
Foundations of Computing
Lecture 18 – Exam Review

Arkady Yerukhimovich

March 26, 2024

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 1 / 35

Outline

1 Lecture 17 Review

2 Turing Machines

3 Languages Recognized by TMs

4 Undecidable Languages

5 Proofs by Reduction

6 Kolmogorov Complexity

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 2 / 35

Lecture 17 Review

Review of Reductions

Types of Reductions – Mapping reductions, Turing reductions

A brief intro into Kolmogorov complexity

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 3 / 35

Outline

1 Lecture 17 Review

2 Turing Machines

3 Languages Recognized by TMs

4 Undecidable Languages

5 Proofs by Reduction

6 Kolmogorov Complexity

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 4 / 35

The Turing Machine

Key Di↵erences:

A TM can read and write to its tape

The read/write head can move to the right and to the left

No separate input tape, input written onto memory tape at start

The memory tape is infinite

Control FA has accept and reject states. If entered, TM halts and
outputs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 5 / 35

↑

The Turing Machine

Key Di↵erences:

A TM can read and write to its tape

The read/write head can move to the right and to the left

No separate input tape, input written onto memory tape at start

The memory tape is infinite

Control FA has accept and reject states. If entered, TM halts and
outputs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 5 / 35

The Turing Machine

Key Di↵erences:

A TM can read and write to its tape

The read/write head can move to the right and to the left

No separate input tape, input written onto memory tape at start

The memory tape is infinite

Control FA has accept and reject states. If entered, TM halts and
outputs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 5 / 35

The Turing Machine

Key Di↵erences:

A TM can read and write to its tape

The read/write head can move to the right and to the left

No separate input tape, input written onto memory tape at start

The memory tape is infinite

Control FA has accept and reject states. If entered, TM halts and
outputs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 5 / 35

The Turing Machine

Key Di↵erences:

A TM can read and write to its tape

The read/write head can move to the right and to the left

No separate input tape, input written onto memory tape at start

The memory tape is infinite

Control FA has accept and reject states. If entered, TM halts and
outputs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 5 / 35

The Turing Machine

Key Di↵erences:

A TM can read and write to its tape

The read/write head can move to the right and to the left

No separate input tape, input written onto memory tape at start

The memory tape is infinite

Control FA has accept and reject states. If entered, TM halts and
outputs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 5 / 35

An Example: TM To Recognize L = {w#w | w 2 {0, 1}⇤}

An Algorithm for M:
On input string s (written on the tape):

1 Scan the input to check that it contains exactly one # symbol, if not
reject.

2 Zigzag to corresponding positions on each side of the # and see if
they contain same symbol. If not, reject. Cross o↵ symbols as they
are checked

3 When all symbols to the left of # have been crossed o↵, check that
no uncrossed-o↵ symbols remain to the right of #. If any symbols
remain, reject, otherwise accept.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 6 / 35

An Example: TM To Recognize L = {w#w | w 2 {0, 1}⇤}

An Algorithm for M:
On input string s (written on the tape):

1 Scan the input to check that it contains exactly one # symbol, if not
reject.

2 Zigzag to corresponding positions on each side of the # and see if
they contain same symbol. If not, reject. Cross o↵ symbols as they
are checked

3 When all symbols to the left of # have been crossed o↵, check that
no uncrossed-o↵ symbols remain to the right of #. If any symbols
remain, reject, otherwise accept.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 6 / 35

An Example: TM To Recognize L = {w#w | w 2 {0, 1}⇤}

An Algorithm for M:
On input string s (written on the tape):

1 Scan the input to check that it contains exactly one # symbol, if not
reject.

2 Zigzag to corresponding positions on each side of the # and see if
they contain same symbol. If not, reject. Cross o↵ symbols as they
are checked

3 When all symbols to the left of # have been crossed o↵, check that
no uncrossed-o↵ symbols remain to the right of #. If any symbols
remain, reject, otherwise accept.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 6 / 35

An Example: TM To Recognize L = {w#w | w 2 {0, 1}⇤}

An Algorithm for M:
On input string s (written on the tape):

1 Scan the input to check that it contains exactly one # symbol, if not
reject.

2 Zigzag to corresponding positions on each side of the # and see if
they contain same symbol. If not, reject. Cross o↵ symbols as they
are checked

3 When all symbols to the left of # have been crossed o↵, check that
no uncrossed-o↵ symbols remain to the right of #. If any symbols
remain, reject, otherwise accept.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 6 / 35

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:

While unproven, all modern computers satisfy Church-Turing thesis

To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

This means that Turing Machines give an abstraction to capture
“feasible computation”

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 7 / 35

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:

While unproven, all modern computers satisfy Church-Turing thesis

To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

This means that Turing Machines give an abstraction to capture
“feasible computation”

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 7 / 35

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:

While unproven, all modern computers satisfy Church-Turing thesis

To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

This means that Turing Machines give an abstraction to capture
“feasible computation”

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 7 / 35

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:

While unproven, all modern computers satisfy Church-Turing thesis

To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

This means that Turing Machines give an abstraction to capture
“feasible computation”

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 7 / 35

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:

While unproven, all modern computers satisfy Church-Turing thesis

To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

This means that Turing Machines give an abstraction to capture
“feasible computation”

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 7 / 35

Turing Machine – Formal Definition

A Turing machine M is a 7-tuple:
1 Q – set of states

2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �
4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function
5 q0 2 Q – start state
6 qaccept 2 Q – accept state
7 qreject 2 Q – reject state

Initial State on input s:
M starts in state q0 with st on the tape and tape head on s0.

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q
0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 8 / 35

Turing Machine – Formal Definition

A Turing machine M is a 7-tuple:
1 Q – set of states
2 ⌃ – input alphabet (not including blank symbol t)

3 � – tape alphabet, where t 2 � and ⌃ ✓ �
4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function
5 q0 2 Q – start state
6 qaccept 2 Q – accept state
7 qreject 2 Q – reject state

Initial State on input s:
M starts in state q0 with st on the tape and tape head on s0.

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q
0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 8 / 35

O

Turing Machine – Formal Definition

A Turing machine M is a 7-tuple:
1 Q – set of states
2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �

4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function
5 q0 2 Q – start state
6 qaccept 2 Q – accept state
7 qreject 2 Q – reject state

Initial State on input s:
M starts in state q0 with st on the tape and tape head on s0.

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q
0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 8 / 35

Turing Machine – Formal Definition

A Turing machine M is a 7-tuple:
1 Q – set of states
2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �
4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function

5 q0 2 Q – start state
6 qaccept 2 Q – accept state
7 qreject 2 Q – reject state

Initial State on input s:
M starts in state q0 with st on the tape and tape head on s0.

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q
0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 8 / 35

Turing Machine – Formal Definition

A Turing machine M is a 7-tuple:
1 Q – set of states
2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �
4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function
5 q0 2 Q – start state
6 qaccept 2 Q – accept state
7 qreject 2 Q – reject state

Initial State on input s:
M starts in state q0 with st on the tape and tape head on s0.

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}

On state q and tape input �:

move control to state q
0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 8 / 35

DO
=(5, I WI

Turing Machine – Formal Definition

A Turing machine M is a 7-tuple:
1 Q – set of states
2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �
4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function
5 q0 2 Q – start state
6 qaccept 2 Q – accept state
7 qreject 2 Q – reject state

Initial State on input s:
M starts in state q0 with st on the tape and tape head on s0.

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q
0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 8 / 35

Turing Machine – Formal Definition

A Turing machine M is a 7-tuple:
1 Q – set of states
2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �
4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function
5 q0 2 Q – start state
6 qaccept 2 Q – accept state
7 qreject 2 Q – reject state

Initial State on input s:
M starts in state q0 with st on the tape and tape head on s0.

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q
0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 8 / 35

Turing Machine – Formal Definition

A Turing machine M is a 7-tuple:
1 Q – set of states
2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �
4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function
5 q0 2 Q – start state
6 qaccept 2 Q – accept state
7 qreject 2 Q – reject state

Initial State on input s:
M starts in state q0 with st on the tape and tape head on s0.

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q
0,

write �0 to the tape,

and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 8 / 35

Turing Machine – Formal Definition

A Turing machine M is a 7-tuple:
1 Q – set of states
2 ⌃ – input alphabet (not including blank symbol t)
3 � – tape alphabet, where t 2 � and ⌃ ✓ �
4 � : Q ⇥ � ! Q ⇥ �⇥ {L,R} – transition function
5 q0 2 Q – start state
6 qaccept 2 Q – accept state
7 qreject 2 Q – reject state

Initial State on input s:
M starts in state q0 with st on the tape and tape head on s0.

Transition function: � : Q ⇥ � ! Q ⇥ �⇥ {L,R}
On state q and tape input �:

move control to state q
0,

write �0 to the tape,

and move the tape head one spot to either Left or Right
Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 8 / 35

Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s

accepting configuration – any config with state qaccept

rejecting configuration – any config with state qreject

halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 9 / 35

Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s

accepting configuration – any config with state qaccept

rejecting configuration – any config with state qreject

halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 9 / 35

Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s

accepting configuration – any config with state qaccept

rejecting configuration – any config with state qreject

halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 9 / 35

07

Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s

accepting configuration – any config with state qaccept

rejecting configuration – any config with state qreject

halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 9 / 35

-

Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step

start configuration of M on input s – configuration q0s

accepting configuration – any config with state qaccept

rejecting configuration – any config with state qreject

halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 9 / 35

010 , 10

011 g, 0

Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s

accepting configuration – any config with state qaccept

rejecting configuration – any config with state qreject

halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 9 / 35

Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s

accepting configuration – any config with state qaccept

rejecting configuration – any config with state qreject

halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 9 / 35

Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s

accepting configuration – any config with state qaccept

rejecting configuration – any config with state qreject

halting configuration – accepting or rejecting configs

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 9 / 35

Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s

accepting configuration – any config with state qaccept

rejecting configuration – any config with state qreject

halting configuration – accepting or rejecting configs
Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 9 / 35

Computing on a Turing Machine

Configuration of a TM

Describes the state of a TM computation

Current state of control, state of tape, location of tape head

Example: 01q310

Definitions:
Configuration C1 yields C2, if M can go from C1 to C2 in a single step
start configuration of M on input s – configuration q0s

accepting configuration – any config with state qaccept

rejecting configuration – any config with state qreject

halting configuration – accepting or rejecting configs
Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 9 / 35

Full Specification: Running M on w = 0000

q1 q2 q3

q5

qr qa q4

start
0 ! t,R

t ! R t ! R

x ! R

0 ! L

0 ! x ,R

x ! R
t ! Lt ! R

0 ! R 0 ! x ,R

x ! R

t ! R

x ! L

x ! R

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 10 / 35

Outline

1 Lecture 17 Review

2 Turing Machines

3 Languages Recognized by TMs

4 Undecidable Languages

5 Proofs by Reduction

6 Kolmogorov Complexity

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 11 / 35

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on all inputs, accepting those in L and rejecting those not in L

Take Away

You should be able to show that a language is decidable or
Turing-recognizable by designing a TM algorithm.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 12 / 35

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on all inputs, accepting those in L and rejecting those not in L

Take Away

You should be able to show that a language is decidable or
Turing-recognizable by designing a TM algorithm.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 12 / 35

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on all inputs, accepting those in L and rejecting those not in L

Take Away

You should be able to show that a language is decidable or
Turing-recognizable by designing a TM algorithm.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 12 / 35

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on all inputs, accepting those in L and rejecting those not in L

Take Away

You should be able to show that a language is decidable or
Turing-recognizable by designing a TM algorithm.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 12 / 35

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on all inputs, accepting those in L and rejecting those not in L

Take Away

You should be able to show that a language is decidable or
Turing-recognizable by designing a TM algorithm.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 12 / 35

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on all inputs, accepting those in L and rejecting those not in L

Take Away

You should be able to show that a language is decidable or
Turing-recognizable by designing a TM algorithm.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 12 / 35

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

M halts and accepts all strings in L

M may not halt on strings not in L – does not necessarily have to
reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

M halts on all inputs, accepting those in L and rejecting those not in L

Take Away

You should be able to show that a language is decidable or
Turing-recognizable by designing a TM algorithm.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 12 / 35

Important TM Notation / Observations

TM always takes a string as input
Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
To do so, we must serialize the object into a string
Notation: hG i

We can “mark” cells on the tape
Notation: ẋ
Technically, this is adding a symbol to �

Can use multiple tapes if it’s useful

Can give a machine as an input to another machine
All machines we have seen can be written as finite tuples, e.g.
(Q,⌃, �, �, q0, qaccept , qreject)
So, we can write this as a string and pass it to a TM
TM can then run the machine from this description
A TM that accepts any TM and runs it is called a universal TM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 13 / 35

Important TM Notation / Observations

TM always takes a string as input
Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
To do so, we must serialize the object into a string
Notation: hG i

We can “mark” cells on the tape
Notation: ẋ
Technically, this is adding a symbol to �

Can use multiple tapes if it’s useful

Can give a machine as an input to another machine
All machines we have seen can be written as finite tuples, e.g.
(Q,⌃, �, �, q0, qaccept , qreject)
So, we can write this as a string and pass it to a TM
TM can then run the machine from this description
A TM that accepts any TM and runs it is called a universal TM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 13 / 35

Important TM Notation / Observations

TM always takes a string as input
Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
To do so, we must serialize the object into a string
Notation: hG i

We can “mark” cells on the tape
Notation: ẋ
Technically, this is adding a symbol to �

Can use multiple tapes if it’s useful

Can give a machine as an input to another machine
All machines we have seen can be written as finite tuples, e.g.
(Q,⌃, �, �, q0, qaccept , qreject)
So, we can write this as a string and pass it to a TM
TM can then run the machine from this description
A TM that accepts any TM and runs it is called a universal TM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 13 / 35

Important TM Notation / Observations

TM always takes a string as input
Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
To do so, we must serialize the object into a string
Notation: hG i

We can “mark” cells on the tape
Notation: ẋ
Technically, this is adding a symbol to �

Can use multiple tapes if it’s useful

Can give a machine as an input to another machine
All machines we have seen can be written as finite tuples, e.g.
(Q,⌃, �, �, q0, qaccept , qreject)
So, we can write this as a string and pass it to a TM
TM can then run the machine from this description

A TM that accepts any TM and runs it is called a universal TM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 13 / 35

Important TM Notation / Observations

TM always takes a string as input
Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
To do so, we must serialize the object into a string
Notation: hG i

We can “mark” cells on the tape
Notation: ẋ
Technically, this is adding a symbol to �

Can use multiple tapes if it’s useful

Can give a machine as an input to another machine
All machines we have seen can be written as finite tuples, e.g.
(Q,⌃, �, �, q0, qaccept , qreject)
So, we can write this as a string and pass it to a TM
TM can then run the machine from this description
A TM that accepts any TM and runs it is called a universal TM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 13 / 35

Specification of a Turing Machine

There are several levels of detail for specifying a TM
1 Full specification

Give full detail of transition function �
This is very tedious

2 Turing Machine Algorithm specification
Explain algorithmically what happens on the tape
For example, scan the tape until you find a #, zig-zag on the tape, etc.
Don’t bother specifying a DFA for the control state

3 Algorithm specification
Give algorithm in pseudocode
Don’t explicitly spell out what happens on the tape

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 14 / 35

Specification of a Turing Machine

There are several levels of detail for specifying a TM
1 Full specification

Give full detail of transition function �
This is very tedious

2 Turing Machine Algorithm specification
Explain algorithmically what happens on the tape
For example, scan the tape until you find a #, zig-zag on the tape, etc.
Don’t bother specifying a DFA for the control state

3 Algorithm specification
Give algorithm in pseudocode
Don’t explicitly spell out what happens on the tape

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 14 / 35

Specification of a Turing Machine

There are several levels of detail for specifying a TM
1 Full specification

Give full detail of transition function �
This is very tedious

2 Turing Machine Algorithm specification
Explain algorithmically what happens on the tape
For example, scan the tape until you find a #, zig-zag on the tape, etc.
Don’t bother specifying a DFA for the control state

3 Algorithm specification
Give algorithm in pseudocode
Don’t explicitly spell out what happens on the tape

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 14 / 35

Turing Machine Variants

Multi-tape Turing Machine

Nondeterministic Turing Machine

What You Need to Know
Be able to explain what the variant is

Know whether it is equivalent to standard TM

Be able to explain why

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 15 / 35

Decidable Languages

We have seen many examples of decidable languages:

Languages about strings

Languages about DFAs/NFAs/PDAs/CFGs – know which ones are
decidable and which are not, why

Be comfortable with TM’s that take another machine as input

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 16 / 35

Relationships Among Language Classes

Turing-recognizableDecidableContext-freeRegular

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 17 / 35

Outline

1 Lecture 17 Review

2 Turing Machines

3 Languages Recognized by TMs

4 Undecidable Languages

5 Proofs by Reduction

6 Kolmogorov Complexity

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 18 / 35

Preliminaries – Countable and Uncountable Sets

Intuition: Countable sets are ones where we can arrange elements into a
“first element”, “second element”, and so on.

An infinite set A is countably infinite if it has the same cardinality as
the natural numbers: N = 1, 2, 3, . . .

A set A is countable if it is finite or countably infinite

A set that is not countable is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 19 / 35

Preliminaries – Countable and Uncountable Sets

Intuition: Countable sets are ones where we can arrange elements into a
“first element”, “second element”, and so on.

An infinite set A is countably infinite if it has the same cardinality as
the natural numbers: N = 1, 2, 3, . . .

A set A is countable if it is finite or countably infinite

A set that is not countable is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 19 / 35

Preliminaries – Countable and Uncountable Sets

Intuition: Countable sets are ones where we can arrange elements into a
“first element”, “second element”, and so on.

An infinite set A is countably infinite if it has the same cardinality as
the natural numbers: N = 1, 2, 3, . . .

A set A is countable if it is finite or countably infinite

A set that is not countable is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 19 / 35

Preliminaries – Countable and Uncountable Sets

Intuition: Countable sets are ones where we can arrange elements into a
“first element”, “second element”, and so on.

An infinite set A is countably infinite if it has the same cardinality as
the natural numbers: N = 1, 2, 3, . . .

A set A is countable if it is finite or countably infinite

A set that is not countable is uncountable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 19 / 35

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization

Assume that R is countable
Then there is a one-to-one and onto mapping f from N to R

n f(n)
1 1.234. . .
2 3.141. . .
3 5.556. . .
...

...

We construct a value x 2 R s.t x 6= f (n) for any n

Idea: For all i 2 N , make xi 6= f (i)i
Contradiction – f is not mapping between R and N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 20 / 35

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization

Assume that R is countable

Then there is a one-to-one and onto mapping f from N to R

n f(n)
1 1.234. . .
2 3.141. . .
3 5.556. . .
...

...

We construct a value x 2 R s.t x 6= f (n) for any n

Idea: For all i 2 N , make xi 6= f (i)i
Contradiction – f is not mapping between R and N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 20 / 35

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization

Assume that R is countable
Then there is a one-to-one and onto mapping f from N to R

n f(n)
1 1.234. . .
2 3.141. . .
3 5.556. . .
...

...

We construct a value x 2 R s.t x 6= f (n) for any n

Idea: For all i 2 N , make xi 6= f (i)i
Contradiction – f is not mapping between R and N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 20 / 35

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization

Assume that R is countable
Then there is a one-to-one and onto mapping f from N to R

n f(n)
1 1.234. . .
2 3.141. . .
3 5.556. . .
...

...

We construct a value x 2 R s.t x 6= f (n) for any n

Idea: For all i 2 N , make xi 6= f (i)i
Contradiction – f is not mapping between R and N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 20 / 35

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization

Assume that R is countable
Then there is a one-to-one and onto mapping f from N to R

n f(n)
1 1.234. . .
2 3.141. . .
3 5.556. . .
...

...

We construct a value x 2 R s.t x 6= f (n) for any n

Idea: For all i 2 N , make xi 6= f (i)i

Contradiction – f is not mapping between R and N

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 20 / 35

-

Strings of 3

,

6
,

2
,
26

& --

1- E 5- 27

-

L - a
E

1 => 6

7 - C

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization

Assume that R is countable
Then there is a one-to-one and onto mapping f from N to R

n f(n)
1 1.234. . .
2 3.141. . .
3 5.556. . .
...

...

We construct a value x 2 R s.t x 6= f (n) for any n

Idea: For all i 2 N , make xi 6= f (i)i
Contradiction – f is not mapping between R and N
Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 20 / 35

ATM is Turing-recognizable

ATM = {hM,wi | M is a TM and M(w) = 1}

Proof: By construction of machine MATM

MATM : On input hM,wi,
1 Run M on input w

2 If M halts, halt and output what M outputs

Correctness:

For any input hM,wi 2 ATM , M is a TM, and M(w) halts and
outputs 1.

Hence, MATM , also halts and outputs 1

Thus, MATM accepts all inputs in ATM

Note that MATM may not halt on all inputs – doesn’t decide ATM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 21 / 35

ATM is Turing-recognizable

ATM = {hM,wi | M is a TM and M(w) = 1}

Proof: By construction of machine MATM

MATM : On input hM,wi,
1 Run M on input w

2 If M halts, halt and output what M outputs

Correctness:

For any input hM,wi 2 ATM , M is a TM, and M(w) halts and
outputs 1.

Hence, MATM , also halts and outputs 1

Thus, MATM accepts all inputs in ATM

Note that MATM may not halt on all inputs – doesn’t decide ATM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 21 / 35

ATM is Turing-recognizable

ATM = {hM,wi | M is a TM and M(w) = 1}

Proof: By construction of machine MATM

MATM : On input hM,wi,
1 Run M on input w

2 If M halts, halt and output what M outputs

Correctness:

For any input hM,wi 2 ATM , M is a TM, and M(w) halts and
outputs 1.

Hence, MATM , also halts and outputs 1

Thus, MATM accepts all inputs in ATM

Note that MATM may not halt on all inputs – doesn’t decide ATM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 21 / 35

ATM is Turing-recognizable

ATM = {hM,wi | M is a TM and M(w) = 1}

Proof: By construction of machine MATM

MATM : On input hM,wi,
1 Run M on input w

2 If M halts, halt and output what M outputs

Correctness:

For any input hM,wi 2 ATM , M is a TM, and M(w) halts and
outputs 1.

Hence, MATM , also halts and outputs 1

Thus, MATM accepts all inputs in ATM

Note that MATM may not halt on all inputs – doesn’t decide ATM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 21 / 35

ATM is Turing-recognizable

ATM = {hM,wi | M is a TM and M(w) = 1}

Proof: By construction of machine MATM

MATM : On input hM,wi,
1 Run M on input w

2 If M halts, halt and output what M outputs

Correctness:

For any input hM,wi 2 ATM , M is a TM, and M(w) halts and
outputs 1.

Hence, MATM , also halts and outputs 1

Thus, MATM accepts all inputs in ATM

Note that MATM may not halt on all inputs – doesn’t decide ATM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 21 / 35

ATM is Turing-recognizable

ATM = {hM,wi | M is a TM and M(w) = 1}

Proof: By construction of machine MATM

MATM : On input hM,wi,
1 Run M on input w

2 If M halts, halt and output what M outputs

Correctness:

For any input hM,wi 2 ATM , M is a TM, and M(w) halts and
outputs 1.

Hence, MATM , also halts and outputs 1

Thus, MATM accepts all inputs in ATM

Note that MATM may not halt on all inputs – doesn’t decide ATM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 21 / 35

ATM is Turing-recognizable

ATM = {hM,wi | M is a TM and M(w) = 1}

Proof: By construction of machine MATM

MATM : On input hM,wi,
1 Run M on input w

2 If M halts, halt and output what M outputs

Correctness:

For any input hM,wi 2 ATM , M is a TM, and M(w) halts and
outputs 1.

Hence, MATM , also halts and outputs 1

Thus, MATM accepts all inputs in ATM

Note that MATM may not halt on all inputs – doesn’t decide ATM

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 21 / 35

ATM is Undecidable

ATM = {hM,wi | M is a TM and M(w) = 1}

Proof: By contradiction
Assume that ATM is decided by TM H

H(hM,wi) =
⇢

accept if M accepts w
reject if M does not accept w

Use H to build a TM D that checks whether a TM M accepts its own
description, and then does the opposite:
On Input hMi, where M is a TM

1 Run H on input hM, hMii
2 Output the opposite of what H outputs

D(hMi) =
⇢

accept if M does not accept hMi
reject if M accepts hMi

Now consider what happens if we run D on hDi

D(hDi) =
⇢

accept if D does not accept hDi
reject if D accepts hDi

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 22 / 35

ATM is Undecidable

ATM = {hM,wi | M is a TM and M(w) = 1}
Proof: By contradiction

Assume that ATM is decided by TM H

H(hM,wi) =
⇢

accept if M accepts w
reject if M does not accept w

Use H to build a TM D that checks whether a TM M accepts its own
description, and then does the opposite:
On Input hMi, where M is a TM

1 Run H on input hM, hMii
2 Output the opposite of what H outputs

D(hMi) =
⇢

accept if M does not accept hMi
reject if M accepts hMi

Now consider what happens if we run D on hDi

D(hDi) =
⇢

accept if D does not accept hDi
reject if D accepts hDi

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 22 / 35

ATM is Undecidable

ATM = {hM,wi | M is a TM and M(w) = 1}
Proof: By contradiction

Assume that ATM is decided by TM H

H(hM,wi) =
⇢

accept if M accepts w
reject if M does not accept w

Use H to build a TM D that checks whether a TM M accepts its own
description, and then does the opposite:
On Input hMi, where M is a TM

1 Run H on input hM, hMii
2 Output the opposite of what H outputs

D(hMi) =
⇢

accept if M does not accept hMi
reject if M accepts hMi

Now consider what happens if we run D on hDi

D(hDi) =
⇢

accept if D does not accept hDi
reject if D accepts hDi

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 22 / 35

ATM is Undecidable

ATM = {hM,wi | M is a TM and M(w) = 1}
Proof: By contradiction

Assume that ATM is decided by TM H

H(hM,wi) =
⇢

accept if M accepts w
reject if M does not accept w

Use H to build a TM D that checks whether a TM M accepts its own
description, and then does the opposite:

On Input hMi, where M is a TM
1 Run H on input hM, hMii
2 Output the opposite of what H outputs

D(hMi) =
⇢

accept if M does not accept hMi
reject if M accepts hMi

Now consider what happens if we run D on hDi

D(hDi) =
⇢

accept if D does not accept hDi
reject if D accepts hDi

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 22 / 35

ATM is Undecidable

ATM = {hM,wi | M is a TM and M(w) = 1}
Proof: By contradiction

Assume that ATM is decided by TM H

H(hM,wi) =
⇢

accept if M accepts w
reject if M does not accept w

Use H to build a TM D that checks whether a TM M accepts its own
description, and then does the opposite:
On Input hMi, where M is a TM

1 Run H on input hM, hMii
2 Output the opposite of what H outputs

D(hMi) =
⇢

accept if M does not accept hMi
reject if M accepts hMi

Now consider what happens if we run D on hDi

D(hDi) =
⇢

accept if D does not accept hDi
reject if D accepts hDi

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 22 / 35

T

ATM is Undecidable

ATM = {hM,wi | M is a TM and M(w) = 1}
Proof: By contradiction

Assume that ATM is decided by TM H

H(hM,wi) =
⇢

accept if M accepts w
reject if M does not accept w

Use H to build a TM D that checks whether a TM M accepts its own
description, and then does the opposite:
On Input hMi, where M is a TM

1 Run H on input hM, hMii
2 Output the opposite of what H outputs

D(hMi) =
⇢

accept if M does not accept hMi
reject if M accepts hMi

Now consider what happens if we run D on hDi

D(hDi) =
⇢

accept if D does not accept hDi
reject if D accepts hDi

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 22 / 35

ATM is Undecidable

ATM = {hM,wi | M is a TM and M(w) = 1}
Proof: By contradiction

Assume that ATM is decided by TM H

H(hM,wi) =
⇢

accept if M accepts w
reject if M does not accept w

Use H to build a TM D that checks whether a TM M accepts its own
description, and then does the opposite:
On Input hMi, where M is a TM

1 Run H on input hM, hMii
2 Output the opposite of what H outputs

D(hMi) =
⇢

accept if M does not accept hMi
reject if M accepts hMi

Now consider what happens if we run D on hDi

D(hDi) =
⇢

accept if D does not accept hDi
reject if D accepts hDi

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 22 / 35

How Is This a Diagonalization?

hM1i hM2i hM3i · · · hDi · · ·
M1 accept reject accept accept

M2 reject reject reject . . . accept . . .
M3 accept accept accept reject

...
...

. . .
D reject accept reject ?

We have defined D to do the opposite of what Mi does on input hMi i
But what does D do on input hDi??

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 23 / 35

-

-

-

O

Outline

1 Lecture 17 Review

2 Turing Machines

3 Languages Recognized by TMs

4 Undecidable Languages

5 Proofs by Reduction

6 Kolmogorov Complexity

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 24 / 35

Reductions and Undecidability

Main Observation
Suppose that A  B , then:

If A is undecidable

B must also be undecidable

Proof: (by contradiction)

Suppose that B is decidable

Since A  B , there exists an algorithm (i.e., a reduction) that uses a
solution to B to solve A

But, this means that A is decidable by running the machine for B as
needed by the reduction

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 25 / 35

Reductions and Undecidability

Main Observation
Suppose that A  B , then:

If A is undecidable

B must also be undecidable

Proof: (by contradiction)

Suppose that B is decidable

Since A  B , there exists an algorithm (i.e., a reduction) that uses a
solution to B to solve A

But, this means that A is decidable by running the machine for B as
needed by the reduction

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 25 / 35

Reductions and Undecidability

Main Observation
Suppose that A  B , then:

If A is undecidable

B must also be undecidable

Proof: (by contradiction)

Suppose that B is decidable

Since A  B , there exists an algorithm (i.e., a reduction) that uses a
solution to B to solve A

But, this means that A is decidable by running the machine for B as
needed by the reduction

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 25 / 35

Reductions and Undecidability

Main Observation
Suppose that A  B , then:

If A is undecidable

B must also be undecidable

Proof: (by contradiction)

Suppose that B is decidable

Since A  B , there exists an algorithm (i.e., a reduction) that uses a
solution to B to solve A

But, this means that A is decidable by running the machine for B as
needed by the reduction

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 25 / 35

Reductions and Undecidability

Main Observation
Suppose that A  B , then:

If A is undecidable

B must also be undecidable

Proof: (by contradiction)

Suppose that B is decidable

Since A  B , there exists an algorithm (i.e., a reduction) that uses a
solution to B to solve A

But, this means that A is decidable by running the machine for B as
needed by the reduction

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 25 / 35

Reductions and Undecidability

Main Observation
Suppose that A  B , then:

If A is undecidable

B must also be undecidable

Proof: (by contradiction)

Suppose that B is decidable

Since A  B , there exists an algorithm (i.e., a reduction) that uses a
solution to B to solve A

But, this means that A is decidable by running the machine for B as
needed by the reduction

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 25 / 35

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM  HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct reduction R that decides ATM given a TM D that decides HALT
On input hM,wi, R does the following:

Run D(hM,wi)
If D rejects – M(w) doesn’t halt – halt and reject

if D accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 26 / 35

ATM HALT

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable

Proof Sketch:

We show that ATM  HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct reduction R that decides ATM given a TM D that decides HALT
On input hM,wi, R does the following:

Run D(hM,wi)
If D rejects – M(w) doesn’t halt – halt and reject

if D accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 26 / 35

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM  HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct reduction R that decides ATM given a TM D that decides HALT
On input hM,wi, R does the following:

Run D(hM,wi)
If D rejects – M(w) doesn’t halt – halt and reject

if D accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 26 / 35

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM  HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct reduction R that decides ATM given a TM D that decides HALT
On input hM,wi, R does the following:

Run D(hM,wi)
If D rejects – M(w) doesn’t halt – halt and reject

if D accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 26 / 35

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM  HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct reduction R that decides ATM given a TM D that decides HALT

On input hM,wi, R does the following:

Run D(hM,wi)
If D rejects – M(w) doesn’t halt – halt and reject

if D accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 26 / 35

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM  HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct reduction R that decides ATM given a TM D that decides HALT
On input hM,wi, R does the following:

Run D(hM,wi)
If D rejects – M(w) doesn’t halt – halt and reject

if D accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 26 / 35

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM  HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct reduction R that decides ATM given a TM D that decides HALT
On input hM,wi, R does the following:

Run D(hM,wi)

If D rejects – M(w) doesn’t halt – halt and reject

if D accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 26 / 35

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM  HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct reduction R that decides ATM given a TM D that decides HALT
On input hM,wi, R does the following:

Run D(hM,wi)
If D rejects – M(w) doesn’t halt – halt and reject

if D accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 26 / 35

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM  HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct reduction R that decides ATM given a TM D that decides HALT
On input hM,wi, R does the following:

Run D(hM,wi)
If D rejects – M(w) doesn’t halt – halt and reject

if D accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 26 / 35

Undecidability of HALT

HALTTM = {hM,wi | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

We show that ATM  HALT

Since we know that ATM is undecidable, this shows that HALT is also
undecidable

Proof:
Construct reduction R that decides ATM given a TM D that decides HALT
On input hM,wi, R does the following:

Run D(hM,wi)
If D rejects – M(w) doesn’t halt – halt and reject

if D accepts – M(w) halts – Simulate M(w) until it halts

Output whatever M output

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 26 / 35

Importance of Algorithms

Algorithms

Algorithms are critical for understanding decidability of problems

1 To show that a problem is decidable – give an algorithm that always
terminates and outputs the answer

2 To show that a problem is undecidable – give an algorithm (a
reduction) that shows that this problem can be used to solve one of
the undecidable problems

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 27 / 35

Importance of Algorithms

Algorithms

Algorithms are critical for understanding decidability of problems

1 To show that a problem is decidable – give an algorithm that always
terminates and outputs the answer

2 To show that a problem is undecidable – give an algorithm (a
reduction) that shows that this problem can be used to solve one of
the undecidable problems

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 27 / 35

Importance of Algorithms

Algorithms

Algorithms are critical for understanding decidability of problems

1 To show that a problem is decidable – give an algorithm that always
terminates and outputs the answer

2 To show that a problem is undecidable – give an algorithm (a
reduction) that shows that this problem can be used to solve one of
the undecidable problems

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 27 / 35

A Decide [
HALT

What You Need to Know

You should be able to:

Understand which direction a reduction should go

Understand implications of such a reduction

Give a reduction between two related languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 28 / 35

What You Need to Know

You should be able to:

Understand which direction a reduction should go

Understand implications of such a reduction

Give a reduction between two related languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 28 / 35

What You Need to Know

You should be able to:

Understand which direction a reduction should go

Understand implications of such a reduction

Give a reduction between two related languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 28 / 35

Reduction Types

Know the di↵erence between:

Mapping reductions

Turing reductions

Know what each one implies

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 29 / 35

Mapping Reductions

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 30 / 35

Mapping Reduction Properties

Mapping reductions are very useful:

1 If A m B

If B is decidable then A is decidable
If A is undecidable then B is undecidable

2 If A m B

If B is Turing-recognizable then A is Turing-recognizable
If A is not Turing-recognizable than B is not Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 31 / 35

Mapping Reduction Properties

Mapping reductions are very useful:
1 If A m B

If B is decidable then A is decidable

If A is undecidable then B is undecidable
2 If A m B

If B is Turing-recognizable then A is Turing-recognizable
If A is not Turing-recognizable than B is not Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 31 / 35

Mapping Reduction Properties

Mapping reductions are very useful:
1 If A m B

If B is decidable then A is decidable
If A is undecidable then B is undecidable

2 If A m B

If B is Turing-recognizable then A is Turing-recognizable
If A is not Turing-recognizable than B is not Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 31 / 35

Mapping Reduction Properties

Mapping reductions are very useful:
1 If A m B

If B is decidable then A is decidable
If A is undecidable then B is undecidable

2 If A m B

If B is Turing-recognizable then

A is Turing-recognizable
If A is not Turing-recognizable than B is not Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 31 / 35

Mapping Reduction Properties

Mapping reductions are very useful:
1 If A m B

If B is decidable then A is decidable
If A is undecidable then B is undecidable

2 If A m B

If B is Turing-recognizable then A is Turing-recognizable

If A is not Turing-recognizable than B is not Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 31 / 35

Mapping Reduction Properties

Mapping reductions are very useful:
1 If A m B

If B is decidable then A is decidable
If A is undecidable then B is undecidable

2 If A m B

If B is Turing-recognizable then A is Turing-recognizable
If A is not Turing-recognizable than B is not Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 31 / 35

Turing Reductions

Definition

Language A is Turing reducible to language B (A T B) if can use a
decider for B to decide A.

The reduction may make multiple calls to decider for B and may not
directly use the result.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 32 / 35

Turing Reductions

Definition

Language A is Turing reducible to language B (A T B) if can use a
decider for B to decide A.

The reduction may make multiple calls to decider for B and may not
directly use the result.

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 32 / 35

Turing Reduction Properties

Turing reductions are more general than mapping reductions:

1 If A m B , then A T B

2 If A T B , then it is not necessarily the case that A m B

In particular, LTM T LTM , but LTM ⇥m LTM

But, they have weaker implications than mapping reductions:
3 If A T B

If B is decidable then A is decidable
If A is not decidable, then B is not decidable

4 If A T B

If B is Turing-recognizable A is not necessarily Turing-recognizable
If A is not Turing-recognizable, cannot say if B is Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 33 / 35

Turing Reduction Properties

Turing reductions are more general than mapping reductions:

1 If A m B , then A T B

2 If A T B , then it is not necessarily the case that A m B

In particular, LTM T LTM , but LTM ⇥m LTM

But, they have weaker implications than mapping reductions:
3 If A T B

If B is decidable then A is decidable
If A is not decidable, then B is not decidable

4 If A T B

If B is Turing-recognizable A is not necessarily Turing-recognizable
If A is not Turing-recognizable, cannot say if B is Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 33 / 35

Turing Reduction Properties

Turing reductions are more general than mapping reductions:

1 If A m B , then A T B

2 If A T B , then it is not necessarily the case that A m B

In particular, LTM T LTM , but LTM ⇥m LTM

But, they have weaker implications than mapping reductions:
3 If A T B

If B is decidable then A is decidable
If A is not decidable, then B is not decidable

4 If A T B

If B is Turing-recognizable A is not necessarily Turing-recognizable
If A is not Turing-recognizable, cannot say if B is Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 33 / 35

Turing Reduction Properties

Turing reductions are more general than mapping reductions:

1 If A m B , then A T B

2 If A T B , then it is not necessarily the case that A m B

In particular, LTM T LTM , but LTM ⇥m LTM

But, they have weaker implications than mapping reductions:
3 If A T B

If B is decidable then A is decidable
If A is not decidable, then B is not decidable

4 If A T B

If B is Turing-recognizable A is not necessarily Turing-recognizable
If A is not Turing-recognizable, cannot say if B is Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 33 / 35

Turing Reduction Properties

Turing reductions are more general than mapping reductions:

1 If A m B , then A T B

2 If A T B , then it is not necessarily the case that A m B

In particular, LTM T LTM , but LTM ⇥m LTM

But, they have weaker implications than mapping reductions:

3 If A T B

If B is decidable then A is decidable
If A is not decidable, then B is not decidable

4 If A T B

If B is Turing-recognizable A is not necessarily Turing-recognizable
If A is not Turing-recognizable, cannot say if B is Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 33 / 35

Turing Reduction Properties

Turing reductions are more general than mapping reductions:

1 If A m B , then A T B

2 If A T B , then it is not necessarily the case that A m B

In particular, LTM T LTM , but LTM ⇥m LTM

But, they have weaker implications than mapping reductions:
3 If A T B

If B is decidable then A is decidable

If A is not decidable, then B is not decidable
4 If A T B

If B is Turing-recognizable A is not necessarily Turing-recognizable
If A is not Turing-recognizable, cannot say if B is Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 33 / 35

Turing Reduction Properties

Turing reductions are more general than mapping reductions:

1 If A m B , then A T B

2 If A T B , then it is not necessarily the case that A m B

In particular, LTM T LTM , but LTM ⇥m LTM

But, they have weaker implications than mapping reductions:
3 If A T B

If B is decidable then A is decidable
If A is not decidable, then B is not decidable

4 If A T B

If B is Turing-recognizable A is not necessarily Turing-recognizable
If A is not Turing-recognizable, cannot say if B is Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 33 / 35

Turing Reduction Properties

Turing reductions are more general than mapping reductions:

1 If A m B , then A T B

2 If A T B , then it is not necessarily the case that A m B

In particular, LTM T LTM , but LTM ⇥m LTM

But, they have weaker implications than mapping reductions:
3 If A T B

If B is decidable then A is decidable
If A is not decidable, then B is not decidable

4 If A T B

If B is Turing-recognizable A is not necessarily Turing-recognizable

If A is not Turing-recognizable, cannot say if B is Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 33 / 35

Turing Reduction Properties

Turing reductions are more general than mapping reductions:

1 If A m B , then A T B

2 If A T B , then it is not necessarily the case that A m B

In particular, LTM T LTM , but LTM ⇥m LTM

But, they have weaker implications than mapping reductions:
3 If A T B

If B is decidable then A is decidable
If A is not decidable, then B is not decidable

4 If A T B

If B is Turing-recognizable A is not necessarily Turing-recognizable
If A is not Turing-recognizable, cannot say if B is Turing-recognizable

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 33 / 35

Outline

1 Lecture 17 Review

2 Turing Machines

3 Languages Recognized by TMs

4 Undecidable Languages

5 Proofs by Reduction

6 Kolmogorov Complexity

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 34 / 35

Kolmogorov Complexity

Definition

Consider x 2 {0, 1}⇤.

1 The minimal description of x (d(x)) is the shortest string hM,wi
such that TH M on input w halts with x on its tape

2 The Kolmogorov complexity of x is

K (x) = |d(x)|

K (x) is the minimal description of x
This captures the “amount of information” in x

What You Need to Know
Basic definition of Kolmogorov complexity

Be able to find rough bounds on Kolmogorov complexity

Don’t need to be able to prove anything

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 35 / 35

Kolmogorov Complexity

Definition

Consider x 2 {0, 1}⇤.
1 The minimal description of x (d(x)) is the shortest string hM,wi

such that TH M on input w halts with x on its tape

2 The Kolmogorov complexity of x is

K (x) = |d(x)|

K (x) is the minimal description of x
This captures the “amount of information” in x

What You Need to Know
Basic definition of Kolmogorov complexity

Be able to find rough bounds on Kolmogorov complexity

Don’t need to be able to prove anything

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 35 / 35

Kolmogorov Complexity

Definition

Consider x 2 {0, 1}⇤.
1 The minimal description of x (d(x)) is the shortest string hM,wi

such that TH M on input w halts with x on its tape

2 The Kolmogorov complexity of x is

K (x) = |d(x)|

K (x) is the minimal description of x
This captures the “amount of information” in x

What You Need to Know
Basic definition of Kolmogorov complexity

Be able to find rough bounds on Kolmogorov complexity

Don’t need to be able to prove anything

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 35 / 35

Kolmogorov Complexity

Definition

Consider x 2 {0, 1}⇤.
1 The minimal description of x (d(x)) is the shortest string hM,wi

such that TH M on input w halts with x on its tape

2 The Kolmogorov complexity of x is

K (x) = |d(x)|

K (x) is the minimal description of x

This captures the “amount of information” in x

What You Need to Know
Basic definition of Kolmogorov complexity

Be able to find rough bounds on Kolmogorov complexity

Don’t need to be able to prove anything

Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 35 / 35

Kolmogorov Complexity

Definition

Consider x 2 {0, 1}⇤.
1 The minimal description of x (d(x)) is the shortest string hM,wi

such that TH M on input w halts with x on its tape

2 The Kolmogorov complexity of x is

K (x) = |d(x)|

K (x) is the minimal description of x
This captures the “amount of information” in x

What You Need to Know
Basic definition of Kolmogorov complexity

Be able to find rough bounds on Kolmogorov complexity

Don’t need to be able to prove anything
Arkady Yerukhimovich CS 3313 – Foundations of Computing March 26, 2024 35 / 35

