Foundations of Computing Lecture 20

Arkady Yerukhimovich

April 4, 2024

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 4, 2024

2 Verifying vs. Deciding

3 Nondeterministic Polynomial Time

표 제 표

Image: A matched block

- Polynomial Time Computation
- \bullet The Complexity Class ${\cal P}$

$$\mathcal{P} = \bigcup_k TIME(n^k)$$

э

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

표 제 표

< □ > < 同 >

$\bullet \ \mathcal{P}$ is the class of languages decidable in polynomial time

< 円

æ

- ullet \mathcal{P} is the class of languages decidable in polynomial time
- Many examples of such (efficiently decidable) languages:
 - PATH
 - RELPRIME
 - Pretty much everything you studied in algorithms class

- ullet \mathcal{P} is the class of languages decidable in polynomial time
- Many examples of such (efficiently decidable) languages:
 - PATH
 - RELPRIME
 - Pretty much everything you studied in algorithms class
- But, some problems have resisted our efforts to find efficient algorithms

- ullet \mathcal{P} is the class of languages decidable in polynomial time
- Many examples of such (efficiently decidable) languages:
 - PATH
 - RELPRIME
 - Pretty much everything you studied in algorithms class
- But, some problems have resisted our efforts to find efficient algorithms
- Today we will study one important class of such problems

A Hamiltonian path in directed graph G is a path that goes through each node exactly once.

A Hamiltonian path in directed graph G is a path that goes through each node exactly once.

A Hamiltonian path in directed graph G is a path that goes through each node exactly once.

A Hamiltonian path in directed graph G is a path that goes through each node exactly once.

But, not every graph has a Hamiltonian Path.

$HAMPATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph with a} \}$

Hamiltonian path from s to t}

 $HAMPATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph with a} \\Hamiltonian path from s to t \}$

n!

• Easy to find an exponential time algorithm for HAMPATH

 $HAMPATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph with a} \\Hamiltonian path from s to t \}$

- Easy to find an exponential time algorithm for HAMPATH
- But, no one knows a polynomial time algorithm for it

 $HAMPATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph with a} \\Hamiltonian path from s to t \}$

- Easy to find an exponential time algorithm for HAMPATH
- But, no one knows a polynomial time algorithm for it

Polynomial Verifiability

However, given a path from s to t, can easily verify whether it is Hamiltonian in polynomial time.

A Boolean formula is an expression inolving Boolean variables and logic operations AND (\land), OR (\lor), and NOT (\neg or \overline{x}).

 $\phi = (\overline{x} \land y) \lor (x \land \overline{z})$

< ∃ ►

A Boolean formula is an expression inolving Boolean variables and logic operations AND (\land), OR (\lor), and NOT (\neg or \overline{x}).

$$\phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

- A satisfying assignment is an assignment of 0 or 1 to the variables such that the formula evaluates to 1
- Example: x = 0, y = 1, z = 0 is a satisfying assignment for ϕ

A Boolean formula is an expression inolving Boolean variables and logic operations AND (\land), OR (\lor), and NOT (\neg or \overline{x}).

$$\phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

- A satisfying assignment is an assignment of 0 or 1 to the variables such that the formula evaluates to 1
- Example: x = 0, y = 1, z = 0 is a satisfying assignment for ϕ
- We say that formula ϕ is satisfiable if it has a satisfying assignment

A Boolean formula is an expression inolving Boolean variables and logic operations AND (\land), OR (\lor), and NOT (\neg or \overline{x}).

$$\phi = (\overline{x} \land y) \lor (x \land \overline{z})$$

- A satisfying assignment is an assignment of 0 or 1 to the variables such that the formula evaluates to 1
- Example: x = 0, y = 1, z = 0 is a satisfying assignment for ϕ
- ullet We say that formula ϕ is satisfiable if it has a satisfying assignment
- Not all formulas are satisfiable

$$\phi' = (\mathbf{x}, \mathbf{y}) \land (\mathbf{x} \land \overline{\mathbf{z}}) \qquad \text{if } \mathbf{x} \ge \mathbf{1}$$

if x=0

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

Arkady Yerukhimovich CS 3313 – Fou

CS 3313 - Foundations of Computing

April 4, 2024

イロト 不得 トイヨト イヨト

2

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

• Easy to find an exponential time algorithm for SAT

イロト イヨト イヨト イヨト

æ

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

- Easy to find an exponential time algorithm for SAT
- But, it is widely believed no polynomial time algorithm exists

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

- Easy to find an exponential time algorithm for SAT
- But, it is widely believed no polynomial time algorithm exists

Polynomial Verifiability

However, given an assignment (i.e., values for all the variables), can easily verify whether ϕ is satisfied by this assignment in polynomial time.

 $L = \{x \mid V \text{ accepts } \langle x, w \rangle \text{ for some string } w\}$

< 17 > <

< 3 > 3

 $L = \{x \mid V \text{ accepts } \langle x, w \rangle \text{ for some string } w\}$

• Runtime of V is measured as a function of |x|

$$L = \{x \mid V \text{ accepts } \langle x, w \rangle \text{ for some string } w\}$$

- Runtime of V is measured as a function of |x|
- V is a polynomial time verifier if it runs in time poly(|x|) $|w| \in poly(|X|)$

$$L = \{x \mid V \text{ accepts } \langle x, w \rangle \text{ for some string } w\}$$

- Runtime of V is measured as a function of |x|
- V is a polynomial time verifier if it runs in time poly(|x|)
- L is polynomially verfiable if it has a polynomial time verifier

$$L = \{x \mid V \text{ accepts } \langle x, w \rangle \text{ for some string } w\}$$

- Runtime of V is measured as a function of |x|
- V is a polynomial time verifier if it runs in time poly(|x|)
- L is polynomially verfiable if it has a polynomial time verifier
- String w is called a witness that $x \in L$

 $\mathcal{N}\mathcal{P}$ is the class of languages that have polynomial time verifiers.

3 N 3

 $\mathcal{N}\mathcal{P}$ is the class of languages that have polynomial time verifiers.

 \bullet We already saw that HAMPATH and SAT are in \mathcal{NP}

 \mathcal{NP} is the class of languages that have polynomial time verifiers.

- \bullet We already saw that HAMPATH and SAT are in \mathcal{NP}
- Every $L \in \mathcal{P}$ is also in \mathcal{NP} :

 \mathcal{NP} is the class of languages that have polynomial time verifiers.

- \bullet We already saw that HAMPATH and SAT are in \mathcal{NP}
- Every $L \in \mathcal{P}$ is also in \mathcal{NP} : $\mathcal{P} \subseteq \mathcal{NP}$

 \mathcal{NP} is the class of languages that have polynomial time verifiers.

- \bullet We already saw that HAMPATH and SAT are in \mathcal{NP}
- Every $L \in \mathcal{P}$ is also in \mathcal{NP} : $\mathcal{P} \subseteq \mathcal{NP}$

Intuition

• \mathcal{P} is the class of problems where you can find a solution in poly-time

 \mathcal{NP} is the class of languages that have polynomial time verifiers.

- \bullet We already saw that HAMPATH and SAT are in \mathcal{NP}
- Every $L \in \mathcal{P}$ is also in \mathcal{NP} : $\mathcal{P} \subseteq \mathcal{NP}$

Intuition

- \mathcal{P} is the class of problems where you can find a solution in poly-time
- NP is the class of problems where you can verify a solution in poly-time

 \mathcal{NP} is the class of languages that have polynomial time verifiers.

- \bullet We already saw that HAMPATH and SAT are in \mathcal{NP}
- Every $L \in \mathcal{P}$ is also in \mathcal{NP} : $\mathcal{P} \subseteq \mathcal{NP}$

Intuition

- \mathcal{P} is the class of problems where you can find a solution in poly-time
- NP is the class of problems where you can verify a solution in poly-time

• Question:
$$\mathcal{P} \stackrel{?}{=} \mathcal{NP}$$

Arkady Yerukhimovich

< 47 ▶

표 제 표

 $\bullet \ \mathcal{NP}$ stands for non-deterministic polynomial time

- $\bullet \ \mathcal{NP}$ stands for non-deterministic polynomial time
- $\bullet \ \mathcal{NP}$ is the set of languages decided by poly-time NTMs

- $\bullet \ \mathcal{NP}$ stands for non-deterministic polynomial time
- $\bullet \ \mathcal{NP}$ is the set of languages decided by poly-time NTMs

Theorem

The two definitions of \mathcal{NP} are equivalent: For any language L,

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

- $\bullet \ \mathcal{NP}$ stands for non-deterministic polynomial time
- $\bullet \ \mathcal{NP}$ is the set of languages decided by poly-time NTMs

Theorem

The two definitions of \mathcal{NP} are equivalent: For any language L,

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

Proof Idea:

Arkady Yerukhimovich

- $\bullet \ \mathcal{NP}$ stands for non-deterministic polynomial time
- $\bullet \ \mathcal{NP}$ is the set of languages decided by poly-time NTMs

Theorem

The two definitions of \mathcal{NP} are equivalent: For any language L,

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

Proof Idea:

• Need to prove both directions

- $\bullet \ \mathcal{NP}$ stands for non-deterministic polynomial time
- $\bullet \ \mathcal{NP}$ is the set of languages decided by poly-time NTMs

Theorem

The two definitions of \mathcal{NP} are equivalent: For any language L,

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

Proof Idea:

- Need to prove both directions
- (\Rightarrow) An NTM simulates the verifier by guessing the witness w

- $\bullet \ \mathcal{NP}$ stands for non-deterministic polynomial time
- $\bullet \ \mathcal{NP}$ is the set of languages decided by poly-time NTMs

Theorem

The two definitions of \mathcal{NP} are equivalent: For any language L,

L is poly-time verifiable \iff L is decided by a poly-time NTM

Proof Idea:

- Need to prove both directions
- ($\Rightarrow)$ An NTM simulates the verifier by guessing the witness w
- (\Leftarrow) A verifier simulates the NTM by using the accepting branch as the witness

Equivalence of \mathcal{NP} Definitions

Theorem

L is poly-time verifiable \iff L is decided by a poly-time NTM

Equivalence of \mathcal{NP} Definitions

Theorem

L is poly-time verifiable \iff L is decided by a poly-time NTM

Proof:

(\Rightarrow) Verifiability implies decidability by NTM

L is poly-time verifiable \iff L is decided by a poly-time NTM

- **(** \Rightarrow) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k

L is poly-time verifiable \iff L is decided by a poly-time NTM

- **(** \Rightarrow) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n

L is poly-time verifiable \iff L is decided by a poly-time NTM

- **(** \Rightarrow) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - **()** Nondeterministically select string w of length n^k

L is poly-time verifiable \iff L is decided by a poly-time NTM

- **(** \Rightarrow) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - **()** Nondeterministically select string w of length n^k
 - **2** Run V on input $\langle x, w \rangle$

L is poly-time verifiable \iff L is decided by a poly-time NTM

- **(** \Rightarrow) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - **()** Nondeterministically select string w of length n^k
 - **2** Run V on input $\langle x, w \rangle$
 - \bigcirc Accept if V accepts and reject otherwise

$$\Rightarrow if xeL, \exists w & s.t. V(x,w) = 1$$

$$if x \notin L, \forall w V(x,w) = 0$$

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

- **(** \Rightarrow) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - Nondeterministically select string w of length n^k
 - **2** Run V on input $\langle x, w \rangle$
 - S Accept if V accepts and reject otherwise
- \bigcirc (\Leftarrow) Decidability by NTM implies verifiability

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

- **(** \Rightarrow) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - Nondeterministically select string w of length n^k
 - **2** Run V on input $\langle x, w \rangle$
 - \bigcirc Accept if V accepts and reject otherwise
- (\Leftarrow) Decidability by NTM implies verifiability
 - Let N be an NTM deciding L

L is poly-time verifiable \iff L is decided by a poly-time NTM

- **(** \Rightarrow) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - **()** Nondeterministically select string w of length n^k
 - **2** Run V on input $\langle x, w \rangle$
 - \bigcirc Accept if V accepts and reject otherwise
- (\Leftarrow) Decidability by NTM implies verifiability
 - Let N be an NTM deciding L
 - Construct verifier V as follows: On input $\langle x, w \rangle$,

L is poly-time verifiable \iff L is decided by a poly-time NTM

- **(** \Rightarrow) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - **()** Nondeterministically select string w of length n^k
 - **2** Run V on input $\langle x, w \rangle$
 - \bigcirc Accept if V accepts and reject otherwise
- \bigcirc (\Leftarrow) Decidability by NTM implies verifiability
 - Let N be an NTM deciding L
 - Construct verifier V as follows: On input $\langle x, w \rangle$,
 - Simulate N on input x, treating each symbol of w as a description of the nondeterministic choice to make at each step

L is poly-time verifiable \iff L is decided by a poly-time NTM

- **(** \Rightarrow) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - **()** Nondeterministically select string w of length n^k
 - **2** Run V on input $\langle x, w \rangle$
 - \bigcirc Accept if V accepts and reject otherwise
- (\Leftarrow) Decidability by NTM implies verifiability
 - Let N be an NTM deciding L
 - Construct verifier V as follows: On input $\langle x, w \rangle$,
 - Simulate N on input x, treating each symbol of w as a description of the nondeterministic choice to make at each step
 - **2** If this branch of N's computation accepts, accept, otherwise reject

We can define the class of languages decided by poly-time NTMs

Definition

$NTIME(t(n)) = \{L \mid L \text{ is a language decided by a } O(t(n))$ time NTM $\}$

э

We can define the class of languages decided by poly-time NTMs

Definition

 $NTIME(t(n)) = \{L \mid L \text{ is a language decided by a } O(t(n))$ time NTM $\}$

$$\mathcal{NP} = \bigcup_k \mathsf{NTIME}(n^k)$$

э

Clique

A clique in and undirected graph is a subset of nodes s.t. every two nodes are connected by an edge. A k-clique is a clique containing k nodes

CS 3313 - Foundations of Computing

Clique

A clique in and undirected graph is a subset of nodes s.t. every two nodes are connected by an edge. A k-clique is a clique containing k nodes

 $CLIQUE = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with a } k$ -clique $\}$

Problems in \mathcal{NP} – Example 2

Subset Sum

Given a collection of integers $\{x_1, \ldots, x_k\}$ is there a subset of them that adds up to k?

Problems in \mathcal{NP} – Example 2

Subset Sum

Given a collection of integers $\{x_1, \ldots, x_k\}$ is there a subset of them that adds up to $\frac{1}{\sqrt{2}}$

$$\begin{aligned} \textit{SUBSET} - \textit{SUM} &= \{ \langle S, t \rangle \quad | \quad S = \{x_1, \dots, x_k\} \text{ and for some} \\ \{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}, \sum y_i = t \} \end{aligned}$$

The Million Dollar Question

$$\mathcal{P}\stackrel{?}{=}\mathcal{N}\mathcal{P}$$

Image: A matrix and a matrix

æ

< ∃⇒

$$\mathcal{P} \stackrel{?}{=} \mathcal{N}\mathcal{P}$$

- Is it easier to verify a solution than to find that solution?
- This is the biggest open question in complexity theory

Let's Try to Answer It

Theorem

Every nondeterministic TM has an equivalent deterministic TM.

< ∃⇒

æ

Let's Try to Answer It

Theorem

Every nondeterministic TM has an equivalent deterministic TM.

- Recall that an execution of a DTM is a sequence of configurations
- Execution of an NTM is a tree of configurations (branches correspond to non-deterministic choices)
- If any node in the tree is an accept node, the NTM accepts
- To simulate an NTM by a DTM, need to try all configurations in the tree to see if we find an accepting one

Simulating NTM on a 3-tape DTM

To simulate an NTM N by a DTM D, we use three tapes:

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 4, 2024

To simulate an NTM N by a DTM D, we use three tapes:

Input tape – stores the input and doesn't change

To simulate an NTM N by a DTM D, we use three tapes:

- Input tape stores the input and doesn't change
- Simulation tape work tape for the NTM on one branch of nondeterminism

To simulate an NTM N by a DTM D, we use three tapes:

- Input tape stores the input and doesn't change
- Simulation tape work tape for the NTM on one branch of nondeterminism
- 3 Address tape use to store which nondeterministic branch you are on

Simulating NTM on a 3-tape DTM

Simulating an NTM N

Start with input w on tape 1, and tapes 2,3 empty

Simulating NTM on a 3-tape DTM

Simulating an NTM N

- Start with input w on tape 1, and tapes 2,3 empty
- Copy w to tape 2

Arkady Yerukhimovich
Simulating NTM on a 3-tape DTM

Simulating an NTM N

- Start with input w on tape 1, and tapes 2,3 empty
- Copy w to tape 2
- Use tape 2 to simulate a run of N. Whenever it needs to make a non-deterministic choice, see next symbol on tape 3 for which branch to take. If no symbols left, go to step 4

Simulating NTM on a 3-tape DTM

Simulating an NTM N

- Start with input w on tape 1, and tapes 2,3 empty
- Copy w to tape 2
- Use tape 2 to simulate a run of N. Whenever it needs to make a non-deterministic choice, see next symbol on tape 3 for which branch to take. If no symbols left, go to step 4
- Replace string on tape 3 with the lexicographically next one (move onto next non-deterministic branch)

Simulating an NTM N

- Start with input w on tape 1, and tapes 2,3 empty
- Copy w to tape 2
- Use tape 2 to simulate a run of N. Whenever it needs to make a non-deterministic choice, see next symbol on tape 3 for which branch to take. If no symbols left, go to step 4
- Replace string on tape 3 with the lexicographically next one (move onto next non-deterministic branch)
- **(**) If N ever enters an accept state, stop and accept

Simulating NTM on a 3-tape DTM

Simulating an NTM N

- Start with input w on tape 1, and tapes 2,3 empty
- Copy w to tape 2
- Use tape 2 to simulate a run of N. Whenever it needs to make a non-deterministic choice, see next symbol on tape 3 for which branch to take. If no symbols left, go to step 4
- Replace string on tape 3 with the lexicographically next one (move onto next non-deterministic branch)
- \bigcirc If N ever enters an accept state, stop and accept

What's the Problem?

Simulating an NTM N

- Start with input w on tape 1, and tapes 2,3 empty
- Copy w to tape 2
- Use tape 2 to simulate a run of N. Whenever it needs to make a non-deterministic choice, see next symbol on tape 3 for which branch to take. If no symbols left, go to step 4
- Replace string on tape 3 with the lexicographically next one (move onto next non-deterministic branch)
- If N ever enters an accept state, stop and accept

What's the Problem?

• NTM running in time t(n), makes O(t(n)) non-deterministic choices

Simulating an NTM N

- Start with input w on tape 1, and tapes 2,3 empty
- Copy w to tape 2
- Use tape 2 to simulate a run of N. Whenever it needs to make a non-deterministic choice, see next symbol on tape 3 for which branch to take. If no symbols left, go to step 4
- Replace string on tape 3 with the lexicographically next one (move onto next non-deterministic branch)
- If N ever enters an accept state, stop and accept

What's the Problem?

- NTM running in time t(n), makes O(t(n)) non-deterministic choices
- Above algorithm tries all possible values for these branches: $2^{O(t(n))}$

Simulating an NTM $\it N$

- Start with input w on tape 1, and tapes 2,3 empty
- Copy w to tape 2
- Use tape 2 to simulate a run of N. Whenever it needs to make a non-deterministic choice, see next symbol on tape 3 for which branch to take. If no symbols left, go to step 4
- Replace string on tape 3 with the lexicographically next one (move onto next non-deterministic branch)
- If N ever enters an accept state, stop and accept

What's the Problem?

- NTM running in time t(n), makes O(t(n)) non-deterministic choices
- Above algorithm tries all possible values for these branches: $2^{O(t(n))}$
- Resulting DTM runs in exponential time

 \bullet We will study properties of languages in \mathcal{NP}

Image: A matched block

æ

∃ →

- \bullet We will study properties of languages in \mathcal{NP}
- We will show that there are $\mathcal{NP}\text{-}complete$ languages that are as hard as any other language in \mathcal{NP}

- \bullet We will study properties of languages in \mathcal{NP}
- We will show that there are $\mathcal{NP}\text{-}complete$ languages that are as hard as any other language in \mathcal{NP}
- We will show this using reductions Yay!