Foundations of Computing Lecture 19

Arkady Yerukhimovich

April 1, 2025

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 1, 2025

Arkady Yerukhimovich

• Studies what problems can be computed - i.e., decided

< 47 ▶

э

∃ >

- Studies what problems can be computed i.e., decided
- Tells us that some problems are undecidable HALT, A_{TM} , etc.

- Studies what problems can be computed i.e., decided
- Tells us that some problems are undecidable HALT, A_{TM} , etc.
- Independent of model of computation

- Studies what problems can be computed i.e., decided
- Tells us that some problems are undecidable HALT, A_{TM} , etc.
- Independent of model of computation
 - TM = 2-tape TM = Nondeterministic TM = algorithm

- Studies what problems can be computed i.e., decided
- Tells us that some problems are undecidable HALT, A_{TM} , etc.
- Independent of model of computation
 - TM = 2-tape TM = Nondeterministic TM = algorithm

- Studies what problems can be computed i.e., decided
- Tells us that some problems are undecidable HALT, A_{TM} , etc.
- Independent of model of computation
 - TM = 2-tape TM = Nondeterministic TM = algorithm

Question

Suppose we want to solve a problem in real life, is knowing that it is decidable enough?

• In the real world, we need to know what problems can be solved EFFICIENTLY

< 1 k

э

∃ >

- In the real world, we need to know what problems can be solved EFFICIENTLY
- That is, we need to bound the algorithm to decide L

- In the real world, we need to know what problems can be solved EFFICIENTLY
- That is, we need to bound the algorithm to decide L
 - Bounded time
 - Bounded memory / space
 - ...

- In the real world, we need to know what problems can be solved EFFICIENTLY
- That is, we need to bound the algorithm to decide L
 - Bounded time
 - Bounded memory / space
 - ...

Complexity

The study of decidability under bounded models of computation

2 The Complexity Class ${\cal P}$

Arkady Yerukhimovich

▶ < ∃ >

• • • • • • • •

æ

• To measure runtime of an algorithm, we need to count the number of steps it takes

- To measure runtime of an algorithm, we need to count the number of steps it takes
- Often messy to compute exactly

- To measure runtime of an algorithm, we need to count the number of steps it takes
- Often messy to compute exactly
- Instead, we want to an (approximate) upper bound as input size grows

- To measure runtime of an algorithm, we need to count the number of steps it takes
- Often messy to compute exactly
- Instead, we want to an (approximate) upper bound as input size grows

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

- To measure runtime of an algorithm, we need to count the number of steps it takes
- Often messy to compute exactly
- Instead, we want to an (approximate) upper bound as input size grows

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

• Leading term is $5n^3$

- To measure runtime of an algorithm, we need to count the number of steps it takes
- Often messy to compute exactly
- Instead, we want to an (approximate) upper bound as input size grows

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

- Leading term is $5n^3$
- Dropping the constant 5, we say f is asymptotically at most n^3

- To measure runtime of an algorithm, we need to count the number of steps it takes
- Often messy to compute exactly
- Instead, we want to an (approximate) upper bound as input size grows

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

- Leading term is $5n^3$
- Dropping the constant 5, we say f is asymptotically at most n^3
- We write $f = O(n^3)$

Definition

Let $f,g:\mathbb{N}\to\mathbb{R}$, we say that f(n)=O(g(n)) if

• There exist positive integers c, n_0 s.t. for all $n \ge n_0$

 $f(n) \leq cg(n)$

Definition

- Let $f,g:\mathbb{N}\to\mathbb{R}$, we say that f(n)=O(g(n)) if
 - There exist positive integers c, n_0 s.t. for all $n \ge n_0$

 $f(n) \leq cg(n)$

• We say that g(n) is an upper bound on f(n)

Definition

- Let $f,g:\mathbb{N}\to\mathbb{R}$, we say that f(n)=O(g(n)) if
 - There exist positive integers c, n_0 s.t. for all $n \ge n_0$

$$f(n) \leq cg(n)$$

- We say that g(n) is an upper bound on f(n)
- Big-O notation will be very useful for analyzing runtime of algorithms

Definition

- Let $f,g:\mathbb{N} \to \mathbb{R}$, we say that f(n) = O(g(n)) if
 - There exist positive integers c, n_0 s.t. for all $n \ge n_0$

$$f(n) \leq cg(n)$$

- We say that g(n) is an upper bound on f(n)
- Big-O notation will be very useful for analyzing runtime of algorithms

Example

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

Definition

- Let $f,g:\mathbb{N} \to \mathbb{R}$, we say that f(n) = O(g(n)) if
 - There exist positive integers c, n_0 s.t. for all $n \ge n_0$

$$f(n) \leq cg(n)$$

- We say that g(n) is an upper bound on f(n)
- Big-O notation will be very useful for analyzing runtime of algorithms

Example

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

• $f(n) = O(n^3)$

Definition

- Let $f,g:\mathbb{N} \to \mathbb{R}$, we say that f(n) = O(g(n)) if
 - There exist positive integers c, n_0 s.t. for all $n \ge n_0$

$$f(n) \leq cg(n)$$

- We say that g(n) is an upper bound on f(n)
- Big-O notation will be very useful for analyzing runtime of algorithms

Example

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

•
$$f(n) = O(n^3)$$

• For every $n \ge 6$, $f(n) \le 6n^3$

Definition

- Let $f,g:\mathbb{N} \to \mathbb{R}$, we say that f(n) = O(g(n)) if
 - There exist positive integers c, n_0 s.t. for all $n \ge n_0$

$$f(n) \leq cg(n)$$

- We say that g(n) is an upper bound on f(n)
- Big-O notation will be very useful for analyzing runtime of algorithms

Example

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

•
$$f(n) = O(n^3)$$

- For every $n \ge 6$, $f(n) \le 6n^3$
- I.e., $n_0 = 6, c = 6$

Definition

- Let $f,g:\mathbb{N} \to \mathbb{R}$, we say that f(n) = O(g(n)) if
 - There exist positive integers c, n_0 s.t. for all $n \ge n_0$

$$f(n) \leq cg(n)$$

- We say that g(n) is an upper bound on f(n)
- Big-O notation will be very useful for analyzing runtime of algorithms

Example

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

•
$$f(n) = O(n^3)$$

- For every $n \ge 6$, $f(n) \le 6n^3$
- I.e., $n_0 = 6, c = 6$
- Note that $f(n) = O(n^4)$

April 1, 2025

• Roughly, time complexity is the number of "steps" a TM must take to decide a language *L*

Image: Image:

< ∃⇒

э

- Roughly, time complexity is the number of "steps" a TM must take to decide a language *L*
- Of course, this depends on the input some inputs are easier than others

- Roughly, time complexity is the number of "steps" a TM must take to decide a language *L*
- Of course, this depends on the input some inputs are easier than others

Worst-Case Complexity

The time complexity of L is the maximum number of steps taken by a TM M to decide whether $x \in L$ for any x.

• Runtime measured as a function of |x|

- Roughly, time complexity is the number of "steps" a TM must take to decide a language *L*
- Of course, this depends on the input some inputs are easier than others

Worst-Case Complexity

The time complexity of L is the maximum number of steps taken by a TM M to decide whether $x \in L$ for any x.

• Runtime measured as a function of |x|

Time Complexity Classes

Let $t : \mathbb{N} \to \mathbb{N}$. Define time complexity class TIME(t(n)) as

 $TIME(t(n)) = \{L \mid L \text{ is a language decided by an } O(t(n)) \text{ time TM}\}$

< □ > < □ > < □ > < □ > < □ > < □ >

$L_1 = \{0^k 1^k \mid k \ge 0\}$

Arkady Yerukhimovich

CS 3313 – Foundations of Computing

イロト イヨト イヨト イヨト

3

$L_1 = \{0^k 1^k \mid k \ge 0\}$

 L_1 can be decided by the following TM M_1 :

< 4[™] >

< ∃ >

э

$L_1 = \{0^k 1^k \mid k \ge 0\}$

Arkady Yerukhimovich

 L_1 can be decided by the following TM M_1 : M_1 = On input string w

< A >

< ∃⇒

э

$L_1 = \{0^k 1^k \mid k \ge 0\}$

Arkady Yerukhimovich

 L_1 can be decided by the following TM M_1 : $M_1 =$ On input string w

O Scan the tape and reject if O found after a 1

$L_1 = \{0^k 1^k \mid k \ge 0\}$

 L_1 can be decided by the following TM M_1 :

- $M_1 = On input string w$
 - O Scan the tape and reject if O found after a 1
 - While both 0s and 1s remain on the tape
 - $\bullet\,$ Scan the tape, crossing off one 0 and one 1

$L_1 = \{0^k 1^k \mid k \ge 0\}$

 L_1 can be decided by the following TM M_1 :

- $M_1 = On \text{ input string } w$
 - O Scan the tape and reject if O found after a 1
 - While both 0s and 1s remain on the tape
 - $\bullet\,$ Scan the tape, crossing off one 0 and one 1
 - If only 0s or only 1s left on the tape, reject. If no symbols left on the tape, accept.

$L_1 = \{0^k 1^k \mid k \ge 0\}$

 L_1 can be decided by the following TM M_1 :

- $M_1 = On input string w$
 - Scan the tape and reject if 0 found after a 1
 - While both 0s and 1s remain on the tape
 - $\bullet\,$ Scan the tape, crossing off one 0 and one 1
 - If only 0s or only 1s left on the tape, reject. If no symbols left on the tape, accept.

$L_1 = \{0^k 1^k \mid k \ge 0\}$

 L_1 can be decided by the following TM M_1 :

- $M_1 = On input string w$
 - Scan the tape and reject if 0 found after a 1
 - While both 0s and 1s remain on the tape
 - $\bullet\,$ Scan the tape, crossing off one 0 and one 1
 - If only 0s or only 1s left on the tape, reject. If no symbols left on the tape, accept.

Counting number of steps on |w| = n:

• Step 1 takes O(n) steps

$L_1 = \{0^k 1^k \mid k \ge 0\}$

 L_1 can be decided by the following TM M_1 :

- $M_1 = On input string w$
 - Scan the tape and reject if 0 found after a 1
 - While both 0s and 1s remain on the tape
 - $\bullet\,$ Scan the tape, crossing off one 0 and one 1
 - If only 0s or only 1s left on the tape, reject. If no symbols left on the tape, accept.

- Step 1 takes O(n) steps
- Step 2 runs at most n/2 times, each time requiring O(n) steps

$L_1 = \{0^k 1^k \mid k \ge 0\}$

 L_1 can be decided by the following TM M_1 :

- $M_1 = On input string w$
 - Scan the tape and reject if 0 found after a 1
 - While both 0s and 1s remain on the tape
 - $\bullet\,$ Scan the tape, crossing off one 0 and one 1
 - If only 0s or only 1s left on the tape, reject. If no symbols left on the tape, accept.

- Step 1 takes O(n) steps
- Step 2 runs at most n/2 times, each time requiring O(n) steps
- Step 3 takes O(n) steps

$L_1 = \{0^k 1^k \mid k \ge 0\}$

 L_1 can be decided by the following TM M_1 :

- $M_1 = On input string w$
 - ${\small \bigcirc} \ \ {\rm Scan \ the \ tape \ and \ reject \ if \ 0 \ found \ after \ a \ 1}$
 - While both 0s and 1s remain on the tape
 - $\bullet\,$ Scan the tape, crossing off one 0 and one 1
 - If only 0s or only 1s left on the tape, reject. If no symbols left on the tape, accept.

- Step 1 takes O(n) steps
- Step 2 runs at most n/2 times, each time requiring O(n) steps
- Step 3 takes O(n) steps
- Total: $O(n) + (n/2) \cdot O(n) + O(n) = O(n^2)$

$L_1 = \{0^k 1^k \mid k \ge 0\}$

 L_1 can be decided by the following TM M_1 :

- $M_1 = On \text{ input string } w$
 - ${\small \bigcirc} \ \ {\rm Scan \ the \ tape \ and \ reject \ if \ 0 \ found \ after \ a \ 1}$
 - While both 0s and 1s remain on the tape
 - $\bullet\,$ Scan the tape, crossing off one 0 and one 1
 - If only 0s or only 1s left on the tape, reject. If no symbols left on the tape, accept.

- Step 1 takes O(n) steps
- Step 2 runs at most n/2 times, each time requiring O(n) steps
- Step 3 takes O(n) steps
- Total: $O(n) + (n/2) \cdot O(n) + O(n) = O(n^2)$
- $L_1 \in TIME(n^2)$

$L_1 = \{0^k 1^k \mid k \ge 0\}$

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

イロト 不得 トイヨト イヨト

3

$L_1 = \{0^k 1^k \mid k \ge 0\}$

 L_1 can be decided by the following TM M_2 :

< A > <

< ∃⇒

э

$L_1 = \overline{\{0^k 1^k \mid k \ge 0\}}$

Arkady Yerukhimovich

 L_1 can be decided by the following TM M_2 : M_2 = On input w

< A > <

→ ∃ →

э

$L_1 = \{0^k 1^k \mid k \ge 0\}$

Arkady Yerukhimovich

 L_1 can be decided by the following TM M_2 : $M_2 = On input w$

Scan the tape and reject if 0 found after a 1

$L_1 = \{0^k 1^k \mid k \ge 0\}$

- O Scan the tape and reject if O found after a 1
- While both 0s and 1s remain on the tape
 - Scan the tape and see if #0's + #1's is odd, if so reject

$L_1=\{0^k1^k\mid k\geq 0\}$

- O Scan the tape and reject if O found after a 1
- While both 0s and 1s remain on the tape
 - Scan the tape and see if #0's + #1's is odd, if so reject
 - Scan the tape again, crossing off every other 0 and every other 1

$L_1=\{0^k1^k\mid k\geq 0\}$

- O Scan the tape and reject if O found after a 1
- While both 0s and 1s remain on the tape
 - Scan the tape and see if #0's + #1's is odd, if so reject
 - $\bullet\,$ Scan the tape again, crossing off every other 0 and every other 1
- If only 0s or only 1s left on the tape, reject. If no symbols left on the tape, accept.

$L_1=\{0^k1^k\mid k\geq 0\}$

 L_1 can be decided by the following TM M_2 : $M_2 = On input w$

- O Scan the tape and reject if O found after a 1
- While both 0s and 1s remain on the tape
 - Scan the tape and see if #0's + #1's is odd, if so reject
 - $\bullet\,$ Scan the tape again, crossing off every other 0 and every other 1
- If only 0s or only 1s left on the tape, reject. If no symbols left on the tape, accept.

$L_1=\{0^k1^k\mid k\geq 0\}$

 L_1 can be decided by the following TM M_2 : $M_2 =$ On input w

- Scan the tape and reject if 0 found after a 1
- While both 0s and 1s remain on the tape
 - Scan the tape and see if #0's + #1's is odd, if so reject
 - Scan the tape again, crossing off every other 0 and every other 1
- If only 0s or only 1s left on the tape, reject. If no symbols left on the tape, accept.

Counting number of steps on |w| = n:

• Step 1 takes O(n) steps

$L_1=\{0^k1^k\mid k\geq 0\}$

 L_1 can be decided by the following TM M_2 : $M_2 = On input w$

- Scan the tape and reject if 0 found after a 1
- While both 0s and 1s remain on the tape
 - Scan the tape and see if #0's + #1's is odd, if so reject
 - $\bullet\,$ Scan the tape again, crossing off every other 0 and every other 1
- If only 0s or only 1s left on the tape, reject. If no symbols left on the tape, accept.

- Step 1 takes O(n) steps
- Step 2 runs at most $\log_2(n)$ times, taking O(n) steps each time

$L_1 = \{0^k 1^k \mid k \ge 0\}^k$

 L_1 can be decided by the following TM M_2 : $M_2 = On input w$

- O Scan the tape and reject if O found after a 1
- While both 0s and 1s remain on the tape
 - Scan the tape and see if #0's + #1's is odd, if so reject
 - $\bullet\,$ Scan the tape again, crossing off every other 0 and every other 1
- If only 0s or only 1s left on the tape, reject. If no symbols left on the tape, accept.

Counting number of steps on |w| = n:

- Step 1 takes O(n) steps
- Step 2 runs at most $\log_2(n)$ times, taking O(n) steps each time
- Step 3 takes O(n) steps

- 4 四 ト - 4 回 ト

$L_1 = \{0^k 1^k \mid k \ge 0\}$

 L_1 can be decided by the following TM M_2 : $M_2 = On input w$

- O Scan the tape and reject if O found after a 1
- While both 0s and 1s remain on the tape
 - Scan the tape and see if #0's + #1's is odd, if so reject
 - $\bullet\,$ Scan the tape again, crossing off every other 0 and every other 1
- If only 0s or only 1s left on the tape, reject. If no symbols left on the tape, accept.

Counting number of steps on |w| = n:

- Step 1 takes O(n) steps
- Step 2 runs at most $\log_2(n)$ times, taking O(n) steps each time
- Step 3 takes O(n) steps
- Total: $O(n) + \log_2 n \cdot O(n) + O(n) = O(n \log n)$

< A > < E

$L_1 = \{0^k 1^k \mid k \ge 0\}$

 L_1 can be decided by the following TM M_2 : $M_2 = On input w$

- O Scan the tape and reject if O found after a 1
- While both 0s and 1s remain on the tape
 - Scan the tape and see if #0's + #1's is odd, if so reject
 - $\bullet\,$ Scan the tape again, crossing off every other 0 and every other 1
- If only 0s or only 1s left on the tape, reject. If no symbols left on the tape, accept.

- Step 1 takes O(n) steps
- Step 2 runs at most $\log_2(n)$ times, taking O(n) steps each time
- Step 3 takes O(n) steps
- Total: $O(n) + \log_2 n \cdot O(n) + O(n) = O(n \log n)$
- $L_1 \in TIME(n \log n)$

Arkady Yerukhimovich

CS 3313 – Foundations of Computing

▶ < ∃ >

Image: A matrix and a matrix

3

Arkady Yerukhimovich

• On a 1-tape TM cannot do better than $O(n \log n)$

CS 3313 – Foundations of Computing

∃ >

< 47 ▶

э

Arkady Yerukhimovich

- On a 1-tape TM cannot do better than $O(n \log n)$
- What about on a 2-tape TM?

< 1 k

On a 1-tape TM cannot do better than O(n log n)
What about on a 2-tape TM?

$L_1 = \{0^k 1^k \mid k \ge 0\}$

Arkady Yerukhimovich

On a 1-tape TM cannot do better than O(n log n)
What about on a 2-tape TM?

$L_1 = \{0^k 1^k \mid k \ge 0\}$

 L_1 can be decided by the following 2-tape TM M_3 :

- On a 1-tape TM cannot do better than O(n log n)
- What about on a 2-tape TM?

$L_1 = \{0^k 1^k \mid k \ge 0\}$

- On a 1-tape TM cannot do better than O(n log n)
- What about on a 2-tape TM?

$L_1 = \{0^k 1^k \mid k \ge 0\}$

 L_1 can be decided by the following 2-tape TM M_3 : $M_3 =$ On input w

O Scan the tape and reject if O found after a 1

- On a 1-tape TM cannot do better than $O(n \log n)$
- What about on a 2-tape TM?

$L_1 = \{0^k 1^k \mid k \ge 0\}$

- Scan the tape and reject if 0 found after a 1
- Scan the 0s until the first 1 copying all 0s to tape 2

- On a 1-tape TM cannot do better than $O(n \log n)$
- What about on a 2-tape TM?

$L_1 = \{0^k 1^k \mid k \ge 0\}$

- O Scan the tape and reject if O found after a 1
- Scan the 0s until the first 1 copying all 0s to tape 2
- Scan across all 1s on tape 1.
 - For each 1 on tape 1, cross off a 0 on tape 2

- On a 1-tape TM cannot do better than $O(n \log n)$
- What about on a 2-tape TM?

$L_1 = \{0^k 1^k \mid k \ge 0\}$

- O Scan the tape and reject if O found after a 1
- Scan the 0s until the first 1 copying all 0s to tape 2
- Scan across all 1s on tape 1.
 - For each 1 on tape 1, cross off a 0 on tape 2
 - If all 0s are crossed off before all 1s are done, reject

- On a 1-tape TM cannot do better than $O(n \log n)$
- What about on a 2-tape TM?

$L_1 = \{0^k 1^k \mid k \ge 0\}$

- Scan the tape and reject if 0 found after a 1
- Scan the 0s until the first 1 copying all 0s to tape 2
- Scan across all 1s on tape 1.
 - For each 1 on tape 1, cross off a 0 on tape 2
 - If all 0s are crossed off before all 1s are done, reject
- If any 0s remain, reject. If no symbols remain, accept

- On a 1-tape TM cannot do better than $O(n \log n)$
- What about on a 2-tape TM?

$L_1 = \{0^k 1^k \mid k \ge 0\}$

 L_1 can be decided by the following 2-tape TM M_3 : $M_3 =$ On input w

- Scan the tape and reject if 0 found after a 1
- Scan the 0s until the first 1 copying all 0s to tape 2
- Scan across all 1s on tape 1.
 - For each 1 on tape 1, cross off a 0 on tape 2
 - If all 0s are crossed off before all 1s are done, reject
- If any 0s remain, reject. If no symbols remain, accept

Important

Time complexity depends on the exact model of computation

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 1, 2025

Theorem

For any function $t(n) \ge n$, every multi-tape TM (with O(1) tapes) running in time t(n) has an equivalent 1-tape TM running in time $O(t^2(n))$.

Efficient Computation

We define computation to be efficient if it runs in time bounded by some polynomial of the input size n

Efficient Computation

We define computation to be efficient if it runs in time bounded by some polynomial of the input size n

Why polynomial:

Efficient Computation

We define computation to be efficient if it runs in time bounded by some polynomial of the input size n

Why polynomial:

• Polynomials grow much slower than exponentials:

We define computation to be efficient if it runs in time bounded by some polynomial of the input size n

- Polynomials grow much slower than exponentials:
 - $f(n) = n^3$: If n = 1000, f(n) = 1,000,000,000 large, but not unreasonable for today's PCs
 - $f(n) = 2^n$: If n = 1000, f(n) > number of atoms in the universe

We define computation to be efficient if it runs in time bounded by some polynomial of the input size n

- Polynomials grow much slower than exponentials:
 - $f(n) = n^3$: If n = 1000, f(n) = 1,000,000,000 large, but not unreasonable for today's PCs
 - $f(n) = 2^n$: If n = 1000, f(n) > number of atoms in the universe
- All "reasonable" deterministic computation models are polynomially equivalent

We define computation to be efficient if it runs in time bounded by some polynomial of the input size n

- Polynomials grow much slower than exponentials:
 - $f(n) = n^3$: If n = 1000, f(n) = 1,000,000,000 large, but not unreasonable for today's PCs
 - $f(n) = 2^n$: If n = 1000, f(n) > number of atoms in the universe
- All "reasonable" deterministic computation models are polynomially equivalent
- Convenient closure properties:

We define computation to be efficient if it runs in time bounded by some polynomial of the input size n

- Polynomials grow much slower than exponentials:
 - $f(n) = n^3$: If n = 1000, f(n) = 1,000,000,000 large, but not unreasonable for today's PCs
 - $f(n) = 2^n$: If n = 1000, f(n) > number of atoms in the universe
- All "reasonable" deterministic computation models are polynomially equivalent
- Convenient closure properties:

•
$$poly(n) + poly(n) = poly(n)$$

We define computation to be efficient if it runs in time bounded by some polynomial of the input size n

- Polynomials grow much slower than exponentials:
 - $f(n) = n^3$: If n = 1000, f(n) = 1,000,000,000 large, but not unreasonable for today's PCs
 - $f(n) = 2^n$: If n = 1000, f(n) > number of atoms in the universe
- All "reasonable" deterministic computation models are polynomially equivalent
- Convenient closure properties:
 - poly(n) + poly(n) = poly(n)
 - $poly(n) \cdot poly(n) = poly(n)$ (up to O(1) multiplications)

1 Polynomial Time

(2) The Complexity Class \mathcal{P}

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 1, 2025

▶ < ∃ >

Image: A matrix and a matrix

æ

$$\mathcal{P} = \bigcup_k TIME(n^k)$$

 ${\cal P}$ is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

$$\mathcal{P} = \bigcup_k TIME(n^k)$$

ullet $\mathcal P$ corresponds to the class of "efficiently-solvable" problems

$$\mathcal{P} = \bigcup_k TIME(n^k)$$

- $\bullet \ \mathcal{P}$ corresponds to the class of "efficiently-solvable" problems
- ${\mathcal P}$ is invariant for all models of computation polynomially-equivalent to 1-tape TM

$$\mathcal{P} = \bigcup_k TIME(n^k)$$

- $\bullet \ \mathcal{P}$ corresponds to the class of "efficiently-solvable" problems
- ${\mathcal P}$ is invariant for all models of computation polynomially-equivalent to 1-tape TM
- \mathcal{P} has nice closure properties

PATH problem

$PATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph that has a path from } s \text{ to } t \}$

- ∢ 🗗 ▶

< ∃⇒

э

RELPRIME problem

 $RELPRIME = \{ \langle x, y \rangle \mid x \text{ and } y \text{ are relatively prime integers} \}$

Image: A matrix and a matrix

Image: A matrix and a matrix

æ

RELPRIME problem

 $RELPRIME = \{ \langle x, y \rangle \mid x \text{ and } y \text{ are relatively prime integers} \}$

Definition: Greatest Common Divisor (GCD) For $a, b \in \mathbb{Z}$, gcd(a, b) = c s.t. c is the largest integer so that c|a and c|b

RELPRIME problem

 $RELPRIME = \{ \langle x, y \rangle \mid x \text{ and } y \text{ are relatively prime integers} \}$

Definition: Greatest Common Divisor (GCD) For $a, b \in \mathbb{Z}$, gcd(a, b) = c s.t. c is the largest integer so that c|a and c|b

Euclidean Algorithm: *GCD*(*a*, *b*):

Arkady Yerukhimovich

RELPRIME problem

 $RELPRIME = \{ \langle x, y \rangle \mid x \text{ and } y \text{ are relatively prime integers} \}$

Definition: Greatest Common Divisor (GCD) For $a, b \in \mathbb{Z}$, gcd(a, b) = c s.t. c is the largest integer so that c|a and c|b

Euclidean Algorithm: *GCD*(*a*, *b*):

• If b|a, return b

April 1, 2025

RELPRIME problem

 $RELPRIME = \{ \langle x, y \rangle \mid x \text{ and } y \text{ are relatively prime integers} \}$

Definition: Greatest Common Divisor (GCD) For $a, b \in \mathbb{Z}$, gcd(a, b) = c s.t. c is the largest integer so that c|a and c|b

Euclidean Algorithm: *GCD*(*a*, *b*):

- If b|a, return b
- 2 Else, return $GCD(b, [a \mod b])$

RELPRIME problem

 $RELPRIME = \{ \langle x, y \rangle \mid x \text{ and } y \text{ are relatively prime integers} \}$

Definition: Greatest Common Divisor (GCD) For $a, b \in \mathbb{Z}$, gcd(a, b) = c s.t. c is the largest integer so that c|a and c|b

Euclidean Algorithm: *GCD*(*a*, *b*):

- If b|a, return b
- 2 Else, return $GCD(b, [a \mod b])$

• We have defined all languages as decision problems (i.e., is $x \in L$?)

- We have defined all languages as decision problems (i.e., is $x \in L$?)
- We often more naturally think of computation as search problems (i.e., find a path from s to t)

- We have defined all languages as decision problems (i.e., is $x \in L$?)
- We often more naturally think of computation as search problems (i.e., find a path from s to t)
- For some complexity classes, but not all, the two are equivalent we will talk about this more later

$\bullet\,$ Nondeterministic computation and the class \mathcal{NP}

< ∃⇒

Image: A matched by the second sec

æ