6 is out

- Due at 5PM on Monday, March 24
- Early deadline by midnight on Friday, March 21.

Exam 2

- Exam 2 will be in class next Thursday, March 27
- Next Tuesday lecture and Wednesday lab will be for review
- You will again be allowed 2 pieces of paper with notes

Announcements

Homework 6 is out

- Due at 5PM on Monday, March 24
- Early deadline by midnight on Friday, March 21.

Exam 2

- Exam 2 will be in class next Thursday, March 27
- Next Tuesday lecture and Wednesday lab will be for review
- You will again be allowed 2 pieces of paper with notes
- Exam will cover the following topics:
 - Turing Machines
 - Countable and uncountable sets
 - Decidable, Turing-recognizable Languages
 - Proofs by reduction
 - Everything we cover this week
- CFL Pumping Lemma will not be on the exam

Arkady Yerukhimovich

3 Example Proofs by Reduction

CS 3313 - Foundations of Computing

< ∃⇒

æ

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

 $A \leq B$

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

 $A \leq B$

Intuition

 $A \leq B$ means that:

• problem A is no harder than problem B.

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

 $A \leq B$

Intuition

- $A \leq B$ means that:
 - problem A is no harder than problem B.
 - Equivalently, problem B is no easier than problem A

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Suppose that $A \leq B$, then:

- If A is undecidable
- *B* must also be undecidable

Proof: (by contradiction)

Arkady Yerukhimovich

Suppose that $A \leq B$, then:

- If A is undecidable
- *B* must also be undecidable

Proof: (by contradiction)

• Suppose that *B* is decidable

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

- Suppose that *B* is decidable
- Since A ≤ B, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A

Suppose that $A \leq B$, then:

- If A is undecidable
- *B* must also be undecidable

Proof: (by contradiction)

- Suppose that B is decidable
- Since A ≤ B, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A
- But, this means that A is decidable by running the reduction using the decider machine for B.

2 Proofs by Reduction

Arkady Yerukhimovich

글▶ 글

Undecidability of *HALT*_{TM}

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Image: A matrix

- < ∃ →

э

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$ Theorem: HALT is undecidable

< 1 k

3. 3

Theorem: *HALT* is undecidable <u>Proof Sketch:</u>

• Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.

э

Theorem: *HALT* is undecidable <u>Proof Sketch:</u>

- Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.
- We show that $A_{TM} \leq HALT_{TM}$

Theorem: *HALT* is undecidable <u>Proof Sketch:</u>

- Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.
- We show that $A_{TM} \leq HALT_{TM}$
- This shows that HALT_{TM} is also undecidable

Theorem: *HALT* is undecidable <u>Proof Sketch:</u>

- Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.
- We show that $A_{TM} \leq HALT_{TM}$
- This shows that HALT_{TM} is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT

Theorem: *HALT* is undecidable <u>Proof Sketch:</u>

- Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.
- We show that $A_{TM} \leq HALT_{TM}$
- This shows that HALT_{TM} is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following:

Theorem: *HALT* is undecidable <u>Proof Sketch:</u>

- Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.
- We show that $A_{TM} \leq HALT_{TM}$
- This shows that HALT_{TM} is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following:

• Run $D(\langle M, w \rangle)$

Theorem: *HALT* is undecidable <u>Proof Sketch:</u>

- Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.
- We show that $A_{TM} \leq HALT_{TM}$
- This shows that HALT_{TM} is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following:

- Run $D(\langle M, w \rangle)$
- If D rejects M(w) doesn't halt halt and reject

Theorem: *HALT* is undecidable <u>Proof Sketch:</u>

- Recall that $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$ is undecidable.
- We show that $A_{TM} \leq HALT_{TM}$
- This shows that HALT_{TM} is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following:

- Run $D(\langle M, w \rangle)$
- If D rejects M(w) doesn't halt halt and reject
- if D accepts M(w) halts Simulate M(w) until it halts, and output whatever M outputs

3. 3

Theorem: *REGULAR_{TM}* is undecidable

Theorem: $REGULAR_{TM}$ is undecidable Proof Sketch:

• We show that $A_{TM} \leq REGULAR_{TM}$

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.
 - If M accepts w, M' recognizes Σ^* regular language

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.
 - If M accepts w, M' recognizes Σ^* regular language
 - If M does not accept w, M' recognizes $\{0^n1^n\}$ not regular

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.
 - If M accepts w, M' recognizes Σ^* regular language
 - If M does not accept w, M' recognizes $\{0^n1^n\}$ not regular
- If we can decide whether M' recognizes a regular language or not, can use that to decide whether M accepts w or not

Theorem: $REGULAR_{TM}$ is undecidable Proof:

.∋...>

Theorem: $REGULAR_{TM}$ is undecidable Proof: Reduction R that decides A_{TM} given a TM D that decides $REGULAR_{TM}$

Theorem: $REGULAR_{TM}$ is undecidable Proof: Reduction R that decides A_{TM} given a TM D that decides $REGULAR_{TM}$ On input $\langle M, w \rangle$:

Theorem: $REGULAR_{TM}$ is undecidable Proof:

Reduction *R* that decides A_{TM} given a TM *D* that decides $REGULAR_{TM}$ On input $\langle M, w \rangle$:

• Construct TM $M'_{\langle M,w \rangle}$ s.t. $M'_{\langle M,w \rangle}(x)$ is as follows:

Theorem: $REGULAR_{TM}$ is undecidable Proof:

Reduction *R* that decides A_{TM} given a TM *D* that decides $REGULAR_{TM}$ On input $\langle M, w \rangle$:

- Construct TM $M'_{(M,w)}$ s.t. $M'_{(M,w)}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

Reduction *R* that decides A_{TM} given a TM *D* that decides $REGULAR_{TM}$ On input $\langle M, w \rangle$:

- Construct TM $M'_{\langle M,w\rangle}$ s.t. $M'_{\langle M,w\rangle}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept
 - If x does not have this form, run M(w) and accept if it accepts

Theorem: $REGULAR_{TM}$ is undecidable Proof:

Proof:

Reduction *R* that decides A_{TM} given a TM *D* that decides $REGULAR_{TM}$ On input $\langle M, w \rangle$:

- Construct TM $M'_{\langle M,w \rangle}$ s.t. $M'_{\langle M,w \rangle}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept
 - If x does not have this form, run M(w) and accept if it accepts
- **2** Run *D* on input $\langle M' \rangle$

Arkady Yerukhimovich

11/12

Theorem: $REGULAR_{TM}$ is undecidable Proof:

Reduction *R* that decides A_{TM} given a TM *D* that decides $REGULAR_{TM}$ On input $\langle M, w \rangle$:

- Construct TM $M'_{\langle M,w\rangle}$ s.t. $M'_{\langle M,w\rangle}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept
 - If x does not have this form, run M(w) and accept if it accepts
- **2** Run *D* on input $\langle M' \rangle$
 - If M(w)=1, then $M'_{\langle M,w
 angle}$ accepts all $x\in\Sigma^*$ regular
 - If M(w)
 eq 1, $M'_{\langle M,w
 angle}$ accepts the language $0^n 1^n$ not regular
- Output what D outputs

$$EMPTY - STRING_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } M(\epsilon) = 1 \}$$

Think about:

- What direction should the reduction go?
- What language should the reduction use?