
Foundations of Computing
Lecture 2

Arkady Yerukhimovich

January 16, 2025

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 1 / 23



Outline

1 Academic Integrity Policies

2 Lecture 1 Review

3 Language accepted by M

4 Quiz Solutions

5 Building DFAs

6 Proving Correctness of a DFA

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 2 / 23



Homework Policies

Important

Any work you submit MUST be your own!

You may do the following:

discuss general concepts/questions with others

discuss similar problems not in homework (e.g., from the book(s))

You may NOT do the following:

Copy or provide answers to any hw problems to others

Use ChatGPT or any other LLM to produce your answers

Search the web for solutions or use services like chegg.com or
StackExchange

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 3 / 23



Homework Policies

Important

Any work you submit MUST be your own!

You may do the following:

discuss general concepts/questions with others

discuss similar problems not in homework (e.g., from the book(s))

You may NOT do the following:

Copy or provide answers to any hw problems to others

Use ChatGPT or any other LLM to produce your answers

Search the web for solutions or use services like chegg.com or
StackExchange

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 3 / 23



Homework Policies

Important

Any work you submit MUST be your own!

You may do the following:

discuss general concepts/questions with others

discuss similar problems not in homework (e.g., from the book(s))

You may NOT do the following:

Copy or provide answers to any hw problems to others

Use ChatGPT or any other LLM to produce your answers

Search the web for solutions or use services like chegg.com or
StackExchange

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 3 / 23



Outline

1 Academic Integrity Policies

2 Lecture 1 Review

3 Language accepted by M

4 Quiz Solutions

5 Building DFAs

6 Proving Correctness of a DFA

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 4 / 23



Lecture 1 Review

Syllabus review and course details

Strings, languages, and functions

Finite automata

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 5 / 23



Outline

1 Academic Integrity Policies

2 Lecture 1 Review

3 Language accepted by M

4 Quiz Solutions

5 Building DFAs

6 Proving Correctness of a DFA

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 6 / 23



Language accepted by M

start q1

0

q2

1

q3

1

0

1

0

Accepting a string

M accepts a string x (over Σ) if M(x) stops in an accept state

What strings does M accept?

Deciding a language

M decides a language L if it accepts:

ALL strings in L, and
NO strings not in L

Every M accepts exactly one language L(M)

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 7 / 23



Language accepted by M

start q1

0

q2

1

q3

1

0

1

0

Accepting a string

M accepts a string x (over Σ) if M(x) stops in an accept state

What strings does M accept?

Deciding a language

M decides a language L if it accepts:

ALL strings in L, and
NO strings not in L

Every M accepts exactly one language L(M)

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 7 / 23



Language accepted by M

start q1

0

q2

1

q3

1

0

1

0

Accepting a string

M accepts a string x (over Σ) if M(x) stops in an accept state

What strings does M accept?

Deciding a language

M decides a language L if it accepts:

ALL strings in L, and
NO strings not in L

Every M accepts exactly one language L(M)

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 7 / 23



What language does M accept?

start q1

0

q2

1

q3

1

0

1

0

L(M):

String must contain at least one 1

After the first string of 1’s, there must be an even number of 0’s or
no 0’s

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 8 / 23



Outline

1 Academic Integrity Policies

2 Lecture 1 Review

3 Language accepted by M

4 Quiz Solutions

5 Building DFAs

6 Proving Correctness of a DFA

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 9 / 23



Quiz Solutions

q1 q2 q3

q4

start

0

0

1

1

1 0

0, 1

Does M accept 00011?:

Does M accept 01100?

Describe the language L(M): all strings with one or more 0s followed
by one or more 1s

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 10 / 23



Quiz Solutions

q1 q2 q3

q4

start

0

0

1

1

1 0

0, 1

Does M accept 00011?:

Does M accept 01100?

Describe the language L(M): all strings with one or more 0s followed
by one or more 1s

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 10 / 23



Quiz Solutions

q1 q2 q3

q4

start

0

0

1

1

1 0

0, 1

Does M accept 00011?:

Does M accept 01100?

Describe the language L(M):

all strings with one or more 0s followed
by one or more 1s

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 10 / 23



Quiz Solutions

q1 q2 q3

q4

start

0

0

1

1

1 0

0, 1

Does M accept 00011?:

Does M accept 01100?

Describe the language L(M): all strings with one or more 0s followed
by one or more 1s
Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 10 / 23



Outline

1 Academic Integrity Policies

2 Lecture 1 Review

3 Language accepted by M

4 Quiz Solutions

5 Building DFAs

6 Proving Correctness of a DFA

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 11 / 23



Important Rules of Deterministic Finite Automata

Deterministic Finite Automata

Transition function must be fully defined:

For every state in Q, for every symbol in Σ, δ must specify a next state

Transition function must be a function:

For every state in Q, for every symbol in Σ, δ must specify exactly one
next state

Important: Deterministic means that the execution of M on any input in
Σ∗ must be fully specified.

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 12 / 23



Important Rules of Deterministic Finite Automata

Deterministic Finite Automata

Transition function must be fully defined:

For every state in Q, for every symbol in Σ, δ must specify a next state

Transition function must be a function:

For every state in Q, for every symbol in Σ, δ must specify exactly one
next state

Important: Deterministic means that the execution of M on any input in
Σ∗ must be fully specified.

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 12 / 23



Important Rules of Deterministic Finite Automata

Deterministic Finite Automata

Transition function must be fully defined:

For every state in Q, for every symbol in Σ, δ must specify a next state

Transition function must be a function:

For every state in Q, for every symbol in Σ, δ must specify exactly one
next state

Important: Deterministic means that the execution of M on any input in
Σ∗ must be fully specified.

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 12 / 23



DFA as an Algorithm

DFA Execution
1 Read next input symbol and use transition function to determine next

step until run out of input symbols

2 If stop in accept state, then output 1

Memory in a DFA:

Each state stores a summary of the input seen so far

Next state depends on the current state and the next symbol

Think of this as an “if” statement

Important

Since |Q| is finite, need to be able to take in inputs longer than the
number of states

Cannot just store the entire string!

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 13 / 23



DFA as an Algorithm

DFA Execution
1 Read next input symbol and use transition function to determine next

step until run out of input symbols

2 If stop in accept state, then output 1

Memory in a DFA:

Each state stores a summary of the input seen so far

Next state depends on the current state and the next symbol

Think of this as an “if” statement

Important

Since |Q| is finite, need to be able to take in inputs longer than the
number of states

Cannot just store the entire string!

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 13 / 23



DFA as an Algorithm

DFA Execution
1 Read next input symbol and use transition function to determine next

step until run out of input symbols

2 If stop in accept state, then output 1

Memory in a DFA:

Each state stores a summary of the input seen so far

Next state depends on the current state and the next symbol

Think of this as an “if” statement

Important

Since |Q| is finite, need to be able to take in inputs longer than the
number of states

Cannot just store the entire string!

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 13 / 23



Example 1

Problem

Build a DFA that decides

L = {w |w ∈ {0, 1}∗ and w contains the substring 101}

Building the DFA:

Idea: State should store the part of 101 seen so far

Transition function should change state depending on whether next
symbol fits pattern

Observations:
If see a 0:

this cannot be the first symbol of 101
but can be second character if previous symbol was a 1

If see a 1:
this can be the first character of 101
or, it can be the last character if we previously saw 10 – in this case,
we should accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 14 / 23



Example 1

Problem

Build a DFA that decides

L = {w |w ∈ {0, 1}∗ and w contains the substring 101}

Building the DFA:

Idea: State should store the part of 101 seen so far

Transition function should change state depending on whether next
symbol fits pattern

Observations:
If see a 0:

this cannot be the first symbol of 101
but can be second character if previous symbol was a 1

If see a 1:
this can be the first character of 101
or, it can be the last character if we previously saw 10 – in this case,
we should accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 14 / 23



Example 1

Problem

Build a DFA that decides

L = {w |w ∈ {0, 1}∗ and w contains the substring 101}

Building the DFA:

Idea: State should store the part of 101 seen so far

Transition function should change state depending on whether next
symbol fits pattern

Observations:
If see a 0:

this cannot be the first symbol of 101
but can be second character if previous symbol was a 1

If see a 1:
this can be the first character of 101
or, it can be the last character if we previously saw 10 – in this case,
we should accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 14 / 23



Example 1

Problem

Build a DFA that decides

L = {w |w ∈ {0, 1}∗ and w contains the substring 101}

Building the DFA:

Idea: State should store the part of 101 seen so far

Transition function should change state depending on whether next
symbol fits pattern

Observations:
If see a 0:

this cannot be the first symbol of 101
but can be second character if previous symbol was a 1

If see a 1:
this can be the first character of 101
or, it can be the last character if we previously saw 10 – in this case,
we should accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 14 / 23



Example 1

Problem

Build a DFA that decides

L = {w |w ∈ {0, 1}∗ and w contains the substring 101}

Building the DFA:

Idea: State should store the part of 101 seen so far

Transition function should change state depending on whether next
symbol fits pattern

Observations:
If see a 0:

this cannot be the first symbol of 101
but can be second character if previous symbol was a 1

If see a 1:
this can be the first character of 101
or, it can be the last character if we previously saw 10 – in this case,
we should accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 14 / 23



Example 1 – The Algorithm

Problem

Build a DFA that decides

L = {w |w ∈ {0, 1}∗ and w contains the substring 101}

Algorithm:
1 Start:

If read a 0, stay in step 1 – first symbol cannot be a 0
If read a 1, goto step 2 – record that we saw a 1

2 Step 2:
If read a 0, goto step 3 – record that we saw 10
If read a 1, stay in step 2 – may be first 1 of 101

3 Step 3:
If read a 0, goto step 1 – this is not 101, time to start over
If read a 1, goto step 4 – we have seen 101

4 Step 4:
On any input, stay in step 4 and accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 15 / 23



Example 1 – The Algorithm

Problem

Build a DFA that decides

L = {w |w ∈ {0, 1}∗ and w contains the substring 101}

Algorithm:
1 Start:

If read a 0, stay in step 1 – first symbol cannot be a 0
If read a 1, goto step 2 – record that we saw a 1

2 Step 2:
If read a 0, goto step 3 – record that we saw 10
If read a 1, stay in step 2 – may be first 1 of 101

3 Step 3:
If read a 0, goto step 1 – this is not 101, time to start over
If read a 1, goto step 4 – we have seen 101

4 Step 4:
On any input, stay in step 4 and accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 15 / 23



Example 1 – The Algorithm

Problem

Build a DFA that decides

L = {w |w ∈ {0, 1}∗ and w contains the substring 101}

Algorithm:
1 Start:

If read a 0, stay in step 1 – first symbol cannot be a 0
If read a 1, goto step 2 – record that we saw a 1

2 Step 2:
If read a 0, goto step 3 – record that we saw 10
If read a 1, stay in step 2 – may be first 1 of 101

3 Step 3:
If read a 0, goto step 1 – this is not 101, time to start over
If read a 1, goto step 4 – we have seen 101

4 Step 4:
On any input, stay in step 4 and accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 15 / 23



Example 1 – The Algorithm

Problem

Build a DFA that decides

L = {w |w ∈ {0, 1}∗ and w contains the substring 101}

Algorithm:
1 Start:

If read a 0, stay in step 1 – first symbol cannot be a 0
If read a 1, goto step 2 – record that we saw a 1

2 Step 2:
If read a 0, goto step 3 – record that we saw 10
If read a 1, stay in step 2 – may be first 1 of 101

3 Step 3:
If read a 0, goto step 1 – this is not 101, time to start over
If read a 1, goto step 4 – we have seen 101

4 Step 4:
On any input, stay in step 4 and accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 15 / 23



Build the DFA

1 Start:

If read a 0, stay in step 1 – first symbol cannot be a 0
If read a 1, goto step 2 – record that we saw a 1

2 Step 2:

If read a 0, goto step 3 – record that we saw 10
If read a 1, stay in step 2 – may be first 1 of 101

3 Step 3:

If read a 0, goto step 1 – this is not 101, time to start over
If read a 1, goto step 4 – we have seen 101

4 Step 4:

On any input, stay in step 4 and accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 16 / 23



The DFA

Problem

Build a DFA that decides

L = {w |w ∈ {0, 1}∗ and w contains the substring 101}

q1 q2 q3 q4

0

start
1

1

0 1

0

0, 1

1 q1 – not yet read first 1 in 101
2 q2 – last input was a 1, could be start of 101
3 q3 – have read 10
4 q4 – have read 101

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 17 / 23



Trap States

A useful tool for designing DFAs:

Trap states allow you to “reject” as soon as you know that w /∈ L

Trap states have no out edges – no way to get to accept

q1 q2

Trap

start

0

0

1 1

0, 1

For convenience

You can omit edges from transition diagram that point to the trap state

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 18 / 23



Trap States

A useful tool for designing DFAs:

Trap states allow you to “reject” as soon as you know that w /∈ L

Trap states have no out edges – no way to get to accept

q1 q2

Trap

start

0

0

1 1

0, 1

For convenience

You can omit edges from transition diagram that point to the trap state

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 18 / 23



Trap States

A useful tool for designing DFAs:

Trap states allow you to “reject” as soon as you know that w /∈ L

Trap states have no out edges – no way to get to accept

q1 q2

Trap

start

0

0

1 1

0, 1

For convenience

You can omit edges from transition diagram that point to the trap state

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 18 / 23



Trap States

A useful tool for designing DFAs:

Trap states allow you to “reject” as soon as you know that w /∈ L

Trap states have no out edges – no way to get to accept

q1 q2

Trap

start

0

0

1 1

0, 1

For convenience

You can omit edges from transition diagram that point to the trap state

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 18 / 23



Exercise

Problem

Build a DFA that decides:
L = {w |w ∈ {0, 1}∗ that consists of an even number (≥ 2) 1’s followed by
an odd number (≥ 1) 0’s}

q1 q2 q3

q4q5

start
1

1

1
0

0

0

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 19 / 23



Exercise

Problem

Build a DFA that decides:
L = {w |w ∈ {0, 1}∗ that consists of an even number (≥ 2) 1’s followed by
an odd number (≥ 1) 0’s}

q1 q2 q3

q4q5

start
1

1

1
0

0

0

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 19 / 23



Outline

1 Academic Integrity Policies

2 Lecture 1 Review

3 Language accepted by M

4 Quiz Solutions

5 Building DFAs

6 Proving Correctness of a DFA

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 20 / 23



Another Example

Consider the following DFA M

q1 q2start

0

0

Theorem: This DFA recognizes

L = {w ∈ {0, 1}∗|w has odd number of 0s and no 1s}

Proof:

Need to prove that L = L(M)

Instead we prove the L ⊆ L(M) and L(M) ⊆ L

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 21 / 23



Another Example

Consider the following DFA M

q1 q2start

0

0

Theorem: This DFA recognizes

L = {w ∈ {0, 1}∗|w has odd number of 0s and no 1s}

Proof:

Need to prove that L = L(M)

Instead we prove the L ⊆ L(M) and L(M) ⊆ L

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 21 / 23



Another Example

Consider the following DFA M

q1 q2start

0

0

Theorem: This DFA recognizes

L = {w ∈ {0, 1}∗|w has odd number of 0s and no 1s}

Proof:

Need to prove that L = L(M)

Instead we prove the L ⊆ L(M) and L(M) ⊆ L

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 21 / 23



L ⊆ L(M)

q1 q2start

0

0

L = {w ∈ {0, 1}∗|w has odd number of 0s and no 1s}

Claim: Every w ∈ L will cause M to accept (i.e., stop in q2).

Base Case:
If |w | = 1 and w ∈ L then w = 0 and M(w) = 1

Inductive Hypothesis:
For any w of length k, if w ∈ L, δ∗(q1,w) = q2

Proof by Induction:
Consider |w | = k + 2 and let w ′ be the prefix of w of length k .
By hypothesis δ∗(q1,w ′) = q2, and last two bits of w must be 0’s
Hence δ∗(q1,w) = q2

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 22 / 23



L ⊆ L(M)

q1 q2start

0

0

L = {w ∈ {0, 1}∗|w has odd number of 0s and no 1s}

Claim: Every w ∈ L will cause M to accept (i.e., stop in q2).

Base Case:
If |w | = 1 and w ∈ L then w = 0 and M(w) = 1

Inductive Hypothesis:
For any w of length k, if w ∈ L, δ∗(q1,w) = q2

Proof by Induction:
Consider |w | = k + 2 and let w ′ be the prefix of w of length k .
By hypothesis δ∗(q1,w ′) = q2, and last two bits of w must be 0’s
Hence δ∗(q1,w) = q2

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 22 / 23



L ⊆ L(M)

q1 q2start

0

0

L = {w ∈ {0, 1}∗|w has odd number of 0s and no 1s}

Claim: Every w ∈ L will cause M to accept (i.e., stop in q2).

Base Case:
If |w | = 1 and w ∈ L then w = 0 and M(w) = 1

Inductive Hypothesis:
For any w of length k, if w ∈ L, δ∗(q1,w) = q2

Proof by Induction:
Consider |w | = k + 2 and let w ′ be the prefix of w of length k .
By hypothesis δ∗(q1,w ′) = q2, and last two bits of w must be 0’s
Hence δ∗(q1,w) = q2

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 22 / 23



L ⊆ L(M)

q1 q2start

0

0

L = {w ∈ {0, 1}∗|w has odd number of 0s and no 1s}

Claim: Every w ∈ L will cause M to accept (i.e., stop in q2).

Base Case:
If |w | = 1 and w ∈ L then w = 0 and M(w) = 1

Inductive Hypothesis:
For any w of length k, if w ∈ L, δ∗(q1,w) = q2

Proof by Induction:
Consider |w | = k + 2 and let w ′ be the prefix of w of length k .
By hypothesis δ∗(q1,w ′) = q2, and last two bits of w must be 0’s
Hence δ∗(q1,w) = q2

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 22 / 23



L ⊆ L(M)

q1 q2start

0

0

L = {w ∈ {0, 1}∗|w has odd number of 0s and no 1s}

Claim: Every w ∈ L will cause M to accept (i.e., stop in q2).

Base Case:
If |w | = 1 and w ∈ L then w = 0 and M(w) = 1

Inductive Hypothesis:
For any w of length k, if w ∈ L, δ∗(q1,w) = q2

Proof by Induction:
Consider |w | = k + 2 and let w ′ be the prefix of w of length k .
By hypothesis δ∗(q1,w ′) = q2, and last two bits of w must be 0’s
Hence δ∗(q1,w) = q2

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 22 / 23



L(M) ⊆ L

Claim: Every w accepted by M is in L.

Proof by contradiction:
Assume there exists a string w accepted by M that is not in L

i.e., has an even number of 0’s or a 1

Proof:

1 w cannot have a 1, as any such input will not stop in q2

2 By similar proof to before, any w with even number of 0’s must stop
in q1

3 Contradiction!

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 23 / 23



L(M) ⊆ L

Claim: Every w accepted by M is in L.

Proof by contradiction:
Assume there exists a string w accepted by M that is not in L

i.e., has an even number of 0’s or a 1

Proof:

1 w cannot have a 1, as any such input will not stop in q2

2 By similar proof to before, any w with even number of 0’s must stop
in q1

3 Contradiction!

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 23 / 23



L(M) ⊆ L

Claim: Every w accepted by M is in L.

Proof by contradiction:
Assume there exists a string w accepted by M that is not in L

i.e., has an even number of 0’s or a 1

Proof:

1 w cannot have a 1, as any such input will not stop in q2

2 By similar proof to before, any w with even number of 0’s must stop
in q1

3 Contradiction!

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 16, 2025 23 / 23


	Academic Integrity Policies
	Lecture 1 Review
	Language accepted by M
	Quiz Solutions
	Building DFAs
	Proving Correctness of a DFA

