Foundations of Computing

Lecture 17

Arkady Yerukhimovich

March 21, 2024

Outline

(1) Lecture 16 Review

(2) Where Are We Now?

3 Reduction Types

(4) A Computational Definition of Information - Kolmogorov Complexity

Lecture 16 Review

- Proofs by reduction
- Undecidable languages
- $H A L T_{T M}$
- REGULAR ${ }_{\text {TM }}$

Exercise

EMPTY - STRING $_{T M}=\{\langle M\rangle \mid M$ is a TM and $M(\epsilon)=1\}$

$$
A_{T M} \leq E S_{T M}
$$

1. Assume Esta ir decidubl- $D(\langle M\rangle)$
2. $\frac{R(\langle M, w\rangle)}{M^{\prime}(\epsilon)=1 \quad M(-)=1}$
if M^{\prime} doeritt uacapl \in then M doesurt aceapt w
$M^{\prime}\left\{\begin{array}{c}M^{\prime}(\epsilon): \\ R_{4}, ~ \\ M(n)\end{array}\right.$ output inat is intput

$$
D\left(\left\langle M^{\prime}\right\rangle\right)
$$

Outline

(1) Lecture 16 Review
(2) Where Are We Now?

3 Reduction Types

(4) A Computational Definition of Information - Kolmogorov Complexity

Summary

Algorithms

Algorithms are critical for understanding decidability of problems

Summary

Algorithms

Algorithms are critical for understanding decidability of problems
(1) To show that a problem is decidable: Give an algorithm that always terminates and outputs the answer

Summary

Algorithms

Algorithms are critical for understanding decidability of problems
(1) To show that a problem is decidable: Give an algorithm that always terminates and outputs the answer
(2) To show that a problem is undecidable: Give an algorithm (a reduction) that shows that this problem can be used to solve an undecidable problems

What About Turing-Unrecognizable Problems?

Question

Can reductions help us determine if a language is Turing-unrecognizable?

What About Turing-Unrecognizable Problems?

Question
Can reductions help us determine if a language is Turing-unrecognizable?
Recall: $\overline{A_{T M}}$ is Turing-unrecognizable

$$
\langle M, \omega\rangle \text { rept if }
$$

$$
\overline{A_{T m}} \leq L
$$

M doer atoll accept ω

What About Turing-Unrecognizable Problems?

Question
Can reductions help us determine if a language is Turing-unrecognizable?
Recall: $\overline{A_{T M}}$ is Turing-unrecognizable
Problem: $\overline{A_{T M}} \leq A_{T M}$

$$
R \quad(\langle M, v\rangle)
$$

$D(\langle M, v\rangle)=\begin{aligned} & 1 \text { if } M(v)=1 \\ & 0 \text { if } M \text { desurir acyl } v\end{aligned}$
Output the opporiz

What About Turing-Unrecognizable Problems?

Question

Can reductions help us determine if a language is Turing-unrecognizable?
Recall: $\overline{A_{T M}}$ is Turing-unrecognizable
Problem: $\overline{A_{T M}} \leq A_{T M}$
but $A_{T M}$ is Turing-recognizable

What About Turing-Unrecognizable Problems?

Question

Can reductions help us determine if a language is Turing-unrecognizable?
Recall: $\overline{A_{T M}}$ is Turing-unrecognizable
Problem: $\overline{A_{T M}} \leq A_{T M}$
but $A_{T M}$ is Turing-recognizable
Takeaway: General reductions do not work for Turing-unrecognizable languages

Solution

We need to restrict what our reductions can do.

Outline

(1) Lecture 16 Review

(2) Where Are We Now?

(3) Reduction Types

4 A Computational Definition of Information - Kolmogorov Complexity

Mapping Reductions

Definition

Language A is mapping reducible to language $B\left(A \leq_{m} B\right)$ if there is a computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where for every w,

$$
w \in A \Longleftrightarrow f(w) \in B
$$

Mapping Reductions

Definition

Language A is mapping reducible to language $B\left(A \leq_{m} B\right)$ if there is a computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where for every w,

$$
w \in A \Longleftrightarrow f(w) \in B
$$

- Function f is computable if it can be computed by a TM / algorithm
- There is a TM M that starts with w on its tape, writes $f(w)$ on its tape

Mapping Reductions

Definition

Language A is mapping reducible to language $B\left(A \leq_{m} B\right)$ if there is a computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where for every w,

$$
w \in A \Longleftrightarrow f(w) \in B
$$

- Function f is computable if it can be computed by a TM / algorithm
- There is a TM M that starts with w on its tape, writes $f(w)$ on its tape
- Such reductions are also called:
- many-one reductions
- Karp reductions (when only considering poly-time reductions)

Mapping Reductions

Definition

Language A is mapping reducible to language $B\left(A \leq_{m} B\right)$ if there is a computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where for every w,

$$
w \in A \Longleftrightarrow f(w) \in B
$$

- Function f is computable if it can be computed by a TM / algorithm
- There is a TM M that starts with w on its tape, writes $f(w)$ on its tape
- Such reductions are also called:
- many-one reductions
- Karp reductions (when only considering poly-time reductions)
- Works by mapping input $\in A$ to input $\in B$ and vice-versa

Mapping Reductions

Mapping Reduction Properties

Mapping reductions are very useful:
If $A \leq B$

- If B is decidable then A is decidable

$$
\begin{aligned}
& x \in A \Rightarrow f(x) \in B \\
& x \notin A \Rightarrow f(x) \notin B
\end{aligned}
$$

Mapping Reduction Properties

Mapping reductions are very useful:
If $A \leq_{m} B$

- If B is decidable then A is decidable
- If A is undecidable then B is undecidable

Mapping Reduction Properties

Mapping reductions are very useful:
If $A \leq_{m} B$

- If B is decidable then A is decidable
- If A is undecidable then B is undecidable
- If B is Turing-recognizable then A is Turing-recognizable
$x \in A \Rightarrow f(x) \in B$
$x \notin A \Rightarrow f(x) \notin B$

Mapping Reduction Properties

Mapping reductions are very useful:
If $A \leq_{m} B$

- If B is decidable then A is decidable
- If A is undecidable then B is undecidable
- If B is Turing-recognizable then A is Turing-recognizable
- If A is not Turing-recognizable than B is not Turing-recognizable

Observation:

Mapping reductions work for both decidability and Turing-recognizability.

Turing Reductions

Definition

Language A is Turing reducible to language $B(A, B)$ if can use a decider for B to decide A.

Turing Reductions

Definition

Language A is Turing reducible to language $B\left(A \leq_{T} B\right)$ if can use a decider for B to decide A.

- The reduction may make multiple calls to decider for B and may not directly use the result.

Turing Reductions

Definition

Language A is Turing reducible to language $B\left(A \leq_{T} B\right)$ if can use a decider for B to decide A.

- The reduction may make multiple calls to decider for B and may not directly use the result.
- For example, in the proof that $L_{T M} \leq L_{E_{T M}}$, we flipped the result of R deciding $L_{E_{T M}}$

Turing Reduction Properties

Turing reductions are more general than mapping reductions:

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
(1) If $A \leq_{m} B$, then $A \leq_{T} B$

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
(1) If $A \leq_{m} B$, then $A \leq_{T} B$
(2) If $A \leq_{T} B$, then it is not necessarily the case that $A \leq_{m} B$

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
(1) If $A \leq_{m} B$, then $A \leq_{T} B$
(2) If $A \leq_{T} B$, then it is not necessarily the case that $A \leq_{m} B$

- In particular, $L_{T M} \leq_{T} \overline{L_{T M}}$, but $L_{T M} \not \not_{m} \overline{L_{T M}}$

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
(1) If $A \leq_{m} B$, then $A \leq_{T} B$
(2) If $A \leq_{T} B$, then it is not necessarily the case that $A \leq_{m} B$

- In particular, $\mathbb{A}_{T M} \leq T \overline{A_{T M}}$, but $\mathbb{A}_{T M} \not \mathbb{Z}_{m} \overline{\mathbb{A}_{T M}}$

But, they have weaker implications than mapping reductions:

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
(1) If $A \leq_{m} B$, then $A \leq_{T} B$
(2) If $A \leq_{T} B$, then it is not necessarily the case that $A \leq_{m} B$

- In particular, $L_{T M} \leq_{T} \overline{L_{T M}}$, but $L_{T M} \not \not_{m} \overline{L_{T M}}$

But, they have weaker implications than mapping reductions:
(3) If $A \leq{ }_{T} B$

- If B is decidable then A is decidable

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
(1) If $A \leq_{m} B$, then $A \leq_{T} B$
(2) If $A \leq_{T} B$, then it is not necessarily the case that $A \leq_{m} B$

- In particular, $L_{T M} \leq_{T} \overline{L_{T M}}$, but $L_{T M} \not \not_{m} \overline{L_{T M}}$

But, they have weaker implications than mapping reductions:
(3) If $A \leq{ }_{T} B$

- If B is decidable then A is decidable
- If A is not decidable, then B is not decidable

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
(1) If $A \leq_{m} B$, then $A \leq_{T} B$
(2) If $A \leq_{T} B$, then it is not necessarily the case that $A \leq_{m} B$

- In particular, $L_{T M} \leq_{T} \overline{L_{T M}}$, but $L_{T M} \not \not_{m} \overline{L_{T M}}$

But, they have weaker implications than mapping reductions:
(3) If $A \leq{ }_{T} B$

- If B is decidable then A is decidable
- If A is not decidable, then B is not decidable
- If B is Turing-recognizable,

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
(1) If $A \leq_{m} B$, then $A \leq_{T} B$
(2) If $A \leq_{T} B$, then it is not necessarily the case that $A \leq_{m} B$

- In particular, $L_{T M} \leq_{T} \overline{L_{T M}}$, but $L_{T M} \not \not_{m} \overline{L_{T M}}$

But, they have weaker implications than mapping reductions:
(3) If $A \leq{ }_{T} B$

- If B is decidable then A is decidable
- If A is not decidable, then B is not decidable
- If B is Turing-recognizable, A is not necessarily Turing-recognizable

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
(1) If $A \leq_{m} B$, then $A \leq_{T} B$
(2) If $A \leq_{T} B$, then it is not necessarily the case that $A \leq_{m} B$

- In particular, $L_{T M} \leq_{T} \overline{L_{T M}}$, but $L_{T M} \not \not_{m} \overline{L_{T M}}$

But, they have weaker implications than mapping reductions:
(3) If $A \leq{ }_{T} B$

- If B is decidable then A is decidable
- If A is not decidable, then B is not decidable
- If B is Turing-recognizable, A is not necessarily Turing-recognizable
- If A is not Turing-recognizable, cannot say if B is Turing-recognizable

Outline

(1) Lecture 16 Review

(2) Where Are We Now?

(3) Reduction Types
(4) A Computational Definition of Information - Kolmogorov Complexity

Information in a String

$$
\begin{aligned}
& A=010101010101010101010101 \\
& B=110100100011100010111111
\end{aligned}
$$

Question

Which of these strings contains more information?

Kolmogorov Complexity

Definition

Consider $x \in\{0,1\}^{*}$.

Kolmogorov Complexity

Definition

Consider $x \in\{0,1\}^{*}$.
(1) The minimal description of $x(d(x))$ is the shortest string $\langle M, w\rangle$ such that TM M on input w halts with x on its tape

Kolmogorov Complexity

Definition

Consider $x \in\{0,1\}^{*}$.
(1) The minimal description of $x(d(x))$ is the shortest string $\langle M, w\rangle$ such that TM M on input w halts with x on its tape
(2) The Kolmogorov complexity of x is

$$
K(x)=|d(x)|
$$

Kolmogorov Complexity

Definition

Consider $x \in\{0,1\}^{*}$.
(1) The minimal description of $x(d(x))$ is the shortest string $\langle M, w\rangle$ such that TM M on input w halts with x on its tape
(2) The Kolmogorov complexity of x is

$$
K(x)=|d(x)|
$$

- Intuitively: $K(x)$ is the length of the shortest program that outputs x
- $K(x)$ is the minimal description of x

Kolmogorov Complexity

Definition

Consider $x \in\{0,1\}^{*}$.
(1) The minimal description of $x(d(x))$ is the shortest string $\langle M, w\rangle$ such that TM M on input w halts with x on its tape
(2) The Kolmogorov complexity of x is

$$
K(x)=|d(x)|
$$

- Intuitively: $K(x)$ is the length of the shortest program that outputs x
- $K(x)$ is the minimal description of x
- This captures the "amount of information" in x

Properties of Kolmogorov Complexity

(1) $\forall x, K(x) \leq|x|+c$ for some constant c

$$
\begin{aligned}
& M-\text { outputs ib input } \\
& d(x)=M \| x
\end{aligned}
$$

Properties of Kolmogorov Complexity

(1) $\forall x, K(x) \leq|x|+c$ for some constant c

- Can always describe a TM M that given x just leaves it on it's tape

Properties of Kolmogorov Complexity

(1) $\forall x, K(x) \leq|x|+c$ for some constant c

- Can always describe a TM M that given x just leaves it on it's tape
- Size of description of M is independent of $|x|$

Properties of Kolmogorov Complexity

(1) $\forall x, K(x) \leq|x|+c$ for some constant c

- Can always describe a TM M that given x just leaves it on it's tape
- Size of description of M is independent of $|x|$
- Can describe x as $\langle M\rangle \| x$

Properties of Kolmogorov Complexity

(1) $\forall x, K(x) \leq|x|+c$ for some constant c

- Can always describe a TM M that given x just leaves it on it's tape
- Size of description of M is independent of $|x|$
- Can describe x as $\langle M\rangle \| x$
- Need to have some way to indicate where description of M ends and description of x begins (no special characters to do this)

Properties of Kolmogorov Complexity

(1) $\forall x, K(x) \leq|x|+c$ for some constant c

- Can always describe a TM M that given x just leaves it on it's tape
- Size of description of M is independent of $|x|$
- Can describe x as $\langle M\rangle \| x$
- Need to have some way to indicate where description of M ends and description of x begins (no special characters to do this)
(2) $\forall x, K(x x) \leq K(x)+c$ for some constant c

Properties of Kolmogorov Complexity

(1) $\forall x, K(x) \leq|x|+c$ for some constant c

- Can always describe a TM M that given x just leaves it on it's tape
- Size of description of M is independent of $|x|$
- Can describe x as $\langle M\rangle \| x$
- Need to have some way to indicate where description of M ends and description of x begins (no special characters to do this)
(2) $\forall x, K(x x) \leq K(x)+c$ for some constant c
- Use $K(x)$ bits to describe x, then use c bits to describe TM that repeats its input

Properties of Kolmogorov Complexity

(1) $\forall x, K(x) \leq|x|+c$ for some constant c

- Can always describe a TM M that given x just leaves it on it's tape
- Size of description of M is independent of $|x|$
- Can describe x as $\langle M\rangle \| x$
- Need to have some way to indicate where description of M ends and description of x begins (no special characters to do this)
(2) $\forall x, K(x x) \leq K(x)+c$ for some constant c
- Use $K(x)$ bits to describe x, then use c bits to describe TM that repeats its input
(3) $\forall x, y, K(x y) \leq$

Properties of Kolmogorov Complexity

(1) $\forall x, K(x) \leq|x|+c$ for some constant c

- Can always describe a TM M that given x just leaves it on it's tape
- Size of description of M is independent of $|x|$
- Can describe x as $\langle M\rangle \| x$
- Need to have some way to indicate where description of M ends and description of x begins (no special characters to do this)
(2) $\forall x, K(x x) \leq K(x)+c$ for some constant c
- Use $K(x)$ bits to describe x, then use c bits to describe TM that repeats its input
(3) $\forall x, y, K(x y) \leq 2 K(x)+K(y)+c$

Compressibility of Strings

Definition

For string x, x is c-compressible if

$$
K(x) \leq|x|-c
$$

Compressibility of Strings

Definition

For string x, x is c-compressible if

$$
K(x) \leq|x|-c
$$

If $K(x) \geq|x|$, then x is incompressible

Compressibility of Strings

Definition

For string x, x is c-compressible if

$$
K(x) \leq|x|-c
$$

If $K(x) \geq|x|$, then x is incompressible
(1) Incompressible strings of every length exist

Compressibility of Strings

Definition

For string x, x is c-compressible if

$$
K(x) \leq|x|-c
$$

If $K(x) \geq|x|$, then x is incompressible
(1) Incompressible strings of every length exist Proof:

Compressibility of Strings

Definition

For string x, x is c-compressible if

$$
K(x) \leq|x|-c
$$

If $K(x) \geq|x|$, then x is incompressible
(1) Incompressible strings of every length exist Proof:

- There are 2^{n} (binary) strings of length n

Compressibility of Strings

Definition

For string x, x is c-compressible if

$$
K(x) \leq|x|-c
$$

If $K(x) \geq|x|$, then x is incompressible
(1) Incompressible strings of every length exist Proof:

- There are 2^{n} (binary) strings of length n
- The number of programs of length less than n is

$$
\sum_{0 \leq i \leq n-1} 2^{i}=1+2+4+\cdots+2^{n-1}=2^{n}-1
$$

Compressibility of Strings

Definition

For string x, x is c-compressible if

$$
K(x) \leq|x|-c
$$

If $K(x) \geq|x|$, then x is incompressible
(1) Incompressible strings of every length exist

Proof:

- There are 2^{n} (binary) strings of length n
- The number of programs of length less than n is

$$
\sum_{0 \leq i \leq n-1} 2^{i}=1+2+4+\cdots+2^{n-1}=2^{n}-1
$$

- So, there exists at least one string that is incompressible

Compressibility of Strings

Definition

For string x, x is c-compressible if

$$
K(x) \leq|x|-c
$$

If $K(x) \geq|x|$, then x is incompressible
(1) Incompressible strings of every length exist

Proof:

- There are 2^{n} (binary) strings of length n
- The number of programs of length less than n is

$$
\sum_{0 \leq i \leq n-1} 2^{i}=1+2+4+\cdots+2^{n-1}=2^{n}-1
$$

- So, there exists at least one string that is incompressible
(2) In fact, incompressible strings look like random strings

Compressibility of Strings

Definition

For string x, x is c-compressible if

$$
K(x) \leq|x|-c
$$

If $K(x) \geq|x|$, then x is incompressible
(1) Incompressible strings of every length exist

Proof:

- There are 2^{n} (binary) strings of length n
- The number of programs of length less than n is

$$
\sum_{0 \leq i \leq n-1} 2^{i}=1+2+4+\cdots+2^{n-1}=2^{n}-1
$$

- So, there exists at least one string that is incompressible
(2) In fact, incompressible strings look like random strings
(3) But, $K(x)$ is not computable, moreover it is undecidable whether a string is incompressible

