Foundations of Computing Lecture 16

Arkady Yerukhimovich

March 19, 2024

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

March 19, 2024

∃⊳

1 Lecture 15 Review

- Proof by Reduction
- 3 Where Are We Now?
- 4 Reduction Types

< 47 ▶

< ∃⇒

æ

- Countable and Uncountable Sets
 - Diagonalization
- Proving A_{TM} is Undecidable

3 N 3

- 3 Where Are We Now?
- 4 Reduction Types

Arkady Yerukhimovich

- (日)

< ∃⇒

æ

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

 $A \leq B$

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

 $A \leq B$

Intuition

 $A \leq B$ means that:

• problem A is no harder than problem B.

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

 $A \leq B$

Intuition

 $A \leq B$ means that:

- problem A is no harder than problem B.
- Equivalently, problem B is no easier than problem A

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Suppose that $A \leq B$, then:

- If A is undecidable
- *B* must also be undecidable

Proof: (by contradiction)

Arkady Yerukhimovich

Suppose that $A \leq B$, then:

- If A is undecidable
- *B* must also be undecidable

Proof: (by contradiction)

• Suppose that *B* is decidable

Suppose that $A \leq B$, then:

- If A is undecidable
- *B* must also be undecidable

Proof: (by contradiction)

- Suppose that *B* is decidable
- Since A ≤ B, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A

Suppose that $A \leq B$, then:

- If A is undecidable
- *B* must also be undecidable

Proof: (by contradiction)

- Suppose that *B* is decidable
- Since A ≤ B, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A
- But, this means that A is decidable by running the reduction using the decider machine for B.

Undecidability of HALT_{TM}

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Image: Image:

→ < ∃ →</p>

æ

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$ Theorem: HALT is undecidable

3. 3

Theorem: *HALT* is undecidable <u>Proof Sketch:</u>

• We show that $A_{TM} \leq HALT_{TM}$

Theorem: *HALT* is undecidable <u>Proof Sketch:</u>

- We show that $A_{TM} \leq HALT_{TM}$
- Since we know that A_{TM} is undecidable, this shows that $HALT_{TM}$ is also undecidable

Theorem: *HALT* is undecidable <u>Proof Sketch:</u>

- We show that $A_{TM} \leq HALT_{TM}$
- Since we know that A_{TM} is undecidable, this shows that $HALT_{TM}$ is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT

Theorem: *HALT* is undecidable <u>Proof Sketch:</u>

- We show that $A_{TM} \leq HALT_{TM}$
- Since we know that A_{TM} is undecidable, this shows that $HALT_{TM}$ is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following: R is troight he decide of

 $M(\omega) = 1$

Theorem: *HALT* is undecidable <u>Proof Sketch:</u>

- We show that $A_{TM} \leq HALT_{TM}$
- Since we know that A_{TM} is undecidable, this shows that $HALT_{TM}$ is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following:

• Run $D(\langle M, w \rangle)$

Theorem: *HALT* is undecidable <u>Proof Sketch:</u>

- We show that $A_{TM} \leq HALT_{TM}$
- Since we know that A_{TM} is undecidable, this shows that $HALT_{TM}$ is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following:

- Run $D(\langle M, w \rangle)$
- If D rejects -M(w) doesn't halt halt and reject

Theorem: *HALT* is undecidable <u>Proof Sketch:</u>

- We show that $A_{TM} \leq HALT_{TM}$
- Since we know that A_{TM} is undecidable, this shows that $HALT_{TM}$ is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following:

- Run $D(\langle M, w \rangle)$
- If D rejects M(w) doesn't halt halt and reject
- if D accepts M(w) halts Simulate M(w) until it halts, and output whatever M outputs

3. 3

Theorem: *REGULAR_{TM}* is undecidable

Theorem: $REGULAR_{TM}$ is undecidable Proof Sketch:

• We show that $A_{TM} \leq REGULAR_{TM}$

Theorem: $REGULAR_{TM}$ is undecidable Proof Sketch:

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.

24, w> Does M(w) = 1

Theorem: $REGULAR_{TM}$ is undecidable Proof Sketch:

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.
 - If M accepts w, M' recognizes Σ^* regular language

Theorem: $REGULAR_{TM}$ is undecidable Proof Sketch:

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.
 - If M accepts w, M' recognizes Σ^* regular language
 - If M does not accept w, M' recognizes $\{0^n1^n\}$ not regular

Theorem: $REGULAR_{TM}$ is undecidable Proof Sketch:

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.
 - If M accepts w, M' recognizes Σ^* regular language
 - If M does not accept w, M' recognizes $\{0^n1^n\}$ not regular
- If we can decide whether M' recognizes a regular language or not, can use that to decide whether M accepts w or not

1. On inp-1
$$(M')$$

1. Run $D(M')$
1. $H = 1 = 7 H(U) = 1$, if $D(M') = 0 = 7 = 0$ accept

Theorem: $REGULAR_{TM}$ is undecidable Proof:

.∋...>

Theorem: $REGULAR_{TM}$ is undecidable Proof: Reduction R that decides A_{TM} given a TM D that decides $REGULAR_{TM}$

Theorem: $REGULAR_{TM}$ is undecidable Proof: Reduction R that decides A_{TM} given a TM D that decides $REGULAR_{TM}$ On input $\langle M, w \rangle$:

Theorem: $REGULAR_{TM}$ is undecidable Proof:

• Construct TM
$$M'_{\langle M,w \rangle}$$
 s.t. $M'_{\langle M,w \rangle}(x)$ is as follows:

Theorem: $REGULAR_{TM}$ is undecidable Proof:

- Construct TM $M'_{(M,w)}$ s.t. $M'_{(M,w)}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept

Theorem: $REGULAR_{TM}$ is undecidable Proof:

- Construct TM $M'_{\langle M,w\rangle}$ s.t. $M'_{\langle M,w\rangle}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept
 - If x does not have this form, run M(w) and accept if it accepts

Theorem: $REGULAR_{TM}$ is undecidable Proof:

- Construct TM $M'_{\langle M,w \rangle}$ s.t. $M'_{\langle M,w \rangle}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept
 - If x does not have this form, run M(w) and accept if it accepts
- **2** Run *D* on input $\langle M' \rangle$

Theorem: $REGULAR_{TM}$ is undecidable Proof:

Reduction R that decides A_{TM} given a TM D that decides REGULAR_{TM} On input $\langle M, w \rangle$:

- Construct TM $M'_{(M,w)}$ s.t. $M'_{(M,w)}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept

 \rightarrow • If x does not have this form, run M(w) and accept if it accepts

- **2** Run *D* on input $\langle M' \rangle$
- M' accepts all strings L(m') = Z les Output what D outputs

Other Undecidable Languages – Exercise

 $EMPTY - STRING_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } M(\epsilon) = 1 \}$

- ∢ ∃ ▶

э