
Foundations of Computing
Lecture 20

Arkady Yerukhimovich

April 4, 2024

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 1 / 24

Outline

1 Lecture 19 Review

2 Verifying vs. Deciding

3 Nondeterministic Polynomial Time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 2 / 24

Lecture 19 Review

Polynomial Time Computation

The Complexity Class P

P =
[

k

TIME (nk)

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 3 / 24

Outline

1 Lecture 19 Review

2 Verifying vs. Deciding

3 Nondeterministic Polynomial Time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 4 / 24

The Class P

P is the class of languages decidable in polynomial time

Many examples of such (e�ciently decidable) languages:
PATH
RELPRIME
Pretty much everything you studied in algorithms class

But, some problems have resisted our e↵orts to find e�cient
algorithms

Today we will study one important class of such problems

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 5 / 24

The Class P

P is the class of languages decidable in polynomial time

Many examples of such (e�ciently decidable) languages:
PATH
RELPRIME
Pretty much everything you studied in algorithms class

But, some problems have resisted our e↵orts to find e�cient
algorithms

Today we will study one important class of such problems

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 5 / 24

The Class P

P is the class of languages decidable in polynomial time

Many examples of such (e�ciently decidable) languages:
PATH
RELPRIME
Pretty much everything you studied in algorithms class

But, some problems have resisted our e↵orts to find e�cient
algorithms

Today we will study one important class of such problems

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 5 / 24

The Class P

P is the class of languages decidable in polynomial time

Many examples of such (e�ciently decidable) languages:
PATH
RELPRIME
Pretty much everything you studied in algorithms class

But, some problems have resisted our e↵orts to find e�cient
algorithms

Today we will study one important class of such problems

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 5 / 24

Hamiltonian Path

Hamiltonian Path
A Hamiltonian path in directed graph G is a path that goes through each
node exactly once.

s

1

2

3

4

5

6

t

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 6 / 24

Hamiltonian Path

Hamiltonian Path
A Hamiltonian path in directed graph G is a path that goes through each
node exactly once.

s

1

2

3

4

5

6

t

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 6 / 24

In

Hamiltonian Path

Hamiltonian Path
A Hamiltonian path in directed graph G is a path that goes through each
node exactly once.

s

1

2

3

4

5

6

t

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 7 / 24

E

-

Hamiltonian Path

Hamiltonian Path
A Hamiltonian path in directed graph G is a path that goes through each
node exactly once.
But, not every graph has a Hamiltonian Path.

s

1

2

3

4

5

6

t

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 8 / 24

X - ↑
->

Hamiltonian Path

Hamiltonian Path Problem

HAMPATH = {hG , s, ti | G is a directed graph with a

Hamiltonian path from s to t}

Easy to find an exponential time algorithm for HAMPATH

But, no one knows a polynomial time algorithm for it

Polynomial Verifiability

However, given a path from s to t, can easily verify whether it is
Hamiltonian in polynomial time.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 9 / 24

Hamiltonian Path

Hamiltonian Path Problem

HAMPATH = {hG , s, ti | G is a directed graph with a

Hamiltonian path from s to t}

Easy to find an exponential time algorithm for HAMPATH

But, no one knows a polynomial time algorithm for it

Polynomial Verifiability

However, given a path from s to t, can easily verify whether it is
Hamiltonian in polynomial time.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 9 / 24

n !

Hamiltonian Path

Hamiltonian Path Problem

HAMPATH = {hG , s, ti | G is a directed graph with a

Hamiltonian path from s to t}

Easy to find an exponential time algorithm for HAMPATH

But, no one knows a polynomial time algorithm for it

Polynomial Verifiability

However, given a path from s to t, can easily verify whether it is
Hamiltonian in polynomial time.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 9 / 24

Hamiltonian Path

Hamiltonian Path Problem

HAMPATH = {hG , s, ti | G is a directed graph with a

Hamiltonian path from s to t}

Easy to find an exponential time algorithm for HAMPATH

But, no one knows a polynomial time algorithm for it

Polynomial Verifiability

However, given a path from s to t, can easily verify whether it is
Hamiltonian in polynomial time.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 9 / 24

Satisfiability

Boolean Formula
A Boolean formula is an expression inolving Boolean variables and logic
operations AND (^), OR (_), and NOT (¬ or x).

� = (x ^ y) _ (x ^ z)

A satisfying assignment is an assignment of 0 or 1 to the variables
such that the formula evaluates to 1

Example: x = 0, y = 1, z = 0 is a satisfying assignment for �

We say that formula � is satisfiable if it has a satisfying assignment

Not all formulas are satisfiable

�0 = (x ^ y) ^ (x ^ z)

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 10 / 24

Satisfiability

Boolean Formula
A Boolean formula is an expression inolving Boolean variables and logic
operations AND (^), OR (_), and NOT (¬ or x).

� = (x ^ y) _ (x ^ z)

A satisfying assignment is an assignment of 0 or 1 to the variables
such that the formula evaluates to 1

Example: x = 0, y = 1, z = 0 is a satisfying assignment for �

We say that formula � is satisfiable if it has a satisfying assignment

Not all formulas are satisfiable

�0 = (x ^ y) ^ (x ^ z)

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 10 / 24

-

-

Satisfiability

Boolean Formula
A Boolean formula is an expression inolving Boolean variables and logic
operations AND (^), OR (_), and NOT (¬ or x).

� = (x ^ y) _ (x ^ z)

A satisfying assignment is an assignment of 0 or 1 to the variables
such that the formula evaluates to 1

Example: x = 0, y = 1, z = 0 is a satisfying assignment for �

We say that formula � is satisfiable if it has a satisfying assignment

Not all formulas are satisfiable

�0 = (x ^ y) ^ (x ^ z)

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 10 / 24

Satisfiability

Boolean Formula
A Boolean formula is an expression inolving Boolean variables and logic
operations AND (^), OR (_), and NOT (¬ or x).

� = (x ^ y) _ (x ^ z)

A satisfying assignment is an assignment of 0 or 1 to the variables
such that the formula evaluates to 1

Example: x = 0, y = 1, z = 0 is a satisfying assignment for �

We say that formula � is satisfiable if it has a satisfying assignment

Not all formulas are satisfiable

�0 = (x ^ y) ^ (x ^ z)

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 10 / 24

if x= 0

X
-

i+ x =

Satisfiability

Satisfiability Problem

SAT = {h�i | � is a satisfiable Boolean formula}

Easy to find an exponential time algorithm for SAT

But, it is widely believed no polynomial time algorithm exists

Polynomial Verifiability

However, given an assignment (i.e., values for all the variables), can easily
verify whether � is satisfied by this assignment in polynomial time.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 11 / 24

Satisfiability

Satisfiability Problem

SAT = {h�i | � is a satisfiable Boolean formula}

Easy to find an exponential time algorithm for SAT

But, it is widely believed no polynomial time algorithm exists

Polynomial Verifiability

However, given an assignment (i.e., values for all the variables), can easily
verify whether � is satisfied by this assignment in polynomial time.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 11 / 24

Satisfiability

Satisfiability Problem

SAT = {h�i | � is a satisfiable Boolean formula}

Easy to find an exponential time algorithm for SAT

But, it is widely believed no polynomial time algorithm exists

Polynomial Verifiability

However, given an assignment (i.e., values for all the variables), can easily
verify whether � is satisfied by this assignment in polynomial time.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 11 / 24

Satisfiability

Satisfiability Problem

SAT = {h�i | � is a satisfiable Boolean formula}

Easy to find an exponential time algorithm for SAT

But, it is widely believed no polynomial time algorithm exists

Polynomial Verifiability

However, given an assignment (i.e., values for all the variables), can easily
verify whether � is satisfied by this assignment in polynomial time.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 11 / 24

Verifiability of a Language

A verifier for a language L is an algorithm V , where

L = {x | V accepts hx ,wi for some string w}

Runtime of V is measured as a function of |x |
V is a polynomial time verifier if it runs in time poly(|x |)
L is polynomially verfiable if it has a polynomial time verifier

String w is called a witness that x 2 L

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 12 / 24

Verifiability of a Language

A verifier for a language L is an algorithm V , where

L = {x | V accepts hx ,wi for some string w}

Runtime of V is measured as a function of |x |

V is a polynomial time verifier if it runs in time poly(|x |)
L is polynomially verfiable if it has a polynomial time verifier

String w is called a witness that x 2 L

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 12 / 24

Verifiability of a Language

A verifier for a language L is an algorithm V , where

L = {x | V accepts hx ,wi for some string w}

Runtime of V is measured as a function of |x |
V is a polynomial time verifier if it runs in time poly(|x |)

L is polynomially verfiable if it has a polynomial time verifier

String w is called a witness that x 2 L

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 12 / 24

(w) = poly(IX1)

Verifiability of a Language

A verifier for a language L is an algorithm V , where

L = {x | V accepts hx ,wi for some string w}

Runtime of V is measured as a function of |x |
V is a polynomial time verifier if it runs in time poly(|x |)
L is polynomially verfiable if it has a polynomial time verifier

String w is called a witness that x 2 L

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 12 / 24

Verifiability of a Language

A verifier for a language L is an algorithm V , where

L = {x | V accepts hx ,wi for some string w}

Runtime of V is measured as a function of |x |
V is a polynomial time verifier if it runs in time poly(|x |)
L is polynomially verfiable if it has a polynomial time verifier

String w is called a witness that x 2 L

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 12 / 24

SAT X : formula W = assignment

The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

We already saw that HAMPATH and SAT are in NP
Every L 2 P is also in NP : P ✓ NP

Intuition
P is the class of problems where you can find a solution in poly-time

NP is the class of problems where you can verify a solution in
poly-time

Question: P ?
= NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 13 / 24

The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

We already saw that HAMPATH and SAT are in NP

Every L 2 P is also in NP : P ✓ NP

Intuition
P is the class of problems where you can find a solution in poly-time

NP is the class of problems where you can verify a solution in
poly-time

Question: P ?
= NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 13 / 24

The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

We already saw that HAMPATH and SAT are in NP
Every L 2 P is also in NP :

P ✓ NP

Intuition
P is the class of problems where you can find a solution in poly-time

NP is the class of problems where you can verify a solution in
poly-time

Question: P ?
= NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 13 / 24

E D s.
t
. D decides Lin poly-time

V(x
,
w
-
1
. Run D(x)

out put that

The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

We already saw that HAMPATH and SAT are in NP
Every L 2 P is also in NP : P ✓ NP

Intuition
P is the class of problems where you can find a solution in poly-time

NP is the class of problems where you can verify a solution in
poly-time

Question: P ?
= NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 13 / 24

The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

We already saw that HAMPATH and SAT are in NP
Every L 2 P is also in NP : P ✓ NP

Intuition
P is the class of problems where you can find a solution in poly-time

NP is the class of problems where you can verify a solution in
poly-time

Question: P ?
= NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 13 / 24

The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

We already saw that HAMPATH and SAT are in NP
Every L 2 P is also in NP : P ✓ NP

Intuition
P is the class of problems where you can find a solution in poly-time

NP is the class of problems where you can verify a solution in
poly-time

Question: P ?
= NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 13 / 24

The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

We already saw that HAMPATH and SAT are in NP
Every L 2 P is also in NP : P ✓ NP

Intuition
P is the class of problems where you can find a solution in poly-time

NP is the class of problems where you can verify a solution in
poly-time

Question: P ?
= NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 13 / 24

Outline

1 Lecture 19 Review

2 Verifying vs. Deciding

3 Nondeterministic Polynomial Time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 14 / 24

The Class NP – Another Formulation

NP stands for non-deterministic polynomial time

NP is the set of languages decided by poly-time NTMs

Theorem
The two definitions of NP are equivalent:
For any language L,

L is poly-time verifiable () L is decided by a poly-time NTM

Proof Idea:

Need to prove both directions

()) An NTM simulates the verifier by guessing the witness w

(() A verifier simulates the NTM by using the accepting branch as
the witness

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 15 / 24

The Class NP – Another Formulation

NP stands for non-deterministic polynomial time

NP is the set of languages decided by poly-time NTMs

Theorem
The two definitions of NP are equivalent:
For any language L,

L is poly-time verifiable () L is decided by a poly-time NTM

Proof Idea:

Need to prove both directions

()) An NTM simulates the verifier by guessing the witness w

(() A verifier simulates the NTM by using the accepting branch as
the witness

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 15 / 24

The Class NP – Another Formulation

NP stands for non-deterministic polynomial time

NP is the set of languages decided by poly-time NTMs

Theorem
The two definitions of NP are equivalent:
For any language L,

L is poly-time verifiable () L is decided by a poly-time NTM

Proof Idea:

Need to prove both directions

()) An NTM simulates the verifier by guessing the witness w

(() A verifier simulates the NTM by using the accepting branch as
the witness

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 15 / 24

The Class NP – Another Formulation

NP stands for non-deterministic polynomial time

NP is the set of languages decided by poly-time NTMs

Theorem
The two definitions of NP are equivalent:
For any language L,

L is poly-time verifiable () L is decided by a poly-time NTM

Proof Idea:

Need to prove both directions

()) An NTM simulates the verifier by guessing the witness w

(() A verifier simulates the NTM by using the accepting branch as
the witness

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 15 / 24

The Class NP – Another Formulation

NP stands for non-deterministic polynomial time

NP is the set of languages decided by poly-time NTMs

Theorem
The two definitions of NP are equivalent:
For any language L,

L is poly-time verifiable () L is decided by a poly-time NTM

Proof Idea:

Need to prove both directions

()) An NTM simulates the verifier by guessing the witness w

(() A verifier simulates the NTM by using the accepting branch as
the witness

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 15 / 24

The Class NP – Another Formulation

NP stands for non-deterministic polynomial time

NP is the set of languages decided by poly-time NTMs

Theorem
The two definitions of NP are equivalent:
For any language L,

L is poly-time verifiable () L is decided by a poly-time NTM

Proof Idea:

Need to prove both directions

()) An NTM simulates the verifier by guessing the witness w

(() A verifier simulates the NTM by using the accepting branch as
the witness

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 15 / 24

The Class NP – Another Formulation

NP stands for non-deterministic polynomial time

NP is the set of languages decided by poly-time NTMs

Theorem
The two definitions of NP are equivalent:
For any language L,

L is poly-time verifiable () L is decided by a poly-time NTM

Proof Idea:

Need to prove both directions

()) An NTM simulates the verifier by guessing the witness w

(() A verifier simulates the NTM by using the accepting branch as
the witness

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 15 / 24

Equivalence of NP Definitions

Theorem
L is poly-time verifiable () L is decided by a poly-time NTM

Proof:
1 ()) Verifiability implies decidability by NTM

Let V be a verifier for L running in time nk

Construct NTM N as follows: On input x of length n
1 Nondeterministically select string w of length nk

2 Run V on input hx ,wi
3 Accept if V accepts and reject otherwise

2 (() Decidability by NTM implies verifiability
Let N be an NTM deciding L
Construct verifier V as follows: On input hx ,wi,

1 Simulate N on input x , treating each symbol of w as a description of
the nondeterministic choice to make at each step

2 If this branch of N’s computation accepts, accept, otherwise reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 16 / 24

Equivalence of NP Definitions

Theorem
L is poly-time verifiable () L is decided by a poly-time NTM

Proof:
1 ()) Verifiability implies decidability by NTM

Let V be a verifier for L running in time nk

Construct NTM N as follows: On input x of length n
1 Nondeterministically select string w of length nk

2 Run V on input hx ,wi
3 Accept if V accepts and reject otherwise

2 (() Decidability by NTM implies verifiability
Let N be an NTM deciding L
Construct verifier V as follows: On input hx ,wi,

1 Simulate N on input x , treating each symbol of w as a description of
the nondeterministic choice to make at each step

2 If this branch of N’s computation accepts, accept, otherwise reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 16 / 24

Equivalence of NP Definitions

Theorem
L is poly-time verifiable () L is decided by a poly-time NTM

Proof:
1 ()) Verifiability implies decidability by NTM

Let V be a verifier for L running in time nk

Construct NTM N as follows: On input x of length n
1 Nondeterministically select string w of length nk

2 Run V on input hx ,wi
3 Accept if V accepts and reject otherwise

2 (() Decidability by NTM implies verifiability
Let N be an NTM deciding L
Construct verifier V as follows: On input hx ,wi,

1 Simulate N on input x , treating each symbol of w as a description of
the nondeterministic choice to make at each step

2 If this branch of N’s computation accepts, accept, otherwise reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 16 / 24

Equivalence of NP Definitions

Theorem
L is poly-time verifiable () L is decided by a poly-time NTM

Proof:
1 ()) Verifiability implies decidability by NTM

Let V be a verifier for L running in time nk

Construct NTM N as follows: On input x of length n

1 Nondeterministically select string w of length nk

2 Run V on input hx ,wi
3 Accept if V accepts and reject otherwise

2 (() Decidability by NTM implies verifiability
Let N be an NTM deciding L
Construct verifier V as follows: On input hx ,wi,

1 Simulate N on input x , treating each symbol of w as a description of
the nondeterministic choice to make at each step

2 If this branch of N’s computation accepts, accept, otherwise reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 16 / 24

Equivalence of NP Definitions

Theorem
L is poly-time verifiable () L is decided by a poly-time NTM

Proof:
1 ()) Verifiability implies decidability by NTM

Let V be a verifier for L running in time nk

Construct NTM N as follows: On input x of length n
1 Nondeterministically select string w of length nk

2 Run V on input hx ,wi
3 Accept if V accepts and reject otherwise

2 (() Decidability by NTM implies verifiability
Let N be an NTM deciding L
Construct verifier V as follows: On input hx ,wi,

1 Simulate N on input x , treating each symbol of w as a description of
the nondeterministic choice to make at each step

2 If this branch of N’s computation accepts, accept, otherwise reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 16 / 24

Equivalence of NP Definitions

Theorem
L is poly-time verifiable () L is decided by a poly-time NTM

Proof:
1 ()) Verifiability implies decidability by NTM

Let V be a verifier for L running in time nk

Construct NTM N as follows: On input x of length n
1 Nondeterministically select string w of length nk

2 Run V on input hx ,wi

3 Accept if V accepts and reject otherwise

2 (() Decidability by NTM implies verifiability
Let N be an NTM deciding L
Construct verifier V as follows: On input hx ,wi,

1 Simulate N on input x , treating each symbol of w as a description of
the nondeterministic choice to make at each step

2 If this branch of N’s computation accepts, accept, otherwise reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 16 / 24

Equivalence of NP Definitions

Theorem
L is poly-time verifiable () L is decided by a poly-time NTM

Proof:
1 ()) Verifiability implies decidability by NTM

Let V be a verifier for L running in time nk

Construct NTM N as follows: On input x of length n
1 Nondeterministically select string w of length nk

2 Run V on input hx ,wi
3 Accept if V accepts and reject otherwise

2 (() Decidability by NTM implies verifiability
Let N be an NTM deciding L
Construct verifier V as follows: On input hx ,wi,

1 Simulate N on input x , treating each symbol of w as a description of
the nondeterministic choice to make at each step

2 If this branch of N’s computation accepts, accept, otherwise reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 16 / 24

It XEL ,
FW s . t . V

,
wD=

+ x + L
, XwV(x , r) = 0

Equivalence of NP Definitions

Theorem
L is poly-time verifiable () L is decided by a poly-time NTM

Proof:
1 ()) Verifiability implies decidability by NTM

Let V be a verifier for L running in time nk

Construct NTM N as follows: On input x of length n
1 Nondeterministically select string w of length nk

2 Run V on input hx ,wi
3 Accept if V accepts and reject otherwise

2 (() Decidability by NTM implies verifiability

Let N be an NTM deciding L
Construct verifier V as follows: On input hx ,wi,

1 Simulate N on input x , treating each symbol of w as a description of
the nondeterministic choice to make at each step

2 If this branch of N’s computation accepts, accept, otherwise reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 16 / 24

Equivalence of NP Definitions

Theorem
L is poly-time verifiable () L is decided by a poly-time NTM

Proof:
1 ()) Verifiability implies decidability by NTM

Let V be a verifier for L running in time nk

Construct NTM N as follows: On input x of length n
1 Nondeterministically select string w of length nk

2 Run V on input hx ,wi
3 Accept if V accepts and reject otherwise

2 (() Decidability by NTM implies verifiability
Let N be an NTM deciding L

Construct verifier V as follows: On input hx ,wi,
1 Simulate N on input x , treating each symbol of w as a description of

the nondeterministic choice to make at each step
2 If this branch of N’s computation accepts, accept, otherwise reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 16 / 24

Equivalence of NP Definitions

Theorem
L is poly-time verifiable () L is decided by a poly-time NTM

Proof:
1 ()) Verifiability implies decidability by NTM

Let V be a verifier for L running in time nk

Construct NTM N as follows: On input x of length n
1 Nondeterministically select string w of length nk

2 Run V on input hx ,wi
3 Accept if V accepts and reject otherwise

2 (() Decidability by NTM implies verifiability
Let N be an NTM deciding L
Construct verifier V as follows: On input hx ,wi,

1 Simulate N on input x , treating each symbol of w as a description of
the nondeterministic choice to make at each step

2 If this branch of N’s computation accepts, accept, otherwise reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 16 / 24

Equivalence of NP Definitions

Theorem
L is poly-time verifiable () L is decided by a poly-time NTM

Proof:
1 ()) Verifiability implies decidability by NTM

Let V be a verifier for L running in time nk

Construct NTM N as follows: On input x of length n
1 Nondeterministically select string w of length nk

2 Run V on input hx ,wi
3 Accept if V accepts and reject otherwise

2 (() Decidability by NTM implies verifiability
Let N be an NTM deciding L
Construct verifier V as follows: On input hx ,wi,

1 Simulate N on input x , treating each symbol of w as a description of
the nondeterministic choice to make at each step

2 If this branch of N’s computation accepts, accept, otherwise reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 16 / 24

Equivalence of NP Definitions

Theorem
L is poly-time verifiable () L is decided by a poly-time NTM

Proof:
1 ()) Verifiability implies decidability by NTM

Let V be a verifier for L running in time nk

Construct NTM N as follows: On input x of length n
1 Nondeterministically select string w of length nk

2 Run V on input hx ,wi
3 Accept if V accepts and reject otherwise

2 (() Decidability by NTM implies verifiability
Let N be an NTM deciding L
Construct verifier V as follows: On input hx ,wi,

1 Simulate N on input x , treating each symbol of w as a description of
the nondeterministic choice to make at each step

2 If this branch of N’s computation accepts, accept, otherwise reject

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 16 / 24

The Class NP

We can define the class of languages decided by poly-time NTMs

Definition

NTIME (t(n)) = {L | L is a language decided by a O(t(n))

time NTM}

NP =
[

k

NTIME (nk)

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 17 / 24

The Class NP

We can define the class of languages decided by poly-time NTMs

Definition

NTIME (t(n)) = {L | L is a language decided by a O(t(n))

time NTM}

NP =
[

k

NTIME (nk)

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 17 / 24

Problems in NP – Example 1

Clique

A clique in and undirected graph is a subset of nodes s.t. every two nodes
are connected by an edge. A k-clique is a clique containing k nodes

CLIQUE = {hG , ki | G is an undirected graph with a k-clique}

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 18 / 24

&
doo O

⑳

Problems in NP – Example 1

Clique

A clique in and undirected graph is a subset of nodes s.t. every two nodes
are connected by an edge. A k-clique is a clique containing k nodes

CLIQUE = {hG , ki | G is an undirected graph with a k-clique}

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 18 / 24

Problems in NP – Example 2

Subset Sum

Given a collection of integers {x1, . . . , xk} is there a subset of them that
adds up to k?

SUBSET � SUM = {hS , ti | S = {x1, . . . , xk} and for some

{y1, . . . , yl} ✓ {x1, . . . , xk},
X

yi = t}

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 19 / 24

Problems in NP – Example 2

Subset Sum

Given a collection of integers {x1, . . . , xk} is there a subset of them that
adds up to k?

SUBSET � SUM = {hS , ti | S = {x1, . . . , xk} and for some

{y1, . . . , yl} ✓ {x1, . . . , xk},
X

yi = t}

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 19 / 24

t

The Million Dollar Question

P ?
= NP

Is it easier to verify a solution than to find that solution?

This is the biggest open question in complexity theory

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 20 / 24

The Million Dollar Question

P ?
= NP

Is it easier to verify a solution than to find that solution?

This is the biggest open question in complexity theory

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 20 / 24

Let’s Try to Answer It

Theorem
Every nondeterministic TM has an equivalent deterministic TM.

C0

C1 C2 C3

C11 C12 C13

C111 C112 C113

start

Recall that an execution of a DTM is a
sequence of configurations

Execution of an NTM is a tree of
configurations (branches correspond to
non-deterministic choices)

If any node in the tree is an accept
node, the NTM accepts

To simulate an NTM by a DTM, need
to try all configurations in the tree to
see if we find an accepting one

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 21 / 24

Let’s Try to Answer It

Theorem
Every nondeterministic TM has an equivalent deterministic TM.

C0

C1 C2 C3

C11 C12 C13

C111 C112 C113

start

Recall that an execution of a DTM is a
sequence of configurations

Execution of an NTM is a tree of
configurations (branches correspond to
non-deterministic choices)

If any node in the tree is an accept
node, the NTM accepts

To simulate an NTM by a DTM, need
to try all configurations in the tree to
see if we find an accepting one

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 21 / 24

·
↑

I
-

Simulating NTM on a 3-tape DTM

To simulate an NTM N by a DTM D, we use three tapes:

1 Input tape – stores the input and doesn’t change

2 Simulation tape – work tape for the NTM on one branch of
nondeterminism

3 Address tape – use to store which nondeterministic branch you are on

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 22 / 24

Simulating NTM on a 3-tape DTM

To simulate an NTM N by a DTM D, we use three tapes:

1 Input tape – stores the input and doesn’t change

2 Simulation tape – work tape for the NTM on one branch of
nondeterminism

3 Address tape – use to store which nondeterministic branch you are on

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 22 / 24

Simulating NTM on a 3-tape DTM

To simulate an NTM N by a DTM D, we use three tapes:

1 Input tape – stores the input and doesn’t change

2 Simulation tape – work tape for the NTM on one branch of
nondeterminism

3 Address tape – use to store which nondeterministic branch you are on

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 22 / 24

Simulating NTM on a 3-tape DTM

To simulate an NTM N by a DTM D, we use three tapes:

1 Input tape – stores the input and doesn’t change

2 Simulation tape – work tape for the NTM on one branch of
nondeterminism

3 Address tape – use to store which nondeterministic branch you are on

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 22 / 24

Simulating NTM on a 3-tape DTM

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move
onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

What’s the Problem?

NTM running in time t(n), makes O(t(n)) non-deterministic choices

Above algorithm tries all possible values for these branches: 2O(t(n))

Resulting DTM runs in exponential time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 23 / 24

Simulating NTM on a 3-tape DTM

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move
onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

What’s the Problem?

NTM running in time t(n), makes O(t(n)) non-deterministic choices

Above algorithm tries all possible values for these branches: 2O(t(n))

Resulting DTM runs in exponential time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 23 / 24

Simulating NTM on a 3-tape DTM

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move
onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

What’s the Problem?

NTM running in time t(n), makes O(t(n)) non-deterministic choices

Above algorithm tries all possible values for these branches: 2O(t(n))

Resulting DTM runs in exponential time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 23 / 24

Simulating NTM on a 3-tape DTM

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move
onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

What’s the Problem?

NTM running in time t(n), makes O(t(n)) non-deterministic choices

Above algorithm tries all possible values for these branches: 2O(t(n))

Resulting DTM runs in exponential time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 23 / 24

Simulating NTM on a 3-tape DTM

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move
onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

What’s the Problem?

NTM running in time t(n), makes O(t(n)) non-deterministic choices

Above algorithm tries all possible values for these branches: 2O(t(n))

Resulting DTM runs in exponential time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 23 / 24

Simulating NTM on a 3-tape DTM

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move
onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

What’s the Problem?

NTM running in time t(n), makes O(t(n)) non-deterministic choices

Above algorithm tries all possible values for these branches: 2O(t(n))

Resulting DTM runs in exponential time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 23 / 24

Simulating NTM on a 3-tape DTM

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move
onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

What’s the Problem?

NTM running in time t(n), makes O(t(n)) non-deterministic choices

Above algorithm tries all possible values for these branches: 2O(t(n))

Resulting DTM runs in exponential time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 23 / 24

Simulating NTM on a 3-tape DTM

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move
onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

What’s the Problem?

NTM running in time t(n), makes O(t(n)) non-deterministic choices

Above algorithm tries all possible values for these branches: 2O(t(n))

Resulting DTM runs in exponential time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 23 / 24

Simulating NTM on a 3-tape DTM

Simulating an NTM N
1 Start with input w on tape 1, and tapes 2,3 empty

2 Copy w to tape 2

3 Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

4 Replace string on tape 3 with the lexicographically next one (move
onto next non-deterministic branch)

5 If N ever enters an accept state, stop and accept

What’s the Problem?

NTM running in time t(n), makes O(t(n)) non-deterministic choices

Above algorithm tries all possible values for these branches: 2O(t(n))

Resulting DTM runs in exponential time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 23 / 24

Next Week

We will study properties of languages in NP

We will show that there are NP-complete languages that are as hard
as any other language in NP
We will show this using reductions – Yay!

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 24 / 24

Next Week

We will study properties of languages in NP
We will show that there are NP-complete languages that are as hard
as any other language in NP

We will show this using reductions – Yay!

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 24 / 24

Next Week

We will study properties of languages in NP
We will show that there are NP-complete languages that are as hard
as any other language in NP
We will show this using reductions – Yay!

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 4, 2024 24 / 24

