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Computability Theory

Studies what problems can be computed – i.e., decided

Tells us that some problems are undecidable – HALT, ATM , etc.

Independent of model of computation

TM = 2-tape TM = Nondeterministic TM = algorithm

Question

Suppose we want to solve a problem in real life, is knowing that it is
decidable enough?
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Complexity Theory

In the real world, we need to know what problems can be solved
EFFICIENTLY

That is, we need to bound the algorithm to decide L

Bounded time
Bounded memory / space
...

Complexity

The study of decidability under bounded models of computation
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Outline

1 Polynomial Time

2 The Complexity Class P
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Asymptotic Notation – Big-O

To measure runtime of an algorithm, we need to count the number of
steps it takes

Often messy to compute exactly

Instead, we want to an (approximate) upper bound as input size grows

Example

f (n) = 5n3 + 3n2 + 10n + 8

Leading term is 5n3

Dropping the constant 5, we say f is asymptotically at most n3

We write f = O(n3)
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Asymptotic Notation – Big-O

Definition

Let f , g : N → R, we say that f (n) = O(g(n)) if

There exist positive integers c , n0 s.t. for all n ≥ n0

f (n) ≤ cg(n)

We say that g(n) is an upper bound on f (n)
Big-O notation will be very useful for analyzing runtime of algorithms

Example

f (n) = 5n3 + 3n2 + 10n + 8

f (n) = O(n3)

For every n ≥ 6, f (n) ≤ 6n3

I.e., n0 = 6, c = 6

Note that f (n) = O(n4)
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Time Complexity

Roughly, time complexity is the number of “steps” a TM must take
to decide a language L

Of course, this depends on the input – some inputs are easier than
others

Worst-Case Complexity

The time complexity of L is the maximum number of steps taken by a TM
M to decide whether x ∈ L for any x .

Runtime measured as a function of |x |

Time Complexity Classes

Let t : N → N. Define time complexity class TIME (t(n)) as

TIME (t(n)) = {L | L is a language decided by an O(t(n)) time TM}
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An Example

L1 = {0k1k | k ≥ 0}

L1 can be decided by the following TM M1:
M1 = On input string w

1 Scan the tape and reject if 0 found after a 1
2 While both 0s and 1s remain on the tape

Scan the tape, crossing off one 0 and one 1

3 If only 0s or only 1s left on the tape, reject. If no symbols left on the
tape, accept.

Counting number of steps on |w | = n:

Step 1 takes O(n) steps

Step 2 runs at most n/2 times, each time requiring O(n) steps

Step 3 takes O(n) steps

Total: O(n) + (n/2) · O(n) + O(n) = O(n2)

L1 ∈ TIME (n2)
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Can We Do Better?

L1 = {0k1k | k ≥ 0}

L1 can be decided by the following TM M2:
M2 = On input w

1 Scan the tape and reject if 0 found after a 1
2 While both 0s and 1s remain on the tape

Scan the tape and see if #0′s +#1′s is odd, if so reject
Scan the tape again, crossing off every other 0 and every other 1

3 If only 0s or only 1s left on the tape, reject. If no symbols left on the
tape, accept.

Counting number of steps on |w | = n:

Step 1 takes O(n) steps
Step 2 runs at most log2(n) times, taking O(n) steps each time
Step 3 takes O(n) steps
Total: O(n) + log2 n · −O(n) + O(n) = O(n log n)
L1 ∈ TIME (n log n)
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Can We Do Even Better?

On a 1-tape TM cannot do better than O(n log n)

What about on a 2-tape TM?

L1 = {0k1k | k ≥ 0}
L1 can be decided by the following 2-tape TM M3:
M3 = On input w

1 Scan the tape and reject if 0 found after a 1

2 Scan the 0s until the first 1 copying all 0s to tape 2
3 Scan across all 1s on tape 1.

For each 1 on tape 1, cross off a 0 on tape 2
If all 0s are crossed off before all 1s are done, reject

4 If any 0s remain, reject. If no symbols remain, accept

Important

Time complexity depends on the exact model of computation
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Dependence on Model of Computation

Theorem

For any function t(n) ≥ n, every multi-tape TM (with O(1) tapes) running
in time t(n) has an equivalent 1-tape TM running in time O(t2(n)).
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Polynomial Time

Efficient Computation

We define computation to be efficient if it runs in time bounded by some
polynomial of the input size n

Why polynomial:

Polynomials grow much slower than exponentials:

f (n) = n3: If n = 1000, f (n) = 1, 000, 000, 000 – large, but not
unreasonable for today’s PCs
f (n) = 2n: If n = 1000, f (n) > number of atoms in the universe

All “reasonable” deterministic computation models are polynomially
equivalent

Convenient closure properties:

poly(n) + poly(n) = poly(n)
poly(n) · poly(n) = poly(n) (up to O(1) multiplications)
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Outline

1 Polynomial Time

2 The Complexity Class P
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Complexity Class P

Definition

P is the class of languages decidable in polynomial time on a 1-tape
deterministic TM.

P =
⋃
k

TIME (nk)

P corresponds to the class of “efficiently-solvable” problems

P is invariant for all models of computation polynomially-equivalent
to 1-tape TM

P has nice closure properties
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Problems in P

PATH problem

PATH = {⟨G , s, t⟩ | G is a directed graph that has a path from s to t}
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Problems in P

RELPRIME problem

RELPRIME = {⟨x , y⟩ | x and y are relatively prime integers}

Definition: Greatest Common Divisor (GCD)
For a, b ∈ Z, gcd(a, b) = c s.t. c is the largest integer so that c |a and c|b

Euclidean Algorithm:
GCD(a, b):

1 If b|a, return b

2 Else, return GCD(b, [a mod b])
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Problems in P
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Decision Problems vs. Search Problems

We have defined all languages as decision problems (i.e., is x ∈ L?)

We often more naturally think of computation as search problems
(i.e., find a path from s to t)

For some complexity classes, but not all, the two are equivalent – we
will talk about this more later
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Next Class

Nondeterministic computation and the class NP
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