Foundations of Computing Lecture 17

Arkady Yerukhimovich

March 21, 2024

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

March 21, 2024

1 Lecture 16 Review

- 2 Where Are We Now?
- 3 Reduction Types

4 A Computational Definition of Information – Kolmogorov Complexity

Arkady Yerukhimovich

< 47 ▶

- ∢ ⊒ →

- Proofs by reduction
- Undecidable languages
 - HALT_{TM}
 - REGULAR_{TM}

3 N 3

 $EMPTY - STRING_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } M(\epsilon) = 1 \}$ ATM S ESTIM 1. Assume Es Th is decidable - D(<M>) $2 R(\langle M, w \rangle)$ 1 + M'(e) = 1 + M(-) = 1if M' doern't would be then M doesn't recept w M' E M' (e): Ryn M(w) output what is output 0(<M'>) Arkady Yerukhimovich CS 3313 - Foundations of Computing March 21, 2024 4/18

2 Where Are We Now?

3 Reduction Types

4 Computational Definition of Information – Kolmogorov Complexity

Arkady Yerukhimovich

< 円

- ∢ ⊒ →

Algorithms

Algorithms are critical for understanding decidability of problems

∃ >

Algorithms

Algorithms are critical for understanding decidability of problems

To show that a problem is decidable: Give an algorithm that always terminates and outputs the answer

Algorithms

Algorithms are critical for understanding decidability of problems

- To show that a problem is decidable: Give an algorithm that always terminates and outputs the answer
- On the second second

What About Turing-Unrecognizable Problems?

Question

Can reductions help us determine if a language is Turing-unrecognizable?

What About Turing-Unrecognizable Problems?

Question

Can reductions help us determine if a language is Turing-unrecognizable?

Recall: $\overline{A_{TM}}$ is Turing-unrecognizable

ATA EL

<M, w> nucpt if M does not anyt

Question

Can reductions help us determine if a language is Turing-unrecognizable?

Recall: $\overline{A_{TM}}$ is Turing-unrecognizable Problem: $\overline{A_{TM}} \le A_{TM}$ D $R (2M, \sqrt{7})$ $D (2M, \sqrt{7}) = 1$ if $M(\sqrt{7}) = 1$ $D (2M, \sqrt{7}) = 0$ if h dewn't accept JO = 0 if h dewn't accept J

Question

Can reductions help us determine if a language is Turing-unrecognizable?

Recall: $\overline{A_{TM}}$ is Turing-unrecognizable

Problem: $\overline{A_{TM}} \le A_{TM}$ but A_{TM} is Turing-recognizable

Question

Can reductions help us determine if a language is Turing-unrecognizable?

Recall: $\overline{A_{TM}}$ is Turing-unrecognizable

Problem: $\overline{A_{TM}} \le A_{TM}$ but A_{TM} is Turing-recognizable

Takeaway: General reductions do not work for Turing-unrecognizable languages

Solution

We need to restrict what our reductions can do.

4 Computational Definition of Information – Kolmogorov Complexity

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

March 21, 2024

< 円

∃ →

Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f : \Sigma^* \to \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$

Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f : \Sigma^* \to \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$

Function f is computable if it can be computed by a TM / algorithm
There is a TM M that starts with w on its tape, writes f(w) on its tape

Arkady Yerukhimovich

Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f : \Sigma^* \to \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$

- Function f is computable if it can be computed by a TM / algorithm
 - There is a TM M that starts with w on its tape, writes f(w) on its tape
- Such reductions are also called:
 - many-one reductions
 - Karp reductions (when only considering poly-time reductions)

Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f : \Sigma^* \to \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$

- Function f is computable if it can be computed by a TM / algorithm
 - There is a TM M that starts with w on its tape, writes f(w) on its tape
- Such reductions are also called:
 - many-one reductions
 - Karp reductions (when only considering poly-time reductions)
- Works by mapping input $\in A$ to input $\in B$ and vice-versa

Mapping Reductions

Arkady Yerukhimovich

March 21, 2024

문 🛌 🖻

If $A \leq \mathcal{B}$ • If B is decidable then A is decidable $x \in A \Rightarrow f(x) \in \mathcal{B}$ $x \notin A \Rightarrow f(x) \notin \mathcal{B}$

- If B is decidable then A is decidable
- If A is undecidable then B is undecidable

If $A \leq_m B$

- If B is decidable then A is decidable
- If A is undecidable then B is undecidable
- If B is Turing-recognizable then A is Turing-recognizable

 $X \in A = 7 \quad f(x) \in B$ $X \notin A = 7 \quad f(x) \notin B$

If $A \leq_m B$

- If B is decidable then A is decidable
- If A is undecidable then B is undecidable
- If *B* is Turing-recognizable then *A* is Turing-recognizable
- If A is not Turing-recognizable than B is not Turing-recognizable

Observation:

Mapping reductions work for both decidability and Turing-recognizability.

Language A is Turing reducible to language B (A $\mathcal{F}\mathcal{F}B$) if can use a decider for B to decide A.

- 3 ▶

Language A is Turing reducible to language B $(A \leq_T B)$ if can use a decider for B to decide A.

• The reduction may make multiple calls to decider for *B* and may not directly use the result.

Language A is Turing reducible to language B $(A \leq_T B)$ if can use a decider for B to decide A.

- The reduction may make multiple calls to decider for *B* and may not directly use the result.
- For example, in the proof that $L_{TM} \leq L_{E_{TM}}$, we flipped the result of R deciding $L_{E_{TM}}$

1 If $A \leq_m B$, then $A \leq_T B$

Arkady Yerukhimovich

- If $A \leq_m B$, then $A \leq_T B$
- **2** If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$

- If $A \leq_m B$, then $A \leq_T B$
- **2** If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

• If
$$A \leq_m B$$
, then $A \leq_T B$

- **2** If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $A_{TM} \leq T \overline{A_{TM}}$, but $A_{TM} \not\leq_m \overline{A_{TM}}$

But, they have weaker implications than mapping reductions:

• If
$$A \leq_m B$$
, then $A \leq_T B$

2 If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$

• In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

But, they have weaker implications than mapping reductions: If $A <_{\tau} B$

• If B is decidable then A is decidable

- If $A \leq_m B$, then $A \leq_T B$
- **2** If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

But, they have weaker implications than mapping reductions:

- If B is decidable then A is decidable
- If A is not decidable, then B is not decidable

- If $A \leq_m B$, then $A \leq_T B$
- **2** If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

But, they have weaker implications than mapping reductions:

- If B is decidable then A is decidable
- If A is not decidable, then B is not decidable
- If B is Turing-recognizable,

- If $A \leq_m B$, then $A \leq_T B$
- **2** If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

But, they have weaker implications than mapping reductions:

- If B is decidable then A is decidable
- If A is not decidable, then B is not decidable
- If *B* is Turing-recognizable, *A* is not necessarily Turing-recognizable

- If $A \leq_m B$, then $A \leq_T B$
- **2** If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

But, they have weaker implications than mapping reductions:

- If B is decidable then A is decidable
- If A is not decidable, then B is not decidable
- If *B* is Turing-recognizable, *A* is not necessarily Turing-recognizable
- If A is not Turing-recognizable, cannot say if B is Turing-recognizable

- 2 Where Are We Now?
- 3 Reduction Types

∃ →

B = 110100100011100010111111

Question

Which of these strings contains more information?

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

March 21, 2024

15/18

Definition

Consider $x \in \{0,1\}^*$.

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

< 円

→ ∃ →

æ

Definition

Consider $x \in \{0, 1\}^*$.

The minimal description of x (d(x)) is the shortest string (M, w) such that TM M on input w halts with x on its tape

Definition

Consider $x \in \{0, 1\}^*$.

- The minimal description of x (d(x)) is the shortest string (M, w) such that TM M on input w halts with x on its tape
- 2 The Kolmogorov complexity of x is

K(x) = |d(x)|

Definition

Consider $x \in \{0, 1\}^*$.

- The minimal description of x (d(x)) is the shortest string (M, w) such that TM M on input w halts with x on its tape
- 2 The Kolmogorov complexity of x is

$$K(x) = |d(x)|$$

Intuitively: K(x) is the length of the shortest program that outputs x
K(x) is the minimal description of x

16/18

Definition

Consider $x \in \{0, 1\}^*$.

- The minimal description of x (d(x)) is the shortest string (M, w) such that TM M on input w halts with x on its tape
- The Kolmogorov complexity of x is

$$K(x) = |d(x)|$$

- Intuitively: K(x) is the length of the shortest program that outputs x
- K(x) is the minimal description of x
- This captures the "amount of information" in x

•
$$\forall x, K(x) \leq |x| + c$$
 for some constant c

$$M = e^{-t} r^{-t} r^{-t$$

→

æ

• Can always describe a TM M that given x just leaves it on it's tape

- Can always describe a TM *M* that given *x* just leaves it on it's tape
- Size of description of *M* is independent of |x|

- Can always describe a TM *M* that given *x* just leaves it on it's tape
- Size of description of *M* is independent of |x|
- Can describe x as $\langle M \rangle || x$

- Can always describe a TM *M* that given *x* just leaves it on it's tape
- Size of description of *M* is independent of |x|
- Can describe x as $\langle M \rangle || x$
 - Need to have some way to indicate where description of *M* ends and description of *x* begins (no special characters to do this)

- Can always describe a TM M that given x just leaves it on it's tape
- Size of description of *M* is independent of |x|
- Can describe x as $\langle M \rangle || x$
 - Need to have some way to indicate where description of *M* ends and description of *x* begins (no special characters to do this)
- ② $\forall x, K(xx) \le K(x) + c$ for some constant *c*

- Can always describe a TM M that given x just leaves it on it's tape
- Size of description of M is independent of |x|
- Can describe x as $\langle M \rangle || x$
 - Need to have some way to indicate where description of *M* ends and description of *x* begins (no special characters to do this)
- 2 $\forall x, K(xx) \leq K(x) + c$ for some constant c
 - Use K(x) bits to describe x, then use c bits to describe TM that repeats its input

- Can always describe a TM M that given x just leaves it on it's tape
- Size of description of M is independent of |x|
- Can describe x as $\langle M \rangle || x$
 - Need to have some way to indicate where description of *M* ends and description of *x* begins (no special characters to do this)
- ② $\forall x, K(xx) ≤ K(x) + c$ for some constant c
 - Use K(x) bits to describe x, then use c bits to describe TM that repeats its input

$\exists \forall x, y, K(xy) \leq$

Arkady Yerukhimovich

- Can always describe a TM M that given x just leaves it on it's tape
- Size of description of M is independent of |x|
- Can describe x as $\langle M \rangle || x$
 - Need to have some way to indicate where description of M ends and description of x begins (no special characters to do this)
- 2 $\forall x, K(xx) \leq K(x) + c$ for some constant c
 - Use K(x) bits to describe x, then use c bits to describe TM that repeats its input
- 3 $\forall x, y, K(xy) < 2K(x) + K(y) + c$

Definition

For string x, x is c-compressible if

 $K(x) \leq |x| - c$

3. 3

Definition

For string x, x is c-compressible if

$$K(x) \leq |x| - c$$

If $K(x) \ge |x|$, then x is incompressible

∃ >

Definition

For string x, x is c-compressible if

 $K(x) \leq |x| - c$

If $K(x) \ge |x|$, then x is incompressible

Incompressible strings of every length exist

Definition

For string x, x is c-compressible if

```
K(x) \leq |x| - c
```

If $K(x) \ge |x|$, then x is incompressible

Incompressible strings of every length exist Proof:

Definition

For string x, x is c-compressible if

```
K(x) \leq |x| - c
```

If $K(x) \ge |x|$, then x is incompressible

- Incompressible strings of every length exist Proof:
 - There are 2^n (binary) strings of length n

Definition

For string x, x is c-compressible if

 $K(x) \leq |x| - c$

If $K(x) \ge |x|$, then x is incompressible

- Incompressible strings of every length exist Proof:
 - There are 2^n (binary) strings of length n
 - The number of programs of length less than n is

$$\sum_{0 \le i \le n-1} 2^i = 1 + 2 + 4 + \dots + 2^{n-1} = 2^n - 1$$

Definition

For string x, x is c-compressible if

 $K(x) \leq |x| - c$

If $K(x) \ge |x|$, then x is incompressible

- Incompressible strings of every length exist Proof:
 - There are 2^n (binary) strings of length n
 - The number of programs of length less than n is

$$\sum_{0 \le i \le n-1} 2^i = 1 + 2 + 4 + \dots + 2^{n-1} = 2^n - 1$$

• So, there exists at least one string that is incompressible

Definition

For string x, x is c-compressible if

 $K(x) \leq |x| - c$

If $K(x) \ge |x|$, then x is incompressible

- Incompressible strings of every length exist Proof:
 - There are 2^n (binary) strings of length n
 - The number of programs of length less than n is

$$\sum_{0 \le i \le n-1} 2^i = 1 + 2 + 4 + \dots + 2^{n-1} = 2^n - 1$$

So, there exists at least one string that is incompressible
In fact, incompressible strings look like random strings

Definition

For string x, x is c-compressible if

 $K(x) \leq |x| - c$

If $K(x) \ge |x|$, then x is incompressible

- Incompressible strings of every length exist Proof:
 - There are 2^n (binary) strings of length n
 - The number of programs of length less than n is

$$\sum_{0 \le i \le n-1} 2^i = 1 + 2 + 4 + \dots + 2^{n-1} = 2^n - 1$$

• So, there exists at least one string that is incompressible

In fact, incompressible strings look like random strings

But, K(x) is not computable, moreover it is undecidable whether a string is incompressible

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

March 21, 2024