Foundations of Computing Lecture 21

Arkady Yerukhimovich

April 9, 2024

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 9, 2024

1 Lecture 20 Review

- 2) A Review of ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$
- 3 Polynomial-Time Reductions
- **5** \mathcal{NP} -Completeness Using Reductions

∃ >

< 1 k

- Verifying vs. Deciding
- $\bullet\,$ The Complexity Class \mathcal{NP}

$$\mathcal{NP} = \bigcup_k NTIME(n^k)$$

< 1 k

э

∃ >

1 Lecture 20 Review

3 Polynomial-Time Reductions

Image: A state of the state

5 \mathcal{NP} -Completeness Using Reductions

∃ >

< 1 k

э

э

• For $x \in L$, M(x) halts and outputs 1

- For $x \in L$, M(x) halts and outputs 1
- For $x \notin L$, M(x) halts and outputs 0

- For $x \in L$, M(x) halts and outputs 1
- For $x \notin L$, M(x) halts and outputs 0
- Runtime of M is O(poly(|x|)) for all x worst case

- For $x \in L$, M(x) halts and outputs 1
- For $x \notin L$, M(x) halts and outputs 0
- Runtime of M is O(poly(|x|)) for all x worst case
- $L \in \mathcal{NP}$ if there is a poly-time verifier DTM V:

- For $x \in L$, M(x) halts and outputs 1
- For $x \notin L$, M(x) halts and outputs 0
- Runtime of M is O(poly(|x|)) for all x worst case
- $L \in \mathcal{NP}$ if there is a poly-time verifier DTM V:
 - For $x \in L$, there exists $w \in \{0,1\}^{poly(|x|)}$ s.t. V(x,w) = 1

- For $x \in L$, M(x) halts and outputs 1
- For $x \notin L$, M(x) halts and outputs 0
- Runtime of *M* is O(poly(|x|)) for all *x* worst case
- $L \in \mathcal{NP}$ if there is a poly-time verifier DTM V:
 - For $x \in L$, there exists $w \in \{0,1\}^{poly}(|x|)$ s.t. V(x,w) = 1
 - For $x \notin L$, for all $w \in \{0,1\}^{poly}(|x|)$, V(x,w) = 0

- For $x \in L$, M(x) halts and outputs 1
- For $x \notin L$, M(x) halts and outputs 0
- Runtime of *M* is O(poly(|x|)) for all *x* worst case
- $L \in \mathcal{NP}$ if there is a poly-time verifier DTM V:
 - For $x \in L$, there exists $w \in \{0,1\}^{poly}(|x|)$ s.t. V(x,w) = 1
 - For $x \notin L$, for all $w \in \{0,1\}^{poly}(|x|)$, V(x,w) = 0
 - w is a witness to $x \in L$

- For $x \in L$, M(x) halts and outputs 1
- For $x \notin L$, M(x) halts and outputs 0
- Runtime of *M* is O(poly(|x|)) for all *x* worst case
- $L \in \mathcal{NP}$ if there is a poly-time verifier DTM V:
 - For $x \in L$, there exists $w \in \{0,1\}^{\text{poly}(|x|)}$ s.t. V(x,w) = 1
 - For $x \notin L$, for all $w \in \{0,1\}^{poly}(|x|)$, V(x,w) = 0
 - w is a witness to $x \in L$

Why Do We Study These?

- For $x \in L$, M(x) halts and outputs 1
- For $x \notin L$, M(x) halts and outputs 0
- Runtime of *M* is O(poly(|x|)) for all *x* worst case
- $L \in \mathcal{NP}$ if there is a poly-time verifier DTM V:
 - For $x \in L$, there exists $w \in \{0,1\}^{poly}(|x|)$ s.t. V(x,w) = 1
 - For $x \notin L$, for all $w \in \{0,1\}^{poly}(|x|)$, V(x,w) = 0
 - w is a witness to $x \in L$

Why Do We Study These?

Both ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$ contain many useful languages

• \mathcal{P} captures the class of efficiently decidable languages

- \mathcal{P} captures the class of efficiently decidable languages
- Can determine membership in L for all inputs

- \mathcal{P} captures the class of efficiently decidable languages
- Can determine membership in L for all inputs

\mathcal{NP}

NP captures the class of problems where there exists a short proof that *x* ∈ *L*

- \mathcal{P} captures the class of efficiently decidable languages
- Can determine membership in L for all inputs

\mathcal{NP}

- *NP* captures the class of problems where there exists a short proof that *x* ∈ *L*
- Can prove x ∈ L for all inputs, but can't prove that a string not in L is in the language

- \mathcal{P} captures the class of efficiently decidable languages
- Can determine membership in L for all inputs

\mathcal{NP}

- *NP* captures the class of problems where there exists a short proof that *x* ∈ *L*
- Can prove x ∈ L for all inputs, but can't prove that a string not in L is in the language

\mathcal{NP} -Completeness

There are problems in \mathcal{NP} that are as hard as any other problem in \mathcal{NP}

< 4 P→ <

1 Lecture 20 Review

- 2) A Review of ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$
- Olynomial-Time Reductions
- 5 NP-Completeness Using Reductions

Mapping Reduction

Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f : \Sigma^* \to \Sigma^*$, where for every x,

 $x \in A \iff f(x) \in B$

★ ∃ >

Mapping Reduction

Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f : \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B $(A \leq_P B)$ if there is a poly-time computable function $f : \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

Mapping Reduction

Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f : \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B $(A \leq_P B)$ if there is a poly-time computable function $f : \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

• Poly-time reductions give an efficient way to convert membership testing in *A* to membership testing in *B*

イロト イヨト イヨト イヨト

Mapping Reduction

Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f : \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

Poly-time Mapping Reduction

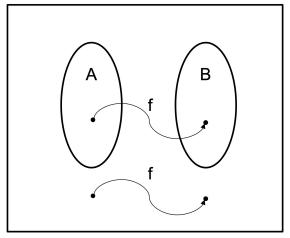
Language A is poly-time mapping reducible to language B $(A \leq_P B)$ if there is a poly-time computable function $f : \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

- Poly-time reductions give an efficient way to convert membership testing in *A* to membership testing in *B*
- If B has a poly-time solution so does A

イロト イヨト イヨト イヨト

Poly-time Mapping Reductions



f runs in time poly(|x|) on all inputs x

Why Poly-Time Reductions

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 9, 2024

3 N 3

Why Poly-Time Reductions

Theorem

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

Proof:

Arkady Yerukhimovich

< 行

표 제 표

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

Proof:

• Let M be the poly-time TM deciding B

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

- Let M be the poly-time TM deciding B
- Let f be the poly-time reduction from A to B

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

- Let *M* be the poly-time TM deciding *B*
- Let f be the poly-time reduction from A to B
- Can construct M' deciding A:

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

- Let *M* be the poly-time TM deciding *B*
- Let f be the poly-time reduction from A to B
- Can construct M' deciding A: M' = On input x: $Q \cdot T_f \neq A$?
 - Compute f(x)
 - 2 Run M(f(x)) and output whatever M outputs

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

- Let *M* be the poly-time TM deciding *B*
- Let f be the poly-time reduction from A to B
- Can construct *M*' deciding *A*: *M*' = On input *x*:
 - Compute f(x)
 - 2 Run M(f(x)) and output whatever M outputs
 - If $x \in A$, $f(x) \in B$ so M accepts

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

- Let *M* be the poly-time TM deciding *B*
- Let f be the poly-time reduction from A to B
- Can construct *M*' deciding *A*: *M*' = On input *x*:
 - Compute f(x)
 - 2 Run M(f(x)) and output whatever M outputs
 - If $x \in A$, $f(x) \in B$ so M accepts
 - If $x \notin A$, $f(x) \notin B$, so M rejects

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

- Let *M* be the poly-time TM deciding *B*
- Let f be the poly-time reduction from A to B
- Can construct *M*' deciding *A*: *M*' = On input *x*:
 - Compute f(x)
 - 2 Run M(f(x)) and output whatever M outputs
 - If $x \in A$, $f(x) \in B$ so M accepts
 - If $x \notin A$, $f(x) \notin B$, so M rejects
 - Since both f and M are poly-time, M(f(x)) is also poly-time

Using Poly-Time Reductions to Prove Hardness

Theorem

If $A \leq_P B$ and $A \notin \mathcal{P}$, then $B \notin \mathcal{P}$

- 1 Lecture 20 Review
- 2 A Review of \mathcal{P} and \mathcal{NP}
- 3 Polynomial-Time Reductions
- **5** \mathcal{NP} -Completeness Using Reductions

B b

$\mathcal{NP}\text{-}\mathsf{Completeness}$

Definition

A language B is \mathcal{NP} -complete if

- $B \in \mathcal{NP}$
- For every language $A \in \mathcal{NP}$, $A \leq_P B$

< 1 k

э

\mathcal{NP} -Completeness

Definition

A language B is \mathcal{NP} -complete if

- $B \in \mathcal{NP}$
- For every language $A \in \mathcal{NP}$, $A \leq_P B$

• B is "as hard" as any language in \mathcal{NP}

$\mathcal{NP} ext{-}\mathsf{Completeness}$

Definition

A language B is \mathcal{NP} -complete if

- $B \in \mathcal{NP}$
- For every language $A \in \mathcal{NP}$, $A \leq_P B$
- B is "as hard" as any language in \mathcal{NP}
- To study hardness of $\mathcal{NP},$ enough to study hardness of some $\mathcal{NP}\text{-complete problem}$

$\mathcal{NP} ext{-}\mathsf{Completeness}$

Definition

A language B is \mathcal{NP} -complete if

- $B \in \mathcal{NP}$
- For every language $A \in \mathcal{NP}$, $A \leq_P B$
- B is "as hard" as any language in \mathcal{NP}
- To study hardness of $\mathcal{NP},$ enough to study hardness of some $\mathcal{NP}\text{-complete problem}$

Theorem

If B is \mathcal{NP} -complete and $B \in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$

\mathcal{NP} -Completeness

Definition

A language B is \mathcal{NP} -complete if

- $B \in \mathcal{NP}$
- For every language $A \in \mathcal{NP}$, $A \leq_P B$
- B is "as hard" as any language in \mathcal{NP}
- To study hardness of $\mathcal{NP},$ enough to study hardness of some $\mathcal{NP}\text{-complete problem}$

Theorem

If B is \mathcal{NP} -complete and $B \in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$

Theorem

If B is \mathcal{NP} -complete and $B \leq_P C$ for $C \in \mathcal{NP}$, then C is \mathcal{NP} -complete

< □ > < □ > < □ > < □ > < □ > < □ >

SAT Problem

$SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

イロト 不得 トイヨト イヨト

2

SAT Problem

$$SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$$

Proof Idea:

∃ ⇒

SAT Problem

$$SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$$

Proof Idea:

 $\textcircled{\ }\mathsf{SAT} \in \mathcal{NP}$

Arkady Yerukhimovich

SAT Problem

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

Proof Idea:

- **1** SAT $\in \mathcal{NP}$
- **2** For each $A \in \mathcal{NP}$, $A \leq_P SAT$

SAT Problem

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

Proof Idea:

- $\textbf{SAT} \in \mathcal{NP}$
- **2** For each $A \in \mathcal{NP}$, $A \leq_P SAT$
 - Need to design reduction f from A to SAT

< A > <

э

SAT Problem

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

- $\textbf{SAT} \in \mathcal{NP}$
- **2** For each $A \in \mathcal{NP}$, $A \leq_P SAT$
 - Need to design reduction f from A to SAT
 - f takes an input x and produces formula ϕ

SAT Problem

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

- $\textbf{SAT} \in \mathcal{NP}$
- **2** For each $A \in \mathcal{NP}$, $A \leq_P SAT$
 - Need to design reduction f from A to SAT
 - f takes an input x and produces formula ϕ
 - If $x \in A$ then ϕ is satisfiable

SAT Problem

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

- $\textbf{SAT} \in \mathcal{NP}$
- **2** For each $A \in \mathcal{NP}$, $A \leq_P SAT$
 - Need to design reduction f from A to SAT
 - f takes an input x and produces formula ϕ
 - If $x \in A$ then ϕ is satisfiable
 - If $x \notin A$ then ϕ is not satisfiable

SAT Problem

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

- $\textbf{SAT} \in \mathcal{NP}$
- **2** For each $A \in \mathcal{NP}$, $A \leq_P SAT$
 - Need to design reduction f from A to SAT
 - f takes an input x and produces formula ϕ
 - If $x \in A$ then ϕ is satisfiable
 - If $x \notin A$ then ϕ is not satisfiable
 - Idea: Let ϕ be a formula simulating \mathcal{NP} machine for A on input x

SAT Problem

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

- $\textbf{SAT} \in \mathcal{NP}$
- **2** For each $A \in \mathcal{NP}$, $A \leq_P SAT$
 - Need to design reduction f from A to SAT
 - f takes an input x and produces formula ϕ
 - If $x \in A$ then ϕ is satisfiable
 - If $x \notin A$ then ϕ is not satisfiable
 - Idea: Let ϕ be a formula simulating \mathcal{NP} machine for A on input x
 - ${\ensuremath{\, \bullet }}$ That is, ϕ corresponds to the Boolean logic done by this machine

SAT Problem

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

Proof Idea:

- $\textbf{SAT} \in \mathcal{NP}$
- **2** For each $A \in \mathcal{NP}$, $A \leq_P SAT$
 - Need to design reduction f from A to SAT
 - f takes an input x and produces formula ϕ
 - If $x \in A$ then ϕ is satisfiable
 - If $x \notin A$ then ϕ is not satisfiable
 - Idea: Let ϕ be a formula simulating \mathcal{NP} machine for A on input x
 - ${\ensuremath{\, \bullet }}$ That is, ϕ corresponds to the Boolean logic done by this machine
 - Since any computation can be represented as a Boolean computation, this is always possible

- 4 回 ト 4 ヨ ト 4 ヨ ト

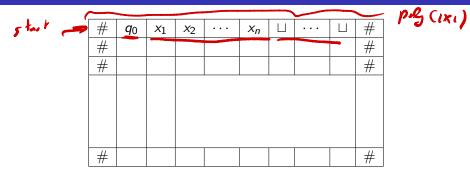


Table: Tableau of configurations of M

April 9, 2024

#	q_0	<i>x</i> ₁	<i>x</i> ₂	• • •	xn	\square	•••	\Box	#
#									#
#									#
#									#

Table: Tableau of configurations of M

• Every row is a configuration of M

#	q_0	<i>x</i> ₁	<i>x</i> ₂	• • •	xn	\square	•••	\Box	#
#									#
#									#
#									#

Table: Tableau of configurations of M

- Every row is a configuration of M
- Two consecutive rows represent a valid transition if they follow rules of ${\cal M}$

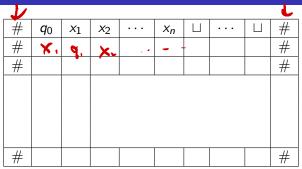


Table: Tableau of configurations of M

- Every row is a configuration of M
- Two consecutive rows represent a valid transition if they follow rules of *M*
- Every cell contains #, or a state $q \in Q$, or a tape symbol $\in \Gamma$

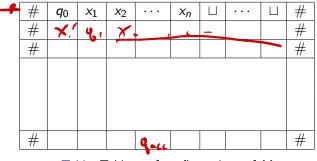


Table: Tableau of configurations of M

- Every row is a configuration of M
- Two consecutive rows represent a valid transition if they follow rules of *M*
- Every cell contains #, or a state $q \in Q$, or a tape symbol $\in \Gamma$
- *M* accepts *x* if a row of this tableau is in *q*_{accept}

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

Given input x that we want to check if $x \in A$ We need to build a formula ϕ that checks the following four things:

• Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$

- Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$
- **2** Top row is the start configuration (on input x)

- Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$
- Output Top row is the start configuration (on input x)
- 3 Some row is in *q_{accept}*

- Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$
- Output Top row is the start configuration (on input x)
- Some row is in q_{accept}
- Severy pair of adjacent rows represents a valid transition of M

Arkady Yerukhimovich

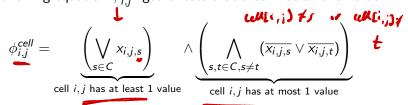
• Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$

Image: A matrix

∃ ⇒

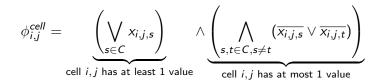
- Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$
 - For $1 \le i, j \le n^k$, and $s \in C$, let $x_{i,j,s} = 1$ if cell[i, j] = s

- Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$
- For $1 \leq i, j \leq n^k$, and $s \in C$, let $x_{i,i,s} = 1$ if cell[i, j] = s
- The following equation $\phi_{i,i}^{cell}$ guarantees that a cell has a valid value



cell i, j has at most 1 value

- Every cell contains a valid character in $C = Q \bigcup \Gamma \bigcup \{\#\}$
 - For $1 \le i, j \le n^k$, and $s \in C$, let $x_{i,j,s} = 1$ if cell[i, j] = s
 - The following equation $\phi_{i,i}^{cell}$ guarantees that a cell has a valid value



• Now, we just take the AND over all n^{2k} cells in the tableau

Or Top row is the start configuration on Capal X

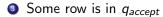
→

æ

Image: A matrix and a matrix

- O Top row is the start configuration
 - Define a formula $\phi_{\textit{start}}$ that checks that all the cells in the top row are correct

$$\phi_{start} = x_{1,1,\#} \wedge x_{1,2,q_0} \cdots \wedge x_{1,n^k,\#}$$



Arkady Yerukhimovich

∃ ⇒

Image: A matrix and a matrix

- **3** Some row is in q_{accept}
 - Define a formula ϕ_{accept} that checks that some row contains q_{accept}

$$\phi_{accept} = \bigvee_{1 \le i, j \le n^k} x_{i, j, q_{accept}}$$

Arkady Yerukhimovich

Every pair of adjacent rows represents a valid transition of M

< 47 ▶

3. 3

- Every pair of adjacent rows represents a valid transition of M
 - We need to define what is a valid move between two configurations

- Every pair of adjacent rows represents a valid transition of M
 - We need to define what is a valid move between two configurations
 - If the control head is not next to some cell, that cell will not change

- Every pair of adjacent rows represents a valid transition of M
 - We need to define what is a valid move between two configurations
 - If the control head is not next to some cell, that cell will not change
 - For cells after control head, can write to the cell and move left or right (depending on *M*)

- Every pair of adjacent rows represents a valid transition of M
 - We need to define what is a valid move between two configurations
 - If the control head is not next to some cell, that cell will not change
 - For cells after control head, can write to the cell and move left or right (depending on *M*)
 - Every 2×3 cell window can be checked to follow these rules

- Every pair of adjacent rows represents a valid transition of M
 - We need to define what is a valid move between two configurations
 - If the control head is not next to some cell, that cell will not change
 - For cells after control head, can write to the cell and move left or right (depending on *M*)
 - Every 2×3 cell window can be checked to follow these rules
 - Now just take the \land over all possible 6-cell windows

SAT is $\mathcal{NP}\text{-}\mathsf{Complete}$

• Finally, need to check that this reduction runs in poly time (in n = |x|)

< 4 →

э

.∋...>

SAT is $\mathcal{NP}\text{-}\mathsf{Complete}$

- Finally, need to check that this reduction runs in poly time (in n = |x|)
- Recall that the tableau has size $n^k \times n^k$, so n^{2k} cells

- Finally, need to check that this reduction runs in poly time (in n = |x|)
- Recall that the tableau has size $n^k \times n^k$, so n^{2k} cells
- ϕ_{cell} has fixed size for each cell, so $O(n^{2k})$ total

- Finally, need to check that this reduction runs in poly time (in n = |x|)
- Recall that the tableau has size $n^k \times n^k$, so n^{2k} cells
- ϕ_{cell} has fixed size for each cell, so $O(n^{2k})$ total
- ϕ_{start} has fixed size for each cell in top row, so $O(n^k)$ total

- Finally, need to check that this reduction runs in poly time (in n = |x|)
- Recall that the tableau has size $n^k \times n^k$, so n^{2k} cells
- ϕ_{cell} has fixed size for each cell, so $O(n^{2k})$ total
- ϕ_{start} has fixed size for each cell in top row, so $O(n^k)$ total
- ϕ_{move} and ϕ_{accept} have fixed size for each cell, so $O(n^{2k})$ total

- Finally, need to check that this reduction runs in poly time (in n = |x|)
- Recall that the tableau has size $n^k \times n^k$, so n^{2k} cells
- ϕ_{cell} has fixed size for each cell, so $O(n^{2k})$ total
- ϕ_{start} has fixed size for each cell in top row, so $O(n^k)$ total
- ϕ_{move} and ϕ_{accept} have fixed size for each cell, so $O(n^{2k})$ total
- Summing up, we see $|\phi| = O(n^{2k})$

- Finally, need to check that this reduction runs in poly time (in n = |x|)
- Recall that the tableau has size $n^k \times n^k$, so n^{2k} cells
- ϕ_{cell} has fixed size for each cell, so $O(n^{2k})$ total
- ϕ_{start} has fixed size for each cell in top row, so $O(n^k)$ total
- ϕ_{move} and ϕ_{accept} have fixed size for each cell, so $O(n^{2k})$ total
- Summing up, we see $|\phi| = O(n^{2k})$
- Since k = O(1), this is polynomial in n

- 1 Lecture 20 Review
- 2) A Review of ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$
- 3 Polynomial-Time Reductions
- ④ NP-Completeness
- 5 \mathcal{NP} -Completeness Using Reductions

SAT = A AE NI A II NI - Confile

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

• Recall that SAT asks if a Boolean formula has a satisfying assignment

- Recall that SAT asks if a Boolean formula has a satisfying assignment
- 3SAT asks the same question for 3-CNF formulas

April 9, 2024

- Recall that SAT asks if a Boolean formula has a satisfying assignment
- 3SAT asks the same question for 3-CNF formulas

3-CNF formulas

• A literal is a (possibly negates) Boolean variable – x or \overline{x}

- Recall that SAT asks if a Boolean formula has a satisfying assignment
- 3SAT asks the same question for 3-CNF formulas

3-CNF formulas

- A literal is a (possibly negates) Boolean variable x or \overline{x}
- A clause is several literals connected with \lor 's $x_1 \lor \overline{x_2} \lor x_3$

- Recall that SAT asks if a Boolean formula has a satisfying assignment
- 3SAT asks the same question for 3-CNF formulas

3-CNF formulas

- A literal is a (possibly negates) Boolean variable x or \overline{x}
- A clause is several literals connected with \lor 's $x_1 \lor \overline{x_2} \lor x_3$
- A Boolean formula is in conjunctive normal form (CNF) if it consists of clauses connected by ∧'s

$$(x_1 \lor \overline{x_2} \lor x_3 \lor x_4) \land (\overline{x_3} \lor x_5)$$

- Recall that SAT asks if a Boolean formula has a satisfying assignment
- 3SAT asks the same question for 3-CNF formulas

3-CNF formulas

- A literal is a (possibly negates) Boolean variable x or \overline{x}
- A clause is several literals connected with \lor 's $x_1 \lor \overline{x_2} \lor x_3$
- A Boolean formula is in conjunctive normal form (CNF) if it consists of clauses connected by ∧'s

$$(x_1 \lor \overline{x_2} \lor x_3 \lor x_4) \land (\overline{x_3} \lor x_5)$$

• A Boolean formula is a 3-CNF if all the clauses have exactly 3 literals

 $(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_3} \lor x_4 \lor x_5) \land (\overline{x_1} \lor x_4 \lor x_2)$

- Recall that SAT asks if a Boolean formula has a satisfying assignment
- 3SAT asks the same question for 3-CNF formulas

3-CNF formulas

- A literal is a (possibly negates) Boolean variable x or \overline{x}
- A clause is several literals connected with \lor 's $x_1 \lor \overline{x_2} \lor x_3$
- A Boolean formula is in conjunctive normal form (CNF) if it consists of clauses connected by ∧'s

$$(x_1 \lor \overline{x_2} \lor x_3 \lor x_4) \land (\overline{x_3} \lor x_5)$$

• A Boolean formula is a 3-CNF if all the clauses have exactly 3 literals

 $(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_3} \lor x_4 \lor x_5) \land (\overline{x_1} \lor x_4 \lor x_2)$

3-SAT

 $3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3-CNF formula} \}$

Can show that 3SAT is $\mathcal{NP}\text{-}\mathsf{complete}$ using similar proof to SAT

Arkady Yerukhimovich

• Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where

Image: A matrix of the second seco

æ

Arkady Yerukhimovich

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where
 - If ϕ is satisfiable, ${\it G}$ has a clique of size ${\it k}$

Image: A matrix and a matrix

→ ∃ →

э

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where
 - If ϕ is satisfiable, G has a clique of size k
 - If ϕ is not satisfiable, G has no clique of size k

- 3 ▶

< 4 →

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where
 - If ϕ is satisfiable, G has a clique of size k
 - If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

• Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where

- If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

< A > <

• Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where

- If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

• If ϕ is satisfiable then G has a k-clique

• Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where

- If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

- If ϕ is satisfiable then G has a k-clique
- If G has a k-clique then ϕ is satisfiable

Arkady Yerukhimovich

24 / 24