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Computability Theory

@ Studies what problems can be computed — i.e., decided
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Computability Theory

@ Studies what problems can be computed — i.e., decided

@ Tells us that some problems are undecidable — HALT, A1y, etc.
@ Independent of model of computation
e TM = 2-tape TM = Nondeterministic TM = algorithm

Suppose we want to solve a problem in real life, is knowing that it is
decidable enough?
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Complexity Theory

@ In the real world, we need to know what problems can be solved
EFFICIENTLY
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Complexity Theory

@ In the real world, we need to know what problems can be solved
EFFICIENTLY
@ That is, we need to bound the algorithm to decide L

e Bounded time
e Bounded memory / space
o ...
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Complexity Theory

@ In the real world, we need to know what problems can be solved
EFFICIENTLY
@ That is, we need to bound the algorithm to decide L

e Bounded time
e Bounded memory / space
o ...

The study of decidability under bounded models of computation \

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 1, 2025



Outline

© Polynomial Time
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Asymptotic Notation — Big-O

@ To measure runtime of an algorithm, we need to count the number of
steps it takes
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@ To measure runtime of an algorithm, we need to count the number of
steps it takes

@ Often messy to compute exactly

@ Instead, we want to an (approximate) upper bound as input size grows

f(n) =5n>+3n% +10n+8
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Asymptotic Notation — Big-O

@ To measure runtime of an algorithm, we need to count the number of
steps it takes

@ Often messy to compute exactly

@ Instead, we want to an (approximate) upper bound as input size grows

f(n) =5n>+3n% +10n+8

o Leading term is 5n°

o Dropping the constant 5, we say f is asymptotically at most n3
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Asymptotic Notation — Big-O

@ To measure runtime of an algorithm, we need to count the number of
steps it takes

@ Often messy to compute exactly

@ Instead, we want to an (approximate) upper bound as input size grows

f(n) =5n>+3n% +10n+8

o Leading term is 5n°

o Dropping the constant 5, we say f is asymptotically at most n3
o We write f = O(n®)
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Asymptotic Notation — Big-O

Definition
Let f,g: N — R, we say that f(n) = O(g(n)) if

@ There exist positive integers ¢, ng s.t. for all n > ng

f(n) < cg(n)
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e We say that g(n) is an upper bound on f(n)
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Asymptotic Notation — Big-O

Definition
Let f,g : N — R, we say that f(n) = O(g(n)) if

@ There exist positive integers ¢, ng s.t. for all n > ng

f(n) < cg(n)

e We say that g(n) is an upper bound on f(n)
@ Big-O notation will be very useful for analyzing runtime of algorithms

Example

f(n) = 5n+3n* +10n + 8
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Asymptotic Notation — Big-O

Definition
Let f,g : N — R, we say that f(n) = O(g(n)) if

@ There exist positive integers ¢, ng s.t. for all n > ng

f(n) < cg(n)

e We say that g(n) is an upper bound on f(n)
@ Big-O notation will be very useful for analyzing runtime of algorithms

f(n) =5n%+3n>+10n+8
e f(n) = O(n?)
e For every n > 6, f(n) < 6n3
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Asymptotic Notation — Big-O

Definition
Let f,g : N — R, we say that f(n) = O(g(n)) if

@ There exist positive integers ¢, ng s.t. for all n > ng

f(n) < cg(n)

e We say that g(n) is an upper bound on f(n)
@ Big-O notation will be very useful for analyzing runtime of algorithms

f(n) =5n%+3n>+10n+8
e f(n) = O(n?)
e For every n > 6, f(n) < 6n3

o le,n=6c=06
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Asymptotic Notation — Big-O

Definition
Let f,g : N — R, we say that f(n) = O(g(n)) if

@ There exist positive integers ¢, ng s.t. for all n > ng

f(n) < cg(n)

e We say that g(n) is an upper bound on f(n)
@ Big-O notation will be very useful for analyzing runtime of algorithms

Example

f(n) =5n%+3n>+10n+8
f(n) = O(n%)
For every n > 6, f(n) < 6n°

l.e., np =6,c =06
Note that f(n) = O(n*)
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Time Complexity

@ Roughly, time complexity is the number of “steps” a TM must take
to decide a language L
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Time Complexity

@ Roughly, time complexity is the number of “steps” a TM must take
to decide a language L

@ Of course, this depends on the input — some inputs are easier than
others

Worst-Case Complexity
The time complexity of L is the maximum number of steps taken by a TM
M to decide whether x € L for any x.

@ Runtime measured as a function of |x]|
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Time Complexity

@ Roughly, time complexity is the number of “steps” a TM must take
to decide a language L

@ Of course, this depends on the input — some inputs are easier than
others

Worst-Case Complexity

The time complexity of L is the maximum number of steps taken by a TM
M to decide whether x € L for any x.

@ Runtime measured as a function of |x]|

Time Complexity Classes
Let t : N — N. Define time complexity class TIME(t(n)) as

TIME(t(n)) = {L | L is a language decided by an O(t(n)) time TM}

v,
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An Example

klk’kz }
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e Scan the tape, crossing off one 0 and one 1
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An Example

L; = {0k1k | k > 0}
Ly can be decided by the following TM Mj:
Mi; = On input string w

@ Scan the tape and reject if 0 found after a 1
@ While both 0s and 1s remain on the tape
e Scan the tape, crossing off one 0 and one 1

© If only Os or only 1s left on the tape, reject. If no symbols left on the
tape, accept.

Counting number of steps on |w| = n:
o Step 1 takes O(n) steps
@ Step 2 runs at most n/2 times, each time requiring O(n) steps
@ Step 3 takes O(n) steps
e Total: O(n)+ (n/2)- O(n)+ O(n) = O(n?)
o Ly € TIME(n?)
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Can We Do Better?

L; = {01 | k > 0}
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Can We Do Better?

L, = {01k | k > 0}
L1 can be decided by the following TM Mo:
My = On input w

@ Scan the tape and reject if 0 found after a 1
© While both Os and 1s remain on the tape
o Scan the tape and see if #0's + #1’s is odd, if so reject
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My = On input w

@ Scan the tape and reject if 0 found after a 1
© While both Os and 1s remain on the tape
o Scan the tape and see if #0's + #1’s is odd, if so reject
e Scan the tape again, crossing off every other 0 and every other 1
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Counting number of steps on |w| = n:
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Can We Do Better?

L, = {01k | k > 0}
L1 can be decided by the following TM Mo:
My = On input w

@ Scan the tape and reject if 0 found after a 1
© While both Os and 1s remain on the tape
o Scan the tape and see if #0's + #1’s is odd, if so reject
e Scan the tape again, crossing off every other 0 and every other 1
© If only Os or only 1s left on the tape, reject. If no symbols left on the
tape, accept.

Counting number of steps on |w| = n:
@ Step 1 takes O(n) steps
@ Step 2 runs at most log,(n) times, taking O(n) steps each time
o Step 3 takes O(n) steps
e Total: O(n) + logy, n-—0(n) + O(n) = O(nlog n)
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Can We Do Better?

L, = {01k | k > 0}
L1 can be decided by the following TM Mo:
My = On input w

@ Scan the tape and reject if 0 found after a 1
© While both Os and 1s remain on the tape
o Scan the tape and see if #0's + #1’s is odd, if so reject
e Scan the tape again, crossing off every other 0 and every other 1
© If only Os or only 1s left on the tape, reject. If no symbols left on the
tape, accept.

Counting number of steps on |w| = n:
@ Step 1 takes O(n) steps
@ Step 2 runs at most log,(n) times, taking O(n) steps each time
o Step 3 takes O(n) steps
e Total: O(n) + logy, n-—0(n) + O(n) = O(nlog n)
o Ly € TIME(nlogn)
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Can We Do Even Better?
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Can We Do Even Better?

@ On a 1-tape TM cannot do better than O(nlog n)
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Can We Do Even Better?

@ On a 1-tape TM cannot do better than O(nlog n)
@ What about on a 2-tape TM?

L = {0F1% | k > 0}
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Can We Do Even Better?

@ On a 1-tape TM cannot do better than O(nlog n)
@ What about on a 2-tape TM?

L = {0F1% | k > 0}

Ly can be decided by the following 2-tape TM M35:
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Can We Do Even Better?

@ On a 1-tape TM cannot do better than O(nlog n)
@ What about on a 2-tape TM?

L = {0F1% | k > 0}

Ly can be decided by the following 2-tape TM M35:
M3 = On input w

@ Scan the tape and reject if 0 found after a 1
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Can We Do Even Better?

@ On a 1-tape TM cannot do better than O(nlog n)
@ What about on a 2-tape TM?

L = {0F1% | k > 0}

Ly can be decided by the following 2-tape TM M35:
M3 = On input w

@ Scan the tape and reject if 0 found after a 1
@ Scan the 0s until the first 1 copying all Os to tape 2
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Can We Do Even Better?

@ On a 1-tape TM cannot do better than O(nlog n)
@ What about on a 2-tape TM?

L = {0F1% | k > 0}
Ly can be decided by the following 2-tape TM M35:
M3 = On input w

@ Scan the tape and reject if 0 found after a 1

@ Scan the 0s until the first 1 copying all Os to tape 2
© Scan across all 1s on tape 1.
o For each 1 on tape 1, cross off a 0 on tape 2
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Can We Do Even Better?

@ On a 1-tape TM cannot do better than O(nlog n)
@ What about on a 2-tape TM?

L = {0F1% | k > 0}
Ly can be decided by the following 2-tape TM M35:
M3 = On input w

@ Scan the tape and reject if 0 found after a 1

@ Scan the 0s until the first 1 copying all Os to tape 2
© Scan across all 1s on tape 1.

o For each 1 on tape 1, cross off a 0 on tape 2
o If all Os are crossed off before all 1s are done, reject
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Can We Do Even Better?

@ On a 1-tape TM cannot do better than O(nlog n)
@ What about on a 2-tape TM?

L = {0F1% | k > 0}
Ly can be decided by the following 2-tape TM M35:
M3 = On input w

@ Scan the tape and reject if 0 found after a 1

@ Scan the 0s until the first 1 copying all Os to tape 2
© Scan across all 1s on tape 1.

o For each 1 on tape 1, cross off a 0 on tape 2
o If all Os are crossed off before all 1s are done, reject

@ If any Os remain, reject. If no symbols remain, accept
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Can We Do Even Better?

@ On a 1-tape TM cannot do better than O(nlog n)
@ What about on a 2-tape TM?
L; = {0%1% | k > 0}

L1 can be decided by the following 2-tape TM Ms:
M3 = On input w

@ Scan the tape and reject if 0 found after a 1
@ Scan the Os until the first 1 copying all Os to tape 2

© Scan across all 1s on tape 1.

e For each 1 on tape 1, cross off a 0 on tape 2
o If all Os are crossed off before all 1s are done, reject

@ If any Os remain, reject. If no symbols remain, accept

Time complexity depends on the exact model of computation
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Dependence on Model of Computation

For any function t(n) > n, every multi-tape TM (with O(1) tapes) running
in time t(n) has an equivalent 1-tape TM running in time O(t?(n)).
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Polynomial Time

Efficient Computation

We define computation to be efficient if it runs in time bounded by some
polynomial of the input size n
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Polynomial Time

Efficient Computation
We define computation to be efficient if it runs in time bounded by some
polynomial of the input size n

Why polynomial:
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Polynomial Time

Efficient Computation
We define computation to be efficient if it runs in time bounded by some
polynomial of the input size n

Why polynomial:
@ Polynomials grow much slower than exponentials:
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Polynomial Time

Efficient Computation

We define computation to be efficient if it runs in time bounded by some
polynomial of the input size n

Why polynomial:
@ Polynomials grow much slower than exponentials:
o f(n) = n3: If n=1000, f(n) = 1,000,000,000 — large, but not
unreasonable for today's PCs
e f(n)=2" If n=1000, f(n) > number of atoms in the universe
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Polynomial Time

Efficient Computation

We define computation to be efficient if it runs in time bounded by some
polynomial of the input size n

Why polynomial:
@ Polynomials grow much slower than exponentials:
o f(n) = n3: If n=1000, f(n) = 1,000,000,000 — large, but not
unreasonable for today's PCs
e f(n)=2" If n=1000, f(n) > number of atoms in the universe
@ All “reasonable” deterministic computation models are polynomially
equivalent

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 1, 2025



Polynomial Time

Efficient Computation

We define computation to be efficient if it runs in time bounded by some
polynomial of the input size n

Why polynomial:

@ Polynomials grow much slower than exponentials:

o f(n) = n3: If n=1000, f(n) = 1,000,000,000 — large, but not
unreasonable for today's PCs

e f(n)=2" If n=1000, f(n) > number of atoms in the universe

@ All “reasonable” deterministic computation models are polynomially

equivalent
@ Convenient closure properties:
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Polynomial Time

Efficient Computation

We define computation to be efficient if it runs in time bounded by some
polynomial of the input size n

Why polynomial:

@ Polynomials grow much slower than exponentials:

o f(n) = n3: If n=1000, f(n) = 1,000,000,000 — large, but not
unreasonable for today's PCs

e f(n)=2" If n=1000, f(n) > number of atoms in the universe

@ All “reasonable” deterministic computation models are polynomially

equivalent
@ Convenient closure properties:

o poly(n) + poly(n) = poly(n)
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Polynomial Time

Efficient Computation

We define computation to be efficient if it runs in time bounded by some
polynomial of the input size n

Why polynomial:

@ Polynomials grow much slower than exponentials:

o f(n) = n3: If n=1000, f(n) = 1,000,000,000 — large, but not
unreasonable for today's PCs

e f(n)=2" If n=1000, f(n) > number of atoms in the universe

@ All “reasonable” deterministic computation models are polynomially

equivalent
@ Convenient closure properties:

o poly(n) + poly(n) = poly(n)
o poly(n) - poly(n) = poly(n) (up to O(1) multiplications)
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Outline

© The Complexity Class P
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Complexity Class P

Definition

‘P is the class of languages decidable in polynomial time on a 1-tape
deterministic TM.
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Complexity Class P

Definition

‘P is the class of languages decidable in polynomial time on a 1-tape
deterministic TM.
P = TIME(n*)
k
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Complexity Class P

Definition

‘P is the class of languages decidable in polynomial time on a 1-tape
deterministic TM.
P = TIME(n*)
k

@ P corresponds to the class of “efficiently-solvable” problems
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Complexity Class P

Definition

‘P is the class of languages decidable in polynomial time on a 1-tape
deterministic TM.
P = TIME(n*)
k

@ P corresponds to the class of “efficiently-solvable” problems

@ P is invariant for all models of computation polynomially-equivalent
to 1-tape TM
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Complexity Class P

Definition

‘P is the class of languages decidable in polynomial time on a 1-tape
deterministic TM.
P = TIME(n*)
k

@ P corresponds to the class of “efficiently-solvable” problems

@ P is invariant for all models of computation polynomially-equivalent
to 1-tape TM

@ P has nice closure properties
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Problems in P

PATH problem

PATH = {(G,s,t) | G is a directed graph that has a path from s to t}
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Problems in P

RELPRIME problem
RELPRIME = {(x,y) | x and y are relatively prime integers}
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Problems in P

RELPRIME problem
RELPRIME = {(x,y) | x and y are relatively prime integers}

Definition: Greatest Common Divisor (GCD)
For a, b € Z, gcd(a, b) = c s.t. c is the largest integer so that c|a and c|b
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Problems in P

RELPRIME problem
RELPRIME = {(x,y) | x and y are relatively prime integers}

Definition: Greatest Common Divisor (GCD)
For a, b € Z, gcd(a, b) = c s.t. c is the largest integer so that c|a and c|b

Euclidean Algorithm:
GCD(a, b):
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Problems in P

RELPRIME problem
RELPRIME = {(x,y) | x and y are relatively prime integers}

Definition: Greatest Common Divisor (GCD)
For a, b € Z, gcd(a, b) = c s.t. c is the largest integer so that c|a and c|b

Euclidean Algorithm:
GCD(a, b):

Q If b|a, return b
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Problems in P

RELPRIME problem
RELPRIME = {(x,y) | x and y are relatively prime integers}

Definition: Greatest Common Divisor (GCD)
For a, b € Z, gcd(a, b) = c s.t. c is the largest integer so that c|a and c|b

Euclidean Algorithm:
GCD(a, b):

Q If b|a, return b
@ Else, return GCD(b, [a mod b))
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Problems in P

RELPRIME problem
RELPRIME = {(x,y) | x and y are relatively prime integers}

Definition: Greatest Common Divisor (GCD)
For a, b € Z, gcd(a, b) = c s.t. c is the largest integer so that c|a and c|b

Euclidean Algorithm:
GCD(a, b):

Q If b|a, return b
@ Else, return GCD(b, [a mod b))
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Decision Problems vs. Search Problems

@ We have defined all languages as decision problems (i.e., is x € L?)
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Decision Problems vs. Search Problems

@ We have defined all languages as decision problems (i.e., is x € L?)

@ We often more naturally think of computation as search problems
(i.e., find a path from s to t)
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Decision Problems vs. Search Problems

@ We have defined all languages as decision problems (i.e., is x € L?)

@ We often more naturally think of computation as search problems
(i.e., find a path from s to t)

@ For some complexity classes, but not all, the two are equivalent — we
will talk about this more later
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Next Class

@ Nondeterministic computation and the class NP
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