Foundations of Computing

Lecture 18 — Exam Review

Arkady Yerukhimovich

March 26, 2024

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Outline

© Lecture 17 Review

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Lecture 17 Review

@ Review of Reductions
@ Types of Reductions — Mapping reductions, Turing reductions

@ A brief intro into Kolmogorov complexity

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Outline

© Turing Machines

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

The Turing Machine

Control
(NFA/DFA)

Tape:

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

The Turing Machine

Control
(NFA/DFA)

Tape: (0]1]1{0]ufu

Key Differences:

@ A TM can read and write to its tape

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

The Turing Machine

Control
(NFA/DFA)

Tape: (0]1]1{0]ufu

Key Differences:
@ A TM can read and write to its tape

@ The read/write head can move to the right and to the left

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

The Turing Machine

Control
(NFA/DFA)

Tape: (0]1]1{0]ufu

Key Differences:
@ A TM can read and write to its tape
@ The read/write head can move to the right and to the left

@ No separate input tape, input written onto memory tape at start

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

The Turing Machine

Control
(NFA/DFA)

Tape: (0]1]1{0]ufu

Key Differences:
@ A TM can read and write to its tape
@ The read/write head can move to the right and to the left
@ No separate input tape, input written onto memory tape at start

@ The memory tape is infinite

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

The Turing Machine

Control
(NFA/DFA)

Tape: (0]1]1{0]ufu

Key Differences:
@ A TM can read and write to its tape
@ The read/write head can move to the right and to the left
@ No separate input tape, input written onto memory tape at start
@ The memory tape is infinite

@ Control FA has accept and reject states. If entered, TM halts and
outputs.

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 5/35

An Example: TM To Recognize L = {w#w | w € {0,1}*}

An Algorithm for M:
On input string s (written on the tape):

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

An Example: TM To Recognize L = {w#w | w € {0,1}*}

An Algorithm for M:
On input string s (written on the tape):

@ Scan the input to check that it contains exactly one # symbol, if not
reject.

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

An Example: TM To Recognize L = {w#w | w € {0,1}*}

An Algorithm for M:
On input string s (written on the tape):
@ Scan the input to check that it contains exactly one # symbol, if not
reject.
@ Zigzag to corresponding positions on each side of the # and see if
they contain same symbol. If not, reject. Cross off symbols as they
are checked

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

An Example: TM To Recognize L = {w#w | w € {0,1}*}

An Algorithm for M:
On input string s (written on the tape):
@ Scan the input to check that it contains exactly one # symbol, if not
reject.
@ Zigzag to corresponding positions on each side of the # and see if
they contain same symbol. If not, reject. Cross off symbols as they
are checked

© When all symbols to the left of # have been crossed off, check that
no uncrossed-off symbols remain to the right of #. If any symbols
remain, reject, otherwise accept.

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 6/35

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:
@ While unproven, all modern computers satisfy Church-Turing thesis

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:
@ While unproven, all modern computers satisfy Church-Turing thesis

@ To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 7/35

Turing Machines and Algorithms

Church-Turing Thesis (1936)

Anything that can be computed by an algorithm can be computed by a
Turing Machine

Observations:
@ While unproven, all modern computers satisfy Church-Turing thesis

@ To prove that some problem cannot be solved by an algorithm,
enough to reason about Turing Machines

@ This means that Turing Machines give an abstraction to capture
“feasible computation”

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 7/35

Turing Machine — Formal Definition

A Turing machine M is a 7-tuple:
@ (@ — set of states

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Machine — Formal Definition

A Turing machine M is a 7-tuple:
@ (@ — set of states
@ X - input alphabet (not including blank symbo@

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Machine — Formal Definition

A Turing machine M is a 7-tuple:
@ (@ — set of states
@ X - input alphabet (not including blank symbol L!)
© I — tape alphabet, where Ll e and 2 C T

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Machine — Formal Definition

A Turing machine M is a 7-tuple:
@ (@ — set of states
@ X - input alphabet (not including blank symbol L!)
© I — tape alphabet, where Ll e and 2 C T
Q §:Q@xTI— QxTI x{L,R} - transition function

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Machine — Formal Definition

A Turing machine M is a 7-tuple:
O @ - set of states
@ X - input alphabet (not including blank symbol L!)
© I — tape alphabet, where Ll e and 2 C T
Q §:Q@xTI— QxTI x{L,R} - transitioafunction
Q@ qo € Q — start state
Q Gaccept € @ — accept state
@ Greject € Q — reject state

Initial State on input s:
M starts in state gg with sLI on the tape and tape head on sp.

Transition function: §: Q@ x I — Q x I x {L, R}

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Machine — Formal Definition

A Turing machine M is a 7-tuple:
Q@ Q — set of states
@ X - input alphabet (not including blank symbol L!)
© I — tape alphabet, where Ll e and 2 C T
Q §:QxI— QxT x{L, R} — transition function
Q@ qo € Q — start state
Q Gaccept € @ — accept state
@ Greject € Q — reject state
Initial State on input s:
M starts in state gg with sLI on the tape and tape head on sp.

Transition function: §: Q@ x I — Q x I x {L, R}
On state g and tape input 7:

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Machine — Formal Definition

A Turing machine M is a 7-tuple:
Q@ Q — set of states
@ X - input alphabet (not including blank symbol L!)
© I — tape alphabet, where Ll e and 2 C T
Q §:QxI— QxT x{L, R} — transition function
Q@ qo € Q — start state
Q Gaccept € @ — accept state
@ Greject € Q — reject state
Initial State on input s:
M starts in state gg with sLI on the tape and tape head on sp.

Transition function: §: Q@ x I — Q x I x {L, R}
On state g and tape input 7:
@ move control to state ¢/,

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Machine — Formal Definition

A Turing machine M is a 7-tuple:
O @ - set of states
@ X - input alphabet (not including blank symbol L!)
© I — tape alphabet, where Ll e and 2 C T
Q §:QxI— QxT x{L, R} — transition function
Q@ qo € Q — start state
Q Gaccept € @ — accept state
@ Greject € Q — reject state

Initial State on input s:
M starts in state gg with sLI on the tape and tape head on sp.

Transition function: §: Q@ x I — Q x I x {L, R}
On state g and tape input 7:

@ move control to state ¢/,

@ write 7/ to the tape,

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 8/35

Turing Machine — Formal Definition

A Turing machine M is a 7-tuple:
O @ - set of states
@ X - input alphabet (not including blank symbol L!)
© I — tape alphabet, where Ll e and 2 C T
Q §:QxI— QxT x{L, R} — transition function
Q@ qo € Q — start state
Q Gaccept € @ — accept state
@ Greject € Q — reject state

Initial State on input s:
M starts in state gg with sLI on the tape and tape head on sp.

Transition function: §: Q@ x I — Q x I x {L, R}
On state g and tape input 7:
@ move control to state ¢/,
@ write 7/ to the tape,
@ and move the tape head one spot to either Left or Right

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 8/35

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 9/35

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 9/35

Computing on a Turing Machine
®

Tape: [0]1[1]0Julu]...
e ———

Configuration of a TM
@ Describes the state of a TM computation

@ Current state of control, state of tape, location of tape head

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 9/35

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation

@ Current state of control, state of tape, location of tape head

@ Example: 01@10

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 9/35

Computing on a Turing Machine

ds

ol1 q, 0
Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation
@ Current state of control, state of tape, location of tape head

o Example: 019310

Definitions:
e Configuration (7 yields C,, if M can go from C; to G, in a single step

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 9/35

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation
@ Current state of control, state of tape, location of tape head

o Example: 019310

Definitions:
e Configuration (7 yields C,, if M can go from C; to G, in a single step
@ start configuration of M on input s — configuration ggs

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 9/35

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation
@ Current state of control, state of tape, location of tape head

o Example: 019310

Definitions:
e Configuration (7 yields C,, if M can go from C; to G, in a single step
@ start configuration of M on input s — configuration ggs
@ accepting configuration — any config with state qaccept

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 9/35

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation
@ Current state of control, state of tape, location of tape head

o Example: 019310

Definitions:

Configuration G yields G, if M can go from (3 to (5 in a single step
start configuration of M on input s — configuration gos

accepting configuration — any config with state qaccept

rejecting configuration — any config with state geject

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 9/35

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation
@ Current state of control, state of tape, location of tape head

o Example: 019310

Definitions:

Configuration G yields G, if M can go from (3 to (5 in a single step
start configuration of M on input s — configuration gos

accepting configuration — any config with state qaccept

rejecting configuration — any config with state geject

halting configuration — accepting or rejecting configs

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 9/35

Computing on a Turing Machine

ds

Tape: [0[1]1]0]ufu]...

Configuration of a TM

@ Describes the state of a TM computation
@ Current state of control, state of tape, location of tape head

o Example: 019310

Definitions:

Configuration G yields G, if M can go from (3 to (5 in a single step
start configuration of M on input s — configuration gos

accepting configuration — any config with state qaccept

rejecting configuration — any config with state geject

halting configuration — accepting or rejecting configs

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 9/35

Full Specification: Running M on w = 0000

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Outline

© Languages Recognized by TMs

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Characterizing Computability of Languages

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Characterizing Computability of Languages

Definition: Recursively enumerable languages

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

@ M halts and accepts all strings in L

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

@ M halts and accepts all strings in L

@ M may not halt on strings not in L — does not necessarily have to
reject

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

@ M halts and accepts all strings in L

@ M may not halt on strings not in L — does not necessarily have to
reject

.

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 12/35

Characterizing Computability of Languages

Definition: Recursively enumerable languages

A language L is Turing-recognizable or recursively enumerable if some TM
M recognizes it

@ M halts and accepts all strings in L

@ M may not halt on strings not in L — does not necessarily have to
reject

Definition: Decidable languages

A language L is decidable or recursive if some TM M decides it

@ M halts on all inputs, accepting those in L and rejecting those not in L

Take Away

You should be able to show that a language is decidable or
Turing-recognizable by designing a TM algorithm.

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 12/35

Important TM Notation / Observations

@ TM always takes a string as input

e Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)

e To do so, we must serialize the object into a string
o Notation: (G)

Arkady Yerukhimovich

CS 3313 — Foundations of Computing

March 26, 2024

Important TM Notation / Observations

@ TM always takes a string as input

e Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
e To do so, we must serialize the object into a string
o Notation: (G)
@ We can "mark” cells on the tape
o Notation: x
e Technically, this is adding a symbol to I'

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Important TM Notation / Observations

@ TM always takes a string as input
e Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
e To do so, we must serialize the object into a string
o Notation: (G)

@ We can "mark” cells on the tape

o Notation: x
e Technically, this is adding a symbol to I'

@ Can use multiple tapes if it's useful

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Important TM Notation / Observations

@ TM always takes a string as input

e Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
e To do so, we must serialize the object into a string
o Notation: (G)
@ We can "mark” cells on the tape
o Notation: x
e Technically, this is adding a symbol to I'
@ Can use multiple tapes if it's useful
@ Can give a machine as an input to another machine
o All machines we have seen can be written as finite tuples, e.g.

(Q7 Zv rv 57 40, Gaccept » qreject)
e So, we can write this as a string and pass it toa TM
@ TM can then run the machine from this description

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Important TM Notation / Observations

@ TM always takes a string as input

e Sometimes we want to talk about a TM taking another type of input
(e.g., a graph, a FA, a TM)
e To do so, we must serialize the object into a string
o Notation: (G)
@ We can "mark” cells on the tape

o Notation: x
e Technically, this is adding a symbol to I'

@ Can use multiple tapes if it's useful
@ Can give a machine as an input to another machine

o All machines we have seen can be written as finite tuples, e.g.

(Q7 Zv rv 57 40, Gaccept » qreject)
e So, we can write this as a string and pass it toa TM
@ TM can then run the machine from this description
o A TM that accepts any TM and runs it is called a universal TM

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Specification of a Turing Machine

There are several levels of detail for specifying a TM
© Full specification

o Give full detail of transition function §
e This is very tedious

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Specification of a Turing Machine

There are several levels of detail for specifying a TM
© Full specification
o Give full detail of transition function §
e This is very tedious
@ Turing Machine Algorithm specification

e Explain algorithmically what happens on the tape
e For example, scan the tape until you find a #, zig-zag on the tape, etc.
e Don't bother specifying a DFA for the control state

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Specification of a Turing Machine

There are several levels of detail for specifying a TM

© Full specification
o Give full detail of transition function §
e This is very tedious

@ Turing Machine Algorithm specification
e Explain algorithmically what happens on the tape
e For example, scan the tape until you find a #, zig-zag on the tape, etc.
e Don't bother specifying a DFA for the control state

© Algorithm specification

e Give algorithm in pseudocode
e Don't explicitly spell out what happens on the tape

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Machine Variants

o Multi-tape Turing Machine

@ Nondeterministic Turing Machine

What You Need to Know

@ Be able to explain what the variant is
@ Know whether it is equivalent to standard TM

@ Be able to explain why

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Decidable Languages

We have seen many examples of decidable languages:
o Languages about strings

e Languages about DFAs/NFAs/PDAs/CFGs — know which ones are
decidable and which are not, why

@ Be comfortable with TM's that take another machine as input

Arkady Yerukhimovich CS 3313 — Foundations of Computing

March 26, 2024

Relationships Among Language Classes

Regular Context-free Decidable Turing-recognizable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Outline

e Undecidable Languages

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Preliminaries — Countable and Uncountable Sets

Intuition: Countable sets are ones where we can arrange elements into a
“first element”, “second element”, and so on.

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Preliminaries — Countable and Uncountable Sets

Intuition: Countable sets are ones where we can arrange elements into a
“first element”, “second element”, and so on.

@ An infinite set A is countably infinite if it has the same cardinality as
the natural numbers: N'=1,2,3,...

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Preliminaries — Countable and Uncountable Sets

Intuition: Countable sets are ones where we can arrange elements into a
“first element”, “second element”, and so on.

@ An infinite set A is countably infinite if it has the same cardinality as
the natural numbers: N'=1,2,3,...

@ A set A is countable if it is finite or countably infinite

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Preliminaries — Countable and Uncountable Sets

Intuition: Countable sets are ones where we can arrange elements into a
“first element”, “second element”, and so on.

@ An infinite set A is countably infinite if it has the same cardinality as
the natural numbers: N'=1,2,3,...

@ A set A is countable if it is finite or countably infinite

@ A set that is not countable is uncountable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization

Arkady Yerukhimovich

CS 3313 — Foundations of Computing

March 26, 2024

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization
@ Assume that R is countable

Arkady Yerukhimovich

CS 3313 — Foundations of Computing

March 26, 2024

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization
@ Assume that R is countable

@ Then there is a one-to-one and onto mapping f from N to R

Arkady Yerukhimovich

CS 3313 — Foundations of Computing

March 26, 2024

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization
@ Assume that R is countable

@ Then there is a one-to-one and onto mapping f from N to R

n f(n)

1] 1.234. ..
2 | 3.141. ..
3

5.556. ..

Arkady Yerukhimovich

CS 3313 — Foundations of Computing

March 26, 2024

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization
@ Assume that R is countable
@ Then there is a one-to-one and onto mapping f from N to R
_—

iy, of < n| f(n)
ST 1]1234. .. z.2°
| >c 5= as 2 |3.141...

L= s 3 | 5.556. ..
) =2 A :
1=

o We construct a value x € R s.t x # f(n) for any n
Idea: For all i € N, make x; # f(i);

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Diagonalization

Real Numbers

The set of real numbers (R) is uncountable

Proof: By diagonalization
@ Assume that R is countable

@ Then there is a one-to-one and onto mapping f from N to R

n f(n)
1] 1.234. ..

2 | 3.141. ..

3 | 5.556...

o We construct a value x € R s.t x # f(n) for any n
Idea: For all i € N, make x; # f(i);

e Contradiction — f is not mapping between R and A/

Arkady Yerukhimovich

CS 3313 — Foundations of Computing

March 26, 2024

A1y is Turing-recognizable

Arv ={(M,w) | Misa TM and M(w) =1}

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

A1y is Turing-recognizable

Arv ={(M,w) | Misa TM and M(w) =1}

Proof: By construction of machine My,
Ma,,,: On input (M, w),
@ Run M on input w

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

A1y is Turing-recognizable

Arv ={(M,w) | Misa TM and M(w) =1}
Proof: By construction of machine My,
Ma,,,: On input (M, w),
@ Run M on input w
@ If M halts, halt and output what M outputs

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

A1y is Turing-recognizable

Arv ={(M,w) | Misa TM and M(w) =1}
Proof: By construction of machine My,
Ma,,,: On input (M, w),
@ Run M on input w
@ If M halts, halt and output what M outputs
Correctness:

e For any input (M, w) € Ay, M is a TM, and M(w) halts and
outputs 1.

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

A1y is Turing-recognizable

Arv ={(M,w) | Misa TM and M(w) =1}
Proof: By construction of machine My,
Ma,,,: On input (M, w),
@ Run M on input w
@ If M halts, halt and output what M outputs
Correctness:

e For any input (M, w) € Ay, M is a TM, and M(w) halts and
outputs 1.

@ Hence, My,,,, also halts and outputs 1

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

A1y is Turing-recognizable

Arv ={(M,w) | Misa TM and M(w) =1}
Proof: By construction of machine My,
Ma,,,: On input (M, w),
@ Run M on input w
@ If M halts, halt and output what M outputs
Correctness:
e For any input (M,w) € Ay, M is a TM, and M(w) halts and
outputs 1.
@ Hence, My,,,, also halts and outputs 1

@ Thus, My,,, accepts all inputs in Aty

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

A1y is Turing-recognizable

Arv ={(M,w) | Misa TM and M(w) =1}
Proof: By construction of machine My,
Ma,,,: On input (M, w),
@ Run M on input w
@ If M halts, halt and output what M outputs
Correctness:
e For any input (M,w) € Ay, M is a TM, and M(w) halts and
outputs 1.
@ Hence, My,,,, also halts and outputs 1
@ Thus, My,,, accepts all inputs in Aty
o Note that Ma,,, may not halt on all inputs — doesn’t decide Aty

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

A7n is Undecidable

Arm ={(M,w) | Misa TM and M(w) =1}

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

A7n is Undecidable

Arm ={(M,w) | Misa TM and M(w) =1}

Proof: By contradiction

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

A7n is Undecidable

Arm ={(M,w) | Misa TM and M(w) =1}
Proof: By contradiction
@ Assume that Ary is decided by TM H

(M, w)) = {

accept if M accepts w
reject if M does not accept w

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

A7n is Undecidable

Arm ={(M,w) | Misa TM and M(w) =1}
Proof: By contradiction
@ Assume that Ary is decided by TM H

(M, w)) = {

accept if M accepts w
reject if M does not accept w

@ Use H to build a TM D that checks whether a TM M accepts its own
description, and then does the opposite:

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

A7n is Undecidable

Arm ={(M,w) | Misa TM and M(w) =1}
Proof: By contradiction
@ Assume that Ary is decided by TM H

~ H(M,w) = {

accept if M accepts w
reject if M does not accept w

@ Use H to build a TM D that checks whether a TM M accepts its own
description, and then does the opposite:
On Input (M), where M is a TM
@ Run H on input (M, (M))
@ Output the opposite of what H outputs

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

A7n is Undecidable

Arm ={(M,w) | Misa TM and M(w) =1}
Proof: By contradiction
@ Assume that Ary is decided by TM H

(M,) = {

accept if M accepts w
reject if M does not accept w

@ Use H to build a TM D that checks whether a TM M accepts its own
description, and then does the opposite:
On Input (M), where M is a TM
@ Run H on input (M, (M))
@ Output the opposite of what H outputs
accept if M does not accept (M)

D({M)) = { reject if M accepts (M)

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

A7n is Undecidable

Arm ={(M,w) | Misa TM and M(w) =1}
Proof: By contradiction
@ Assume that Ary is decided by TM H

(M,) = {

accept if M accepts w
reject if M does not accept w

@ Use H to build a TM D that checks whether a TM M accepts its own
description, and then does the opposite:
On Input (M), where M is a TM
@ Run H on input (M, (M))
@ Output the opposite of what H outputs
accept if M does not accept (M)

D(M)) = { reject if M accepts (M)
e Now consider what happens if we run D on (D)

accept if D does not accept (D)
reject if D accepts(D)

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

How Is This a Diagonalization?

(My) (M) (M3) --- (D)
My | accept reject accept accept
My | reject reject reject ... accept
Ms | accept accept accept reject
@ reject accept reject ?

@ We have defined D to do the opposite of what M; does on input (M)
e But what does D do on input (D)7?

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Outline

© Proofs by Reduction

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Reductions and Undecidability

Main Observation
Suppose that A < B, then:

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Reductions and Undecidability

Main Observation
Suppose that A < B, then:
@ If A is undecidable

@ B must also be undecidable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Reductions and Undecidability

Main Observation
Suppose that A < B, then:
@ If A is undecidable

@ B must also be undecidable

Proof: (by contradiction)

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Reductions and Undecidability

Main Observation
Suppose that A < B, then:
@ If A is undecidable

@ B must also be undecidable

Proof: (by contradiction)
@ Suppose that B is decidable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Reductions and Undecidability

Main Observation
Suppose that A < B, then:
@ If A is undecidable

@ B must also be undecidable

Proof: (by contradiction)
@ Suppose that B is decidable

@ Since A < B, there exists an algorithm (i.e., a reduction) that uses a
solution to B to solve A

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Reductions and Undecidability

Main Observation
Suppose that A < B, then:
@ If A is undecidable

@ B must also be undecidable

Proof: (by contradiction)
@ Suppose that B is decidable

@ Since A < B, there exists an algorithm (i.e., a reduction) that uses a
solution to B to solve A

@ But, this means that A is decidable by running the machine for B as
needed by the reduction

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Undecidability of HALT

HALTry = {(M,w) | M is a TM and M halts on input w}

<
Aﬂ‘ = HALT

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Undecidability of HALT

HALTry = {(M,w) | M is a TM and M halts on input w}
Theorem: HALT is undecidable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Undecidability of HALT

HALTry = {(M,w) | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:

o We show that Ay < HALT

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Undecidability of HALT

HALTry = {(M,w) | M is a TM and M halts on input w}
Theorem: HALT is undecidable
Proof Sketch:
o We show that Ay < HALT

@ Since we know that A1y is undecidable, this shows that HALT is also
undecidable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Undecidability of HALT

HALTry = {(M,w) | M is a TM and M halts on input w}

Theorem: HALT is undecidable
Proof Sketch:
o We show that Ay < HALT

@ Since we know that A1y is undecidable, this shows that HALT is also
undecidable

Proof:
Construct reduction R that decides A1y given a TM D that decides HALT

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Undecidability of HALT

HALTry = {(M,w) | M is a TM and M halts on input w}
Theorem: HALT is undecidable
Proof Sketch:
o We show that Ay < HALT

@ Since we know that A1y is undecidable, this shows that HALT is also
undecidable
Proof:

Construct reduction R that decides A1y given a TM D that decides HALT
On input (M, w), R does the following:

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Undecidability of HALT

HALTry = {(M,w) | M is a TM and M halts on input w}
Theorem: HALT is undecidable
Proof Sketch:
o We show that Ay < HALT

@ Since we know that A1y is undecidable, this shows that HALT is also
undecidable
Proof:
Construct reduction R that decides A1y given a TM D that decides HALT
On input (M, w), R does the following:

e Run D({M, w))

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Undecidability of HALT

HALTry = {(M,w) | M is a TM and M halts on input w}
Theorem: HALT is undecidable
Proof Sketch:
o We show that Ay < HALT

@ Since we know that A1y is undecidable, this shows that HALT is also
undecidable
Proof:

Construct reduction R that decides A1y given a TM D that decides HALT
On input (M, w), R does the following:

e Run D({M, w))
o If D rejects — M(w) doesn't halt — halt and reject

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Undecidability of HALT

HALTry = {(M,w) | M is a TM and M halts on input w}
Theorem: HALT is undecidable
Proof Sketch:
o We show that Ay < HALT

@ Since we know that A1y is undecidable, this shows that HALT is also
undecidable

Proof:

Construct reduction R that decides A1y given a TM D that decides HALT
On input (M, w), R does the following:

e Run D({M, w))
o If D rejects — M(w) doesn't halt — halt and reject
o if D accepts — M(w) halts — Simulate M(w) until it halts

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Undecidability of HALT

HALTry = {(M,w) | M is a TM and M halts on input w}
Theorem: HALT is undecidable
Proof Sketch:
o We show that Ay < HALT

@ Since we know that A1y is undecidable, this shows that HALT is also
undecidable

Proof:
Construct reduction R that decides A1y given a TM D that decides HALT
On input (M, w), R does the following:

Run D({M, w))

If D rejects — M(w) doesn’t halt — halt and reject

if D accepts — M(w) halts — Simulate M(w) until it halts
Output whatever M output

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Importance of Algorithms

Algorithms
Algorithms are critical for understanding decidability of problems

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Importance of Algorithms

Algorithms

Algorithms are critical for understanding decidability of problems

@ To show that a problem is decidable — give an algorithm that always
terminates and outputs the answer

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Importance of Algorithms

Algorithms

Algorithms are critical for understanding decidability of problems

@ To show that a problem is decidable — give an algorithm that always
terminates and outputs the answer

@ To show that a problem is undecidable — give an algorithm (a
reduction) that shows that this problem can be used to solve one of
the undecidable problems

onch < HALT

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

What You Need to Know

You should be able to:

@ Understand which direction a reduction should go

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

What You Need to Know

You should be able to:
@ Understand which direction a reduction should go

@ Understand implications of such a reduction

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

What You Need to Know

You should be able to:
@ Understand which direction a reduction should go
@ Understand implications of such a reduction

@ Give a reduction between two related languages

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Reduction Types

Know the difference between:
@ Mapping reductions
@ Turing reductions

Know what each one implies

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Mapping Reductions

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Mapping Reduction Properties

Mapping reductions are very useful:

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Mapping Reduction Properties

Mapping reductions are very useful:
QIfAL, B
o If B is decidable then A is decidable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Mapping Reduction Properties

Mapping reductions are very useful:
QIfAL,, B
o If B is decidable then A is decidable
o If A is undecidable then B is undecidable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Mapping Reduction Properties

Mapping reductions are very useful:
QIfAL,, B
o If B is decidable then A is decidable
o If A is undecidable then B is undecidable

QIfALS,B

e If B is Turing-recognizable then

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Mapping Reduction Properties

Mapping reductions are very useful:
QIfAL,, B
o If B is decidable then A is decidable
o If A is undecidable then B is undecidable

QIfALS,B

o If B is Turing-recognizable then A is Turing-recognizable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Mapping Reduction Properties

Mapping reductions are very useful:
QITAL,, B
e If B is decidable then A is decidable
e If Ais undecidable then B is undecidable
QITAL,, B

o If B is Turing-recognizable then A is Turing-recognizable
o If Ais not Turing-recognizable than B is not Turing-recognizable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Reductions

Definition

Language A is Turing reducible to language B (A <t B) if can use a
decider for B to decide A.

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Reductions

Definition

Language A is Turing reducible to language B (A <t B) if can use a
decider for B to decide A.

@ The reduction may make multiple calls to decider for B and may not
directly use the result.

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Reduction Properties

Turing reductions are more general than mapping reductions:

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
QIfAL, B, then A<t B

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
QIfAL, B, then A<t B
@ If A<y B, then it is not necessarily the case that A <,, B

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
Q IfA<L,, B, then A<+ B
@ If A<y B, then it is not necessarily the case that A <,, B
o In particular, Lty <7 L7m, but Lay €m Lrm

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
Q IfA<L,, B, then A<+ B
@ If A<y B, then it is not necessarily the case that A <,, B
o In particular, Lty <7 L7m, but Lay €m Lrm

But, they have weaker implications than mapping reductions:

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
QIfAL, B, then A<t B
@ If A<y B, then it is not necessarily the case that A <,, B
o In particular, Lty <7 L7m, but Lay €m Lrm
But, they have weaker implications than mapping reductions:
Q@ IfA<+ B
o If B is decidable then A is decidable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
QIfAL, B, then A<t B
@ If A<y B, then it is not necessarily the case that A <,, B
o In particular, Lty <7 L7m, but Lay €m Lrm
But, they have weaker implications than mapping reductions:
Q@ IfA<+ B

o If B is decidable then A is decidable
o If A is not decidable, then B is not decidable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
QIfAL, B, then A<t B
@ If A<y B, then it is not necessarily the case that A <,, B
o In particular, Lty <7 L7m, but Lay €m Lrm
But, they have weaker implications than mapping reductions:
Q@ IfA<+ B

o If B is decidable then A is decidable
o If A is not decidable, then B is not decidable

QO IfA<; B

e If B is Turing-recognizable A is not necessarily Turing-recognizable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Turing Reduction Properties

Turing reductions are more general than mapping reductions:
QIfAL, B, then A<t B
@ If A<y B, then it is not necessarily the case that A <,, B
o In particular, Lty <7 L7m, but Lay €m Lrm
But, they have weaker implications than mapping reductions:
Q@ IfA<+ B

o If B is decidable then A is decidable
o If A is not decidable, then B is not decidable

QIfAL+ B
e If B is Turing-recognizable A is not necessarily Turing-recognizable
e If Ais not Turing-recognizable, cannot say if B is Turing-recognizable

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Outline

@ Kolmogorov Complexity

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

Kolmogorov Complexity

Consider x € {0,1}*.

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024 35/35

Kolmogorov Complexity

Consider x € {0,1}*.

@ The minimal description of x (d(x)) is the shortest string (M, w)
such that TH M on input w halts with x on its tape

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

35/35

Kolmogorov Complexity

Consider x € {0,1}*.

@ The minimal description of x (d(x)) is the shortest string (M, w)
such that TH M on input w halts with x on its tape

@ The Kolmogorov complexity of x is

K(x) = ld(x)|

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

35/35

Kolmogorov Complexity

Consider x € {0,1}*.

@ The minimal description of x (d(x)) is the shortest string (M, w)
such that TH M on input w halts with x on its tape

@ The Kolmogorov complexity of x is

K(x) = ld(x)|

@ K(x) is the minimal description of x

Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

35/35

Kolmogorov Complexity
Consider x € {0,1}*.

@ The minimal description of x (d(x)) is the shortest string (M, w)
such that TH M on input w halts with x on its tape

@ The Kolmogorov complexity of x is

@ K(x) is the minimal description of x
@ This captures the “amount of information” in x

What You Need to Know

@ Basic definition of Kolmogorov complexity

@ Be able to find rough bounds on Kolmogorov complexity

@ Don't need to be able to prove anything
Arkady Yerukhimovich CS 3313 — Foundations of Computing March 26, 2024

