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Countable and Uncountable Sets
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Proving ATM is Undecidable
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Another Way to Prove Undecidability

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a

solution to problem B to solve problem A

A  B

Intuition

A  B means that:

problem A is no harder than problem B .

Equivalently, problem B is no easier than problem A
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Reductions and Undecidability

Main Observation

Suppose that A  B , then:

If A is undecidable

B must also be undecidable

Proof: (by contradiction)

Suppose that B is decidable

Since A  B , there exists an algorithm (i.e., a reduction) that uses a

solution to B to solve A

But, this means that A is decidable by running the reduction using

the decider machine for B .
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Undecidability of HALTTM

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable

Proof Sketch:

We show that ATM  HALTTM

Since we know that ATM is undecidable, this shows that HALTTM is

also undecidable

Proof:

Construct reduction R that decides ATM given a TM D that decides HALT

On input hM,wi, R does the following:

Run D(hM,wi)
If D rejects – M(w) doesn’t halt – halt and reject

if D accepts – M(w) halts – Simulate M(w) until it halts, and output

whatever M outputs
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R is trying to decide is

M(w) = 1
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Other Undecidable Languages

REGULARTM = {hMi | M is a TM and L(M) is a regular language}

Theorem: REGULARTM is undecidable

Proof Sketch:

We show that ATM  REGULARTM

Specifically, reduction builds another TM M
0
s.t.

If M accepts w , M
0
recognizes ⌃

⇤
– regular language

If M does not accept w , M
0
recognizes {0n1n} – not regular

If we can decide whether M
0
recognizes a regular language or not, can

use that to decide whether M accepts w or not
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Run D(M')
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if D(M) =0 =Ms ep



Other Undecidable Languages

REGULARTM = {hMi | M is a TM and L(M) is a regular language}

Theorem: REGULARTM is undecidable

Proof:

Reduction R that decides ATM given a TM D that decides REGULARTM

On input hM,wi:
1 Construct TM M

0
hM,wi s.t. M

0
hM,wi(x) is as follows:

If x = 0
n
1
n
, accept

If x does not have this form, run M(w) and accept if it accepts

2 Run D on input hM 0i
3 Output what D outputs
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M(W) = 1 : M' accept all stins
[(a) =& *-Rai

Makes ~ acptr : M' accept Or
" E(M) - Nol Per



Other Undecidable Languages – Exercise

EMPTY � STRINGTM = {hMi | M is a TM and M(✏) = 1}
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