Foundations of Computing

Lecture 20

Arkady Yerukhimovich

April 4, 2024

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Outline

© Lecture 19 Review

Arkady Yerukhimovich CS 3313 — Foundations of Computing

Lecture 19 Review

@ Polynomial Time Computation

@ The Complexity Class P

P = TIME(n¥)
k

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Outline

© Verifying vs. Deciding

Arkady Yerukhimovich CS 3313 — Foundations of Computing

The Class P

@ P is the class of languages decidable in polynomial time

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Class P

@ P is the class of languages decidable in polynomial time
e Many examples of such (efficiently decidable) languages:

o PATH
o RELPRIME
o Pretty much everything you studied in algorithms class

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Class P

@ P is the class of languages decidable in polynomial time
e Many examples of such (efficiently decidable) languages:

o PATH
o RELPRIME
o Pretty much everything you studied in algorithms class

@ But, some problems have resisted our efforts to find efficient
algorithms

April 4, 2024

Arkady Yerukhimovich CS 3313 — Foundations of Computing

The Class P

@ P is the class of languages decidable in polynomial time
e Many examples of such (efficiently decidable) languages:

o PATH
o RELPRIME
o Pretty much everything you studied in algorithms class

@ But, some problems have resisted our efforts to find efficient
algorithms

@ Today we will study one important class of such problems

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Hamiltonian Path

Hamiltonian Path

A Hamiltonian path in directed graph G is a path that goes through each
node exactly once.

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Hamiltonian Path

Hamiltonian Path

A Hamiltonian path in directed graph G is a path that goes through each
node exactly once.

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Hamiltonian Path

Hamiltonian Path

A Hamiltonian path in directed graph G is a path that goes through each
node exactly once.

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 7/24

Hamiltonian Path

Hamiltonian Path

A Hamiltonian path in directed graph G is a path that goes through each
node exactly once.
But, not every graph has a Hamiltonian Path.

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 8/24

Hamiltonian Path

Hamiltonian Path Problem

HAMPATH = {(G,s,t) | G is a directed graph with a

Hamiltonian path from s to t}

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Hamiltonian Path

Hamiltonian Path Problem

HAMPATH = {(G,s,t) | G is a directed graph with a

Hamiltonian path from s to t}

@ Easy to find an exponential time algorithm for HAMPATH

n'

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 9/24

Hamiltonian Path

Hamiltonian Path Problem

HAMPATH = {(G,s,t) | G is a directed graph with a

Hamiltonian path from s to t}

@ Easy to find an exponential time algorithm for HAMPATH
@ But, no one knows a polynomial time algorithm for it

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 9/24

Hamiltonian Path

Hamiltonian Path Problem

HAMPATH = {(G,s,t) | G is a directed graph with a

Hamiltonian path from s to t}

@ Easy to find an exponential time algorithm for HAMPATH
@ But, no one knows a polynomial time algorithm for it

Polynomial Verifiability

However, given a path from s to t, can easily verify whether it is
Hamiltonian in polynomial time.

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 9/24

Satisfiability

Boolean Formula

A Boolean formula is an expression inolving Boolean variables and logic
operations AND (A), OR (V), and NOT (= or X).

6= (XAY)V (xAZ)

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Satisfiability

Boolean Formula

A Boolean formula is an expression inolving Boolean variables and logic
operations AND (A), OR (V), and NOT (= or X).

o A satisfying assignment is an assignment of 0 or 1 to the variables
such that the formula evaluates to 1

@ Example: x =0, y =1, z= 0 is a satisfying assignment for ¢

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Satisfiability

Boolean Formula
A Boolean formula is an expression inolving Boolean variables and logic

operations AND (A), OR (V), and NOT (= or X).

6= (XAY)V (xAZ)

o A satisfying assignment is an assignment of 0 or 1 to the variables
such that the formula evaluates to 1
@ Example: x =0, y =1, z= 0 is a satisfying assignment for ¢

@ We say that formula ¢ is satisfiable if it has a satisfying assignment

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 10 /24

Satisfiability

Boolean Formula

A Boolean formula is an expression inolving Boolean variables and logic
operations AND (A), OR (V), and NOT (= or X).

6= (XAY)V (xAZ)

o A satisfying assignment is an assignment of 0 or 1 to the variables
such that the formula evaluates to 1

@ Example: x =0, y =1, z= 0 is a satisfying assignment for ¢
@ We say that formula ¢ is satisfiable if it has a satisfying assignment

@ Not all formulas are satisfiable w %2 O
o =B NxNZ) T f g a

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 10 /24

Satisfiability

Satisfiability Problem

SAT = {(¢) | ¢ is a satisfiable Boolean formula}

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Satisfiability

Satisfiability Problem

SAT = {(¢) | ¢ is a satisfiable Boolean formula}

@ Easy to find an exponential time algorithm for SAT

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Satisfiability

Satisfiability Problem

SAT = {(¢) | ¢ is a satisfiable Boolean formula}

@ Easy to find an exponential time algorithm for SAT

o But, it is widely believed no polynomial time algorithm exists

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Satisfiability

Satisfiability Problem

SAT = {(¢) | ¢ is a satisfiable Boolean formula}

@ Easy to find an exponential time algorithm for SAT

o But, it is widely believed no polynomial time algorithm exists

Polynomial Verifiability

However, given an assignment (i.e., values for all the variables), can easily
verify whether ¢ is satisfied by this assignment in polynomial time.

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 11/24

Verifiability of a Language

A verifier for a language L is an algorithm V/, where

L ={x| V accepts (x,w) for some string w}

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Verifiability of a Language

A verifier for a language L is an algorithm V/, where

L ={x| V accepts (x,w) for some string w}

@ Runtime of V is measured as a function of |x|

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Verifiability of a Language

A verifier for a language L is an algorithm V/, where

L ={x| V accepts (x,w) for some string w}

@ Runtime of V is measured as a function of |x|

e V is a polynomial time verifier if it runs in time poly(|x|)

\w| € poby CIX|)

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Verifiability of a Language

A verifier for a language L is an algorithm V/, where

L ={x| V accepts (x,w) for some string w}

@ Runtime of V is measured as a function of |x|
e V is a polynomial time verifier if it runs in time poly(|x|)

@ L is polynomially verfiable if it has a polynomial time verifier

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Verifiability of a Language

A verifier for a language L is an algorithm V/, where

L ={x| V accepts (x,w) for some string w}

Runtime of V is measured as a function of |x|
V is a polynomial time verifier if it runs in time poly(|x|)

L is polynomially verfiable if it has a polynomial time verifier

String w is called a witness that x € L

SAT x- tocmda U= wSfi usnl

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Class NP

Definition

NP is the class of languages that have polynomial time verifiers.

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

o We already saw that HAMPATH and SAT are in NP

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

o We already saw that HAMPATH and SAT are in NP
@ Every L € Pis also in N'P:

5 D sk D dec des L ia b b

voRew D)

0-' fw\ kLr*

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

o We already saw that HAMPATH and SAT are in NP
@ Every L € Pis also in N'P: PCNP

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

o We already saw that HAMPATH and SAT are in NP
@ Every L € Pis also in N'P: PCNP

@ P is the class of problems where you can find a solution in poly-time

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 13 /24

The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

o We already saw that HAMPATH and SAT are in NP
@ Every L € Pis also in N'P: PCNP

@ P is the class of problems where you can find a solution in poly-time

@ NP is the class of problems where you can verify a solution in
poly-time

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 13 /24

The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

o We already saw that HAMPATH and SAT are in NP
@ Every L € Pis also in N'P: PCNP

@ P is the class of problems where you can find a solution in poly-time

@ NP is the class of problems where you can verify a solution in
poly-time

@ Question: P A NP

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 13 /24

Outline

© Nondeterministic Polynomial Time

Arkady Yerukhimovich CS 3313 — Foundations of Computing

The Class NP — Another Formulation

e NP stands for non-deterministic polynomial time

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Class NP — Another Formulation

e NP stands for non-deterministic polynomial time

o NP is the set of languages decided by poly-time NTMs

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Class NP — Another Formulation

e NP stands for non-deterministic polynomial time

o NP is the set of languages decided by poly-time NTMs

The two definitions of A'P are equivalent:
For any language L,

L is poly-time verifiable <= L is decided by a poly-time NTM

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Class NP — Another Formulation

e NP stands for non-deterministic polynomial time

o NP is the set of languages decided by poly-time NTMs

The two definitions of A'P are equivalent:
For any language L,

L is poly-time verifiable <= L is decided by a poly-time NTM

Proof ldea:

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Class NP — Another Formulation

e NP stands for non-deterministic polynomial time

o NP is the set of languages decided by poly-time NTMs

The two definitions of A'P are equivalent:
For any language L,

L is poly-time verifiable <= L is decided by a poly-time NTM

Proof ldea:

@ Need to prove both directions

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Class NP — Another Formulation

e NP stands for non-deterministic polynomial time

o NP is the set of languages decided by poly-time NTMs

The two definitions of A'P are equivalent:
For any language L,

L is poly-time verifiable <= L is decided by a poly-time NTM

Proof Idea:
@ Need to prove both directions

@ (=) An NTM simulates the verifier by guessing the witness w

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Class NP — Another Formulation

e NP stands for non-deterministic polynomial time

o NP is the set of languages decided by poly-time NTMs

The two definitions of A'P are equivalent:
For any language L,

L is poly-time verifiable <= L is decided by a poly-time NTM

Proof Idea:
@ Need to prove both directions
@ (=) An NTM simulates the verifier by guessing the witness w

e (<) A verifier simulates the NTM by using the accepting branch as
the witness

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Equivalence of NP Definitions

L is poly-time verifiable <= L is decided by a poly-time NTM \

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Equivalence of NP Definitions

L is poly-time verifiable <= L is decided by a poly-time NTM \

Proof:
@ (=) Verifiability implies decidability by NTM

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Equivalence of NP Definitions

L is poly-time verifiable <= L is decided by a poly-time NTM \

Proof:

@ (=) Verifiability implies decidability by NTM
k

o Let V be a verifier for L running in time n

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Equivalence of NP Definitions

L is poly-time verifiable <= L is decided by a poly-time NTM \

Proof:

@ (=) Verifiability implies decidability by NTM
k

o Let V be a verifier for L running in time n
e Construct NTM N as follows: On input x of length n

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Equivalence of NP Definitions

L is poly-time verifiable <= L is decided by a poly-time NTM \

Proof:

@ (=) Verifiability implies decidability by NTM
k

o Let V be a verifier for L running in time n
e Construct NTM N as follows: On input x of length n

© Nondeterministically select string w of length n

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Equivalence of NP Definitions

L is poly-time verifiable <= L is decided by a poly-time NTM \

Proof:

@ (=) Verifiability implies decidability by NTM
k

o Let V be a verifier for L running in time n
e Construct NTM N as follows: On input x of length n
© Nondeterministically select string w of length n

@ Run V on input (x, w)

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Equivalence of NP Definitions

L is poly-time verifiable <= L is decided by a poly-time NTM \

Proof:

@ (=) Verifiability implies decidability by NTM
k

o Let V be a verifier for L running in time n
e Construct NTM N as follows: On input x of length n

© Nondeterministically select string w of length n
@ Run V on input (x, w)
© Accept if V accepts and reject otherwise

= xel , 3w b NGw)=
(‘(' x ?’L | \(w VLX‘U)"O

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Equivalence of NP Definitions
L is poly-time verifiable <= L is decided by a poly-time NTM \

Proof:

@ (=) Verifiability implies decidability by NTM
k

o Let V be a verifier for L running in time n
e Construct NTM N as follows: On input x of length n
© Nondeterministically select string w of length n

@ Run V on input (x, w)
© Accept if V accepts and reject otherwise

@ (<) Decidability by NTM implies verifiability

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Equivalence of NP Definitions
L is poly-time verifiable <= L is decided by a poly-time NTM \

Proof:

@ (=) Verifiability implies decidability by NTM
k

o Let V be a verifier for L running in time n
e Construct NTM N as follows: On input x of length n
© Nondeterministically select string w of length n
@ Run V on input (x, w)
© Accept if V accepts and reject otherwise
@ (<) Decidability by NTM implies verifiability
o Let N be an NTM deciding L

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Equivalence of NP Definitions
L is poly-time verifiable <= L is decided by a poly-time NTM \

Proof:

@ (=) Verifiability implies decidability by NTM
k

o Let V be a verifier for L running in time n

e Construct NTM N as follows: On input x of length n
© Nondeterministically select string w of length n
@ Run V on input (x, w)
© Accept if V accepts and reject otherwise

@ (<) Decidability by NTM implies verifiability
o Let N be an NTM deciding L
o Construct verifier V as follows: On input (x, w),

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Equivalence of NP Definitions
L is poly-time verifiable <= L is decided by a poly-time NTM \

Proof:

@ (=) Verifiability implies decidability by NTM
k

o Let V be a verifier for L running in time n

e Construct NTM N as follows: On input x of length n
© Nondeterministically select string w of length n
@ Run V on input (x, w)
© Accept if V accepts and reject otherwise

@ (<) Decidability by NTM implies verifiability
o Let N be an NTM deciding L
o Construct verifier V as follows: On input (x, w),

@ Simulate N on input x, treating each symbol of w as a description of
the nondeterministic choice to make at each step

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Equivalence of NP Definitions

L is poly-time verifiable <= L is decided by a poly-time NTM

Proof:

@ (=) Verifiability implies decidability by NTM

o Let V be a verifier for L running in time n*

e Construct NTM N as follows: On input x of length n
© Nondeterministically select string w of length n
@ Run V on input (x, w)
© Accept if V accepts and reject otherwise

@ (<) Decidability by NTM implies verifiability

o Let N be an NTM deciding L

o Construct verifier V as follows: On input (x, w),
@ Simulate N on input x, treating each symbol of w as a description of

the nondeterministic choice to make at each step

@ If this branch of N's computation accepts, accept, otherwise reject

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Class NP

We can define the class of languages decided by poly-time NTMs

NTIME(t(n)) ={L | L is a language decided by a O(t(n))
time NTM}

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Class NP

We can define the class of languages decided by poly-time NTMs

NTIME(t(n)) ={L | L is a language decided by a O(t(n))
time NTM}

NP = NTIME(n)
k

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Problems in NP — Example 1

A clique in and undirected graph is a subset of nodes s.t. every two nodes
are connected by an edge. A k-clique is a clique containing k nodes

4 0
) @

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Problems in NP — Example 1

A clique in and undirected graph is a subset of nodes s.t. every two nodes
are connected by an edge. A k-clique is a clique containing k nodes

CLIQUE = {(G, k) | G is an undirected graph with a k-clique}

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Problems in NP — Example 2

Given a collection of integers {xi,...,xx} is there a subset of them that
adds up to k?

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Problems in NP — Example 2

Given a collection of integers {xi,...,xx} is there a subset of them that
adds up to £7

SUBSET — SUM = {(S§,t) | S={x1,...,xx} and for some
-y S Oa, o Y v =t}

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Million Dollar Question

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

The Million Dollar Question

PLNP

@ Is it easier to verify a solution than to find that solution?

@ This is the biggest open question in complexity theory

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Let's Try to Answer It
Every nondeterministic TM has an equivalent deterministic TM. \

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Let's Try to Answer It
Every nondeterministic TM has an equivalent deterministic TM.

@ Recall that an execution of a DTM is a
sequence of configurations

@ Execution of an NTM is a tree of
configurations (branches correspond to
non-deterministic choices)

@ If any node in the tree is an accept
node, the NTM accepts

@ To simulate an NTM by a DTM, need
to try all configurations in the tree to
see if we find an accepting one

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Simulating on a 3-tape D
| OOEBEO- meurere

Control
[albaJuT T].-- simulation Tape

- Address Tape

To simulate an NTM N by a DTM D, we use three tapes:

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Simulating NTM on a 3-tape DTM
Input Tape

Control
[albaJuT T].-- simulation Tape

- Address Tape

To simulate an NTM N by a DTM D, we use three tapes:
@ Input tape — stores the input and doesn’t change

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Simulating NTM on a 3-tape DTM
Input Tape

Control
[alb[aJuT T]--- simulation Tape

- Address Tape

To simulate an NTM N by a DTM D, we use three tapes:
@ Input tape — stores the input and doesn’t change

@ Simulation tape — work tape for the NTM on one branch of
nondeterminism

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

Simulating NTM on a 3-tape DTM
Input Tape

Control
[alb[aJuT T]--- simulation Tape

- Address Tape

To simulate an NTM N by a DTM D, we use three tapes:
@ Input tape — stores the input and doesn’t change
@ Simulation tape — work tape for the NTM on one branch of

nondeterminism
© Address tape — use to store which nondeterministic branch you are on

April 4, 2024

Arkady Yerukhimovich CS 3313 — Foundations of Computing

Simulating NTM on a 3-tape DTM

Simulating an NTM N

© Start with input w on tape 1, and tapes 2,3 empty

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 23 /24

Simulating NTM on a 3-tape DTM

© Start with input w on tape 1, and tapes 2,3 empty
@ Copy w to tape 2

Simulating an NTM N

Arkady Yerukhimovich CS 3313 — Foundations of Computing

April 4, 2024

23 /24

Simulating NTM on a 3-tape DTM

© Start with input w on tape 1, and tapes 2,3 empty

@ Copy w to tape 2

© Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 23 /24

Simulating NTM on a 3-tape DTM

Simulating an NTM N

© Start with input w on tape 1, and tapes 2,3 empty

@ Copy w to tape 2

© Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

© Replace string on tape 3 with the lexicographically next one (move
onto next non-deterministic branch)

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 23 /24

Simulating NTM on a 3-tape DTM

Simulating an NTM N

© Start with input w on tape 1, and tapes 2,3 empty

@ Copy w to tape 2

© Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

© Replace string on tape 3 with the lexicographically next one (move
onto next non-deterministic branch)

© If NV ever enters an accept state, stop and accept
Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 23 /24

Simulating NTM on a 3-tape DTM

Simulating an NTM N

© Start with input w on tape 1, and tapes 2,3 empty

@ Copy w to tape 2

© Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

© Replace string on tape 3 with the lexicographically next one (move
onto next non-deterministic branch)

© If N ever enters an accept state, stop and accept

What's the Problem?

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 23 /24

Simulating NTM on a 3-tape DTM

Simulating an NTM N

© Start with input w on tape 1, and tapes 2,3 empty

@ Copy w to tape 2

© Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

© Replace string on tape 3 with the lexicographically next one (move
onto next non-deterministic branch)

© If N ever enters an accept state, stop and accept

What's the Problem?

@ NTM running in time t(n), makes O(t(n)) non-deterministic choices

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 23 /24

Simulating NTM on a 3-tape DTM

Simulating an NTM N

© Start with input w on tape 1, and tapes 2,3 empty
@ Copy w to tape 2

© Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

© Replace string on tape 3 with the lexicographically next one (move
onto next non-deterministic branch)

© If N ever enters an accept state, stop and accept

What's the Problem?

@ NTM running in time t(n), makes O(t(n)) non-deterministic choices
o Above algorithm tries all possible values for these branches: 20(t(")

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 23 /24

Simulating NTM on a 3-tape DTM

Simulating an NTM N

© Start with input w on tape 1, and tapes 2,3 empty
@ Copy w to tape 2

© Use tape 2 to simulate a run of N. Whenever it needs to make a
non-deterministic choice, see next symbol on tape 3 for which branch
to take. If no symbols left, go to step 4

© Replace string on tape 3 with the lexicographically next one (move
onto next non-deterministic branch)

© If N ever enters an accept state, stop and accept

What's the Problem?
@ NTM running in time t(n), makes O(t(n)) non-deterministic choices
o Above algorithm tries all possible values for these branches: 20(t(")
@ Resulting DTM runs in exponential time

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024 23 /24

Next Week

@ We will study properties of languages in NP

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

@ We will study properties of languages in NP

@ We will show that there are N'’P-complete languages that are as hard
as any other language in N'P

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

@ We will study properties of languages in NP

@ We will show that there are N'’P-complete languages that are as hard
as any other language in N'P

@ We will show this using reductions — Yay!

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 4, 2024

