
Foundations of Computing
Lecture 21

Arkady Yerukhimovich

April 9, 2024

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 1 / 24

Outline

1 Lecture 20 Review

2 A Review of P and NP

3 Polynomial-Time Reductions

4 NP-Completeness

5 NP-Completeness Using Reductions

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 2 / 24

Lecture 20 Review

Verifying vs. Deciding

The Complexity Class NP

NP =

[

k

NTIME (n
k
)

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 3 / 24

Outline

1 Lecture 20 Review

2 A Review of P and NP

3 Polynomial-Time Reductions

4 NP-Completeness

5 NP-Completeness Using Reductions

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 4 / 24

P and NP

L 2 P if there is a poly-time DTM M that decides L:

For x 2 L, M(x) halts and outputs 1

For x /2 L, M(x) halts and outputs 0

Runtime of M is O(poly(|x |)) for all x – worst case

L 2 NP if there is a poly-time verifier DTM V :

For x 2 L, there exists w 2 {0, 1}poly(|x|) s.t. V (x ,w) = 1

For x /2 L, for all w 2 {0, 1}poly(|x|), V (x ,w) = 0

w is a witness to x 2 L

Why Do We Study These?

Both P and NP contain many useful languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 5 / 24

P and NP

L 2 P if there is a poly-time DTM M that decides L:

For x 2 L, M(x) halts and outputs 1

For x /2 L, M(x) halts and outputs 0

Runtime of M is O(poly(|x |)) for all x – worst case

L 2 NP if there is a poly-time verifier DTM V :

For x 2 L, there exists w 2 {0, 1}poly(|x|) s.t. V (x ,w) = 1

For x /2 L, for all w 2 {0, 1}poly(|x|), V (x ,w) = 0

w is a witness to x 2 L

Why Do We Study These?

Both P and NP contain many useful languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 5 / 24

P and NP

L 2 P if there is a poly-time DTM M that decides L:

For x 2 L, M(x) halts and outputs 1

For x /2 L, M(x) halts and outputs 0

Runtime of M is O(poly(|x |)) for all x – worst case

L 2 NP if there is a poly-time verifier DTM V :

For x 2 L, there exists w 2 {0, 1}poly(|x|) s.t. V (x ,w) = 1

For x /2 L, for all w 2 {0, 1}poly(|x|), V (x ,w) = 0

w is a witness to x 2 L

Why Do We Study These?

Both P and NP contain many useful languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 5 / 24

P and NP

L 2 P if there is a poly-time DTM M that decides L:

For x 2 L, M(x) halts and outputs 1

For x /2 L, M(x) halts and outputs 0

Runtime of M is O(poly(|x |)) for all x – worst case

L 2 NP if there is a poly-time verifier DTM V :

For x 2 L, there exists w 2 {0, 1}poly(|x|) s.t. V (x ,w) = 1

For x /2 L, for all w 2 {0, 1}poly(|x|), V (x ,w) = 0

w is a witness to x 2 L

Why Do We Study These?

Both P and NP contain many useful languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 5 / 24

P and NP

L 2 P if there is a poly-time DTM M that decides L:

For x 2 L, M(x) halts and outputs 1

For x /2 L, M(x) halts and outputs 0

Runtime of M is O(poly(|x |)) for all x – worst case

L 2 NP if there is a poly-time verifier DTM V :

For x 2 L, there exists w 2 {0, 1}poly(|x|) s.t. V (x ,w) = 1

For x /2 L, for all w 2 {0, 1}poly(|x|), V (x ,w) = 0

w is a witness to x 2 L

Why Do We Study These?

Both P and NP contain many useful languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 5 / 24

P and NP

L 2 P if there is a poly-time DTM M that decides L:

For x 2 L, M(x) halts and outputs 1

For x /2 L, M(x) halts and outputs 0

Runtime of M is O(poly(|x |)) for all x – worst case

L 2 NP if there is a poly-time verifier DTM V :

For x 2 L, there exists w 2 {0, 1}poly(|x|) s.t. V (x ,w) = 1

For x /2 L, for all w 2 {0, 1}poly(|x|), V (x ,w) = 0

w is a witness to x 2 L

Why Do We Study These?

Both P and NP contain many useful languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 5 / 24

P and NP

L 2 P if there is a poly-time DTM M that decides L:

For x 2 L, M(x) halts and outputs 1

For x /2 L, M(x) halts and outputs 0

Runtime of M is O(poly(|x |)) for all x – worst case

L 2 NP if there is a poly-time verifier DTM V :

For x 2 L, there exists w 2 {0, 1}poly(|x|) s.t. V (x ,w) = 1

For x /2 L, for all w 2 {0, 1}poly(|x|), V (x ,w) = 0

w is a witness to x 2 L

Why Do We Study These?

Both P and NP contain many useful languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 5 / 24

P and NP

L 2 P if there is a poly-time DTM M that decides L:

For x 2 L, M(x) halts and outputs 1

For x /2 L, M(x) halts and outputs 0

Runtime of M is O(poly(|x |)) for all x – worst case

L 2 NP if there is a poly-time verifier DTM V :

For x 2 L, there exists w 2 {0, 1}poly(|x|) s.t. V (x ,w) = 1

For x /2 L, for all w 2 {0, 1}poly(|x|), V (x ,w) = 0

w is a witness to x 2 L

Why Do We Study These?

Both P and NP contain many useful languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 5 / 24

P and NP

L 2 P if there is a poly-time DTM M that decides L:

For x 2 L, M(x) halts and outputs 1

For x /2 L, M(x) halts and outputs 0

Runtime of M is O(poly(|x |)) for all x – worst case

L 2 NP if there is a poly-time verifier DTM V :

For x 2 L, there exists w 2 {0, 1}poly(|x|) s.t. V (x ,w) = 1

For x /2 L, for all w 2 {0, 1}poly(|x|), V (x ,w) = 0

w is a witness to x 2 L

Why Do We Study These?

Both P and NP contain many useful languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 5 / 24

P and NP

L 2 P if there is a poly-time DTM M that decides L:

For x 2 L, M(x) halts and outputs 1

For x /2 L, M(x) halts and outputs 0

Runtime of M is O(poly(|x |)) for all x – worst case

L 2 NP if there is a poly-time verifier DTM V :

For x 2 L, there exists w 2 {0, 1}poly(|x|) s.t. V (x ,w) = 1

For x /2 L, for all w 2 {0, 1}poly(|x|), V (x ,w) = 0

w is a witness to x 2 L

Why Do We Study These?

Both P and NP contain many useful languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 5 / 24

Why are P and NP Interesting?

P
P captures the class of e�ciently decidable languages

Can determine membership in L for all inputs

NP
NP captures the class of problems where there exists a short proof

that x 2 L

Can prove x 2 L for all inputs, but can’t prove that a string not in L

is in the language

NP-Completeness

There are problems in NP that are as hard as any other problem in NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 6 / 24

Why are P and NP Interesting?

P
P captures the class of e�ciently decidable languages

Can determine membership in L for all inputs

NP
NP captures the class of problems where there exists a short proof

that x 2 L

Can prove x 2 L for all inputs, but can’t prove that a string not in L

is in the language

NP-Completeness

There are problems in NP that are as hard as any other problem in NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 6 / 24

Why are P and NP Interesting?

P
P captures the class of e�ciently decidable languages

Can determine membership in L for all inputs

NP
NP captures the class of problems where there exists a short proof

that x 2 L

Can prove x 2 L for all inputs, but can’t prove that a string not in L

is in the language

NP-Completeness

There are problems in NP that are as hard as any other problem in NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 6 / 24

Why are P and NP Interesting?

P
P captures the class of e�ciently decidable languages

Can determine membership in L for all inputs

NP
NP captures the class of problems where there exists a short proof

that x 2 L

Can prove x 2 L for all inputs, but can’t prove that a string not in L

is in the language

NP-Completeness

There are problems in NP that are as hard as any other problem in NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 6 / 24

↳

Why are P and NP Interesting?

P
P captures the class of e�ciently decidable languages

Can determine membership in L for all inputs

NP
NP captures the class of problems where there exists a short proof

that x 2 L

Can prove x 2 L for all inputs, but can’t prove that a string not in L

is in the language

NP-Completeness

There are problems in NP that are as hard as any other problem in NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 6 / 24

Outline

1 Lecture 20 Review

2 A Review of P and NP

3 Polynomial-Time Reductions

4 NP-Completeness

5 NP-Completeness Using Reductions

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 7 / 24

Mapping Reductions

Mapping Reduction

Language A is mapping reducible to language B (A m B) if there is a

computable function f : ⌃
⇤ ! ⌃

⇤
, where for every x ,

x 2 A () f (x) 2 B

Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B (A P B) if

there is a poly-time computable function f : ⌃
⇤ ! ⌃

⇤
, where for every x ,

x 2 A () f (x) 2 B

Poly-time reductions give an e�cient way to convert membership

testing in A to membership testing in B

If B has a poly-time solution so does A

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 8 / 24

Mapping Reductions

Mapping Reduction

Language A is mapping reducible to language B (A m B) if there is a

computable function f : ⌃
⇤ ! ⌃

⇤
, where for every x ,

x 2 A () f (x) 2 B

Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B (A P B) if

there is a poly-time computable function f : ⌃
⇤ ! ⌃

⇤
, where for every x ,

x 2 A () f (x) 2 B

Poly-time reductions give an e�cient way to convert membership

testing in A to membership testing in B

If B has a poly-time solution so does A

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 8 / 24

Mapping Reductions

Mapping Reduction

Language A is mapping reducible to language B (A m B) if there is a

computable function f : ⌃
⇤ ! ⌃

⇤
, where for every x ,

x 2 A () f (x) 2 B

Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B (A P B) if

there is a poly-time computable function f : ⌃
⇤ ! ⌃

⇤
, where for every x ,

x 2 A () f (x) 2 B

Poly-time reductions give an e�cient way to convert membership

testing in A to membership testing in B

If B has a poly-time solution so does A

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 8 / 24

Mapping Reductions

Mapping Reduction

Language A is mapping reducible to language B (A m B) if there is a

computable function f : ⌃
⇤ ! ⌃

⇤
, where for every x ,

x 2 A () f (x) 2 B

Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B (A P B) if

there is a poly-time computable function f : ⌃
⇤ ! ⌃

⇤
, where for every x ,

x 2 A () f (x) 2 B

Poly-time reductions give an e�cient way to convert membership

testing in A to membership testing in B

If B has a poly-time solution so does A

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 8 / 24

Poly-time Mapping Reductions

f runs in time poly(|x |) on all inputs x

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 9 / 24

Why Poly-Time Reductions

Theorem
If A P B and B 2 P, then A 2 P

Proof:

Let M be the poly-time TM deciding B

Let f be the poly-time reduction from A to B

Can construct M
0
deciding A:

M
0
= On input x :

1 Compute f (x)

2 Run M(f (x)) and output whatever M outputs

If x 2 A, f (x) 2 B so M accepts

If x /2 A, f (x) /2 B , so M rejects

Since both f and M are poly-time, M(f (x)) is also poly-time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 10 / 24

L ↓

-
-

Why Poly-Time Reductions

Theorem
If A P B and B 2 P, then A 2 P

Proof:

Let M be the poly-time TM deciding B

Let f be the poly-time reduction from A to B

Can construct M
0
deciding A:

M
0
= On input x :

1 Compute f (x)

2 Run M(f (x)) and output whatever M outputs

If x 2 A, f (x) 2 B so M accepts

If x /2 A, f (x) /2 B , so M rejects

Since both f and M are poly-time, M(f (x)) is also poly-time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 10 / 24

Why Poly-Time Reductions

Theorem
If A P B and B 2 P, then A 2 P

Proof:

Let M be the poly-time TM deciding B

Let f be the poly-time reduction from A to B

Can construct M
0
deciding A:

M
0
= On input x :

1 Compute f (x)

2 Run M(f (x)) and output whatever M outputs

If x 2 A, f (x) 2 B so M accepts

If x /2 A, f (x) /2 B , so M rejects

Since both f and M are poly-time, M(f (x)) is also poly-time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 10 / 24

Why Poly-Time Reductions

Theorem
If A P B and B 2 P, then A 2 P

Proof:

Let M be the poly-time TM deciding B

Let f be the poly-time reduction from A to B

Can construct M
0
deciding A:

M
0
= On input x :

1 Compute f (x)

2 Run M(f (x)) and output whatever M outputs

If x 2 A, f (x) 2 B so M accepts

If x /2 A, f (x) /2 B , so M rejects

Since both f and M are poly-time, M(f (x)) is also poly-time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 10 / 24

Why Poly-Time Reductions

Theorem
If A P B and B 2 P, then A 2 P

Proof:

Let M be the poly-time TM deciding B

Let f be the poly-time reduction from A to B

Can construct M
0
deciding A:

M
0
= On input x :

1 Compute f (x)

2 Run M(f (x)) and output whatever M outputs

If x 2 A, f (x) 2 B so M accepts

If x /2 A, f (x) /2 B , so M rejects

Since both f and M are poly-time, M(f (x)) is also poly-time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 10 / 24

Why Poly-Time Reductions

Theorem
If A P B and B 2 P, then A 2 P

Proof:

Let M be the poly-time TM deciding B

Let f be the poly-time reduction from A to B

Can construct M
0
deciding A:

M
0
= On input x :

1 Compute f (x)

2 Run M(f (x)) and output whatever M outputs

If x 2 A, f (x) 2 B so M accepts

If x /2 A, f (x) /2 B , so M rejects

Since both f and M are poly-time, M(f (x)) is also poly-time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 10 / 24

Q : Is x - A
?

Why Poly-Time Reductions

Theorem
If A P B and B 2 P, then A 2 P

Proof:

Let M be the poly-time TM deciding B

Let f be the poly-time reduction from A to B

Can construct M
0
deciding A:

M
0
= On input x :

1 Compute f (x)

2 Run M(f (x)) and output whatever M outputs

If x 2 A, f (x) 2 B so M accepts

If x /2 A, f (x) /2 B , so M rejects

Since both f and M are poly-time, M(f (x)) is also poly-time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 10 / 24

Why Poly-Time Reductions

Theorem
If A P B and B 2 P, then A 2 P

Proof:

Let M be the poly-time TM deciding B

Let f be the poly-time reduction from A to B

Can construct M
0
deciding A:

M
0
= On input x :

1 Compute f (x)

2 Run M(f (x)) and output whatever M outputs

If x 2 A, f (x) 2 B so M accepts

If x /2 A, f (x) /2 B , so M rejects

Since both f and M are poly-time, M(f (x)) is also poly-time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 10 / 24

Why Poly-Time Reductions

Theorem
If A P B and B 2 P, then A 2 P

Proof:

Let M be the poly-time TM deciding B

Let f be the poly-time reduction from A to B

Can construct M
0
deciding A:

M
0
= On input x :

1 Compute f (x)

2 Run M(f (x)) and output whatever M outputs

If x 2 A, f (x) 2 B so M accepts

If x /2 A, f (x) /2 B , so M rejects

Since both f and M are poly-time, M(f (x)) is also poly-time

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 10 / 24

Using Poly-Time Reductions to Prove Hardness

Theorem

If A P B and A /2 P, then B /2 P

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 11 / 24

-

1. Assume BEP => F M that decides B

(x)
M(f(x)
-

Outline

1 Lecture 20 Review

2 A Review of P and NP

3 Polynomial-Time Reductions

4 NP-Completeness

5 NP-Completeness Using Reductions

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 12 / 24

NP-Completeness

Definition
A language B is NP-complete if

B 2 NP
For every language A 2 NP, A P B

B is “as hard” as any language in NP
To study hardness of NP , enough to study hardness of some

NP-complete problem

Theorem
If B is NP-complete and B 2 P, then P = NP

Theorem
If B is NP-complete and B P C for C 2 NP, then C is NP-complete

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 13 / 24

NP-Completeness

Definition
A language B is NP-complete if

B 2 NP
For every language A 2 NP, A P B

B is “as hard” as any language in NP

To study hardness of NP , enough to study hardness of some

NP-complete problem

Theorem
If B is NP-complete and B 2 P, then P = NP

Theorem
If B is NP-complete and B P C for C 2 NP, then C is NP-complete

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 13 / 24

NP-Completeness

Definition
A language B is NP-complete if

B 2 NP
For every language A 2 NP, A P B

B is “as hard” as any language in NP
To study hardness of NP , enough to study hardness of some

NP-complete problem

Theorem
If B is NP-complete and B 2 P, then P = NP

Theorem
If B is NP-complete and B P C for C 2 NP, then C is NP-complete

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 13 / 24

NP-Completeness

Definition
A language B is NP-complete if

B 2 NP
For every language A 2 NP, A P B

B is “as hard” as any language in NP
To study hardness of NP , enough to study hardness of some

NP-complete problem

Theorem
If B is NP-complete and B 2 P, then P = NP

Theorem
If B is NP-complete and B P C for C 2 NP, then C is NP-complete

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 13 / 24

NP-Completeness

Definition
A language B is NP-complete if

B 2 NP
For every language A 2 NP, A P B

B is “as hard” as any language in NP
To study hardness of NP , enough to study hardness of some

NP-complete problem

Theorem
If B is NP-complete and B 2 P, then P = NP

Theorem
If B is NP-complete and B P C for C 2 NP, then C is NP-complete

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 13 / 24

SAT is NP-Complete

SAT Problem

SAT = {h�i | � is a satisfiable Boolean formula}

Proof Idea:

1 SAT2 NP
2 For each A 2 NP, A P SAT

Need to design reduction f from A to SAT

f takes an input x and produces formula �
If x 2 A then � is satisfiable
If x /2 A then � is not satisfiable

Idea: Let � be a formula simulating NP machine for A on input x

That is, � corresponds to the Boolean logic done by this machine
Since any computation can be represented as a Boolean computation,
this is always possible

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 14 / 24

SAT is NP-Complete

SAT Problem

SAT = {h�i | � is a satisfiable Boolean formula}

Proof Idea:

1 SAT2 NP
2 For each A 2 NP, A P SAT

Need to design reduction f from A to SAT

f takes an input x and produces formula �
If x 2 A then � is satisfiable
If x /2 A then � is not satisfiable

Idea: Let � be a formula simulating NP machine for A on input x

That is, � corresponds to the Boolean logic done by this machine
Since any computation can be represented as a Boolean computation,
this is always possible

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 14 / 24

SAT is NP-Complete

SAT Problem

SAT = {h�i | � is a satisfiable Boolean formula}

Proof Idea:

1 SAT2 NP

2 For each A 2 NP, A P SAT

Need to design reduction f from A to SAT

f takes an input x and produces formula �
If x 2 A then � is satisfiable
If x /2 A then � is not satisfiable

Idea: Let � be a formula simulating NP machine for A on input x

That is, � corresponds to the Boolean logic done by this machine
Since any computation can be represented as a Boolean computation,
this is always possible

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 14 / 24

SAT is NP-Complete

SAT Problem

SAT = {h�i | � is a satisfiable Boolean formula}

Proof Idea:

1 SAT2 NP
2 For each A 2 NP, A P SAT

Need to design reduction f from A to SAT

f takes an input x and produces formula �
If x 2 A then � is satisfiable
If x /2 A then � is not satisfiable

Idea: Let � be a formula simulating NP machine for A on input x

That is, � corresponds to the Boolean logic done by this machine
Since any computation can be represented as a Boolean computation,
this is always possible

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 14 / 24

SAT is NP-Complete

SAT Problem

SAT = {h�i | � is a satisfiable Boolean formula}

Proof Idea:

1 SAT2 NP
2 For each A 2 NP, A P SAT

Need to design reduction f from A to SAT

f takes an input x and produces formula �
If x 2 A then � is satisfiable
If x /2 A then � is not satisfiable

Idea: Let � be a formula simulating NP machine for A on input x

That is, � corresponds to the Boolean logic done by this machine
Since any computation can be represented as a Boolean computation,
this is always possible

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 14 / 24

SAT is NP-Complete

SAT Problem

SAT = {h�i | � is a satisfiable Boolean formula}

Proof Idea:

1 SAT2 NP
2 For each A 2 NP, A P SAT

Need to design reduction f from A to SAT

f takes an input x and produces formula �

If x 2 A then � is satisfiable
If x /2 A then � is not satisfiable

Idea: Let � be a formula simulating NP machine for A on input x

That is, � corresponds to the Boolean logic done by this machine
Since any computation can be represented as a Boolean computation,
this is always possible

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 14 / 24

SAT is NP-Complete

SAT Problem

SAT = {h�i | � is a satisfiable Boolean formula}

Proof Idea:

1 SAT2 NP
2 For each A 2 NP, A P SAT

Need to design reduction f from A to SAT

f takes an input x and produces formula �
If x 2 A then � is satisfiable

If x /2 A then � is not satisfiable

Idea: Let � be a formula simulating NP machine for A on input x

That is, � corresponds to the Boolean logic done by this machine
Since any computation can be represented as a Boolean computation,
this is always possible

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 14 / 24

SAT is NP-Complete

SAT Problem

SAT = {h�i | � is a satisfiable Boolean formula}

Proof Idea:

1 SAT2 NP
2 For each A 2 NP, A P SAT

Need to design reduction f from A to SAT

f takes an input x and produces formula �
If x 2 A then � is satisfiable
If x /2 A then � is not satisfiable

Idea: Let � be a formula simulating NP machine for A on input x

That is, � corresponds to the Boolean logic done by this machine
Since any computation can be represented as a Boolean computation,
this is always possible

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 14 / 24

SAT is NP-Complete

SAT Problem

SAT = {h�i | � is a satisfiable Boolean formula}

Proof Idea:

1 SAT2 NP
2 For each A 2 NP, A P SAT

Need to design reduction f from A to SAT

f takes an input x and produces formula �
If x 2 A then � is satisfiable
If x /2 A then � is not satisfiable

Idea: Let � be a formula simulating NP machine for A on input x

That is, � corresponds to the Boolean logic done by this machine
Since any computation can be represented as a Boolean computation,
this is always possible

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 14 / 24

SAT is NP-Complete

SAT Problem

SAT = {h�i | � is a satisfiable Boolean formula}

Proof Idea:

1 SAT2 NP
2 For each A 2 NP, A P SAT

Need to design reduction f from A to SAT

f takes an input x and produces formula �
If x 2 A then � is satisfiable
If x /2 A then � is not satisfiable

Idea: Let � be a formula simulating NP machine for A on input x

That is, � corresponds to the Boolean logic done by this machine

Since any computation can be represented as a Boolean computation,
this is always possible

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 14 / 24

SAT is NP-Complete

SAT Problem

SAT = {h�i | � is a satisfiable Boolean formula}

Proof Idea:

1 SAT2 NP
2 For each A 2 NP, A P SAT

Need to design reduction f from A to SAT

f takes an input x and produces formula �
If x 2 A then � is satisfiable
If x /2 A then � is not satisfiable

Idea: Let � be a formula simulating NP machine for A on input x

That is, � corresponds to the Boolean logic done by this machine
Since any computation can be represented as a Boolean computation,
this is always possible

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 14 / 24

Execution of Turing Machine M deciding A

q0 x1 x2 · · · xn t · · · t

#

#

#

Table: Tableau of configurations of M

Every row is a configuration of M

Two consecutive rows represent a valid transition if they follow rules

of M

Every cell contains #, or a state q 2 Q, or a tape symbol 2 �

M accepts x if a row of this tableau is in qaccept

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 15 / 24

-p. ((XI)start

Execution of Turing Machine M deciding A

q0 x1 x2 · · · xn t · · · t

#

#

#

Table: Tableau of configurations of M

Every row is a configuration of M

Two consecutive rows represent a valid transition if they follow rules

of M

Every cell contains #, or a state q 2 Q, or a tape symbol 2 �

M accepts x if a row of this tableau is in qaccept

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 15 / 24

Execution of Turing Machine M deciding A

q0 x1 x2 · · · xn t · · · t

#

#

#

Table: Tableau of configurations of M

Every row is a configuration of M

Two consecutive rows represent a valid transition if they follow rules

of M

Every cell contains #, or a state q 2 Q, or a tape symbol 2 �

M accepts x if a row of this tableau is in qaccept

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 15 / 24

Execution of Turing Machine M deciding A

q0 x1 x2 · · · xn t · · · t

#

#

#

Table: Tableau of configurations of M

Every row is a configuration of M

Two consecutive rows represent a valid transition if they follow rules

of M

Every cell contains #, or a state q 2 Q, or a tape symbol 2 �

M accepts x if a row of this tableau is in qaccept

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 15 / 24

L d

X , g , X. .

. -

Execution of Turing Machine M deciding A

q0 x1 x2 · · · xn t · · · t

#

#

#

Table: Tableau of configurations of M

Every row is a configuration of M

Two consecutive rows represent a valid transition if they follow rules

of M

Every cell contains #, or a state q 2 Q, or a tape symbol 2 �

M accepts x if a row of this tableau is in qaccept

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 15 / 24

-

Xi.

Ga

SAT is NP-Complete

Given input x that we want to check if x 2 A

We need to build a formula � that checks the following four things:

1 Every cell contains a valid character in C = Q
S
�
S
{#}

2 Top row is the start configuration (on input x)

3 Some row is in qaccept

4 Every pair of adjacent rows represents a valid transition of M

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 16 / 24

SAT is NP-Complete

Given input x that we want to check if x 2 A

We need to build a formula � that checks the following four things:

1 Every cell contains a valid character in C = Q
S
�
S
{#}

2 Top row is the start configuration (on input x)

3 Some row is in qaccept

4 Every pair of adjacent rows represents a valid transition of M

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 16 / 24

SAT is NP-Complete

Given input x that we want to check if x 2 A

We need to build a formula � that checks the following four things:

1 Every cell contains a valid character in C = Q
S
�
S
{#}

2 Top row is the start configuration (on input x)

3 Some row is in qaccept

4 Every pair of adjacent rows represents a valid transition of M

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 16 / 24

SAT is NP-Complete

Given input x that we want to check if x 2 A

We need to build a formula � that checks the following four things:

1 Every cell contains a valid character in C = Q
S
�
S
{#}

2 Top row is the start configuration (on input x)

3 Some row is in qaccept

4 Every pair of adjacent rows represents a valid transition of M

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 16 / 24

SAT is NP-Complete

Given input x that we want to check if x 2 A

We need to build a formula � that checks the following four things:

1 Every cell contains a valid character in C = Q
S
�
S
{#}

2 Top row is the start configuration (on input x)

3 Some row is in qaccept

4 Every pair of adjacent rows represents a valid transition of M

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 16 / 24

SAT is NP-Complete

1 Every cell contains a valid character in C = Q
S
�
S
{#}

For 1 i , j n
k
, and s 2 C , let xi ,j ,s = 1 if cell [i , j] = s

The following equation �cell
i ,j guarantees that a cell has a valid value

�cell
i ,j =

_

s2C
xi ,j ,s

!

| {z }
cell i , j has at least 1 value

^

0

@
^

s,t2C ,s 6=t

(xi ,j ,s _ xi ,j ,t)

1

A

| {z }
cell i , j has at most 1 value

Now, we just take the AND over all n
2k

cells in the tableau

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 17 / 24

SAT is NP-Complete

1 Every cell contains a valid character in C = Q
S
�
S
{#}

For 1 i , j n
k
, and s 2 C , let xi ,j ,s = 1 if cell [i , j] = s

The following equation �cell
i ,j guarantees that a cell has a valid value

�cell
i ,j =

_

s2C
xi ,j ,s

!

| {z }
cell i , j has at least 1 value

^

0

@
^

s,t2C ,s 6=t

(xi ,j ,s _ xi ,j ,t)

1

A

| {z }
cell i , j has at most 1 value

Now, we just take the AND over all n
2k

cells in the tableau

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 17 / 24

-

SAT is NP-Complete

1 Every cell contains a valid character in C = Q
S
�
S
{#}

For 1 i , j n
k
, and s 2 C , let xi ,j ,s = 1 if cell [i , j] = s

The following equation �cell
i ,j guarantees that a cell has a valid value

�cell
i ,j =

_

s2C
xi ,j ,s

!

| {z }
cell i , j has at least 1 value

^

0

@
^

s,t2C ,s 6=t

(xi ,j ,s _ xi ,j ,t)

1

A

| {z }
cell i , j has at most 1 value

Now, we just take the AND over all n
2k

cells in the tableau

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 17 / 24

-

↓ 125 ,is or

Ri
*

=

-
-

SAT is NP-Complete

1 Every cell contains a valid character in C = Q
S
�
S
{#}

For 1 i , j n
k
, and s 2 C , let xi ,j ,s = 1 if cell [i , j] = s

The following equation �cell
i ,j guarantees that a cell has a valid value

�cell
i ,j =

_

s2C
xi ,j ,s

!

| {z }
cell i , j has at least 1 value

^

0

@
^

s,t2C ,s 6=t

(xi ,j ,s _ xi ,j ,t)

1

A

| {z }
cell i , j has at most 1 value

Now, we just take the AND over all n
2k

cells in the tableau

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 17 / 24

SAT is NP-Complete

2 Top row is the start configuration

Define a formula �start that checks that all the cells in the top row are

correct

�start = x1,1,# ^ x1,2,q0 · · · ^ x1,nk ,#

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 18 / 24

on Input X

SAT is NP-Complete

2 Top row is the start configuration

Define a formula �start that checks that all the cells in the top row are

correct

�start = x1,1,# ^ x1,2,q0 · · · ^ x1,nk ,#

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 18 / 24

Xi ,jit cellli ,]=

#g. X ,
X x

,
N #

& ↑p 44 4

SAT is NP-Complete

3 Some row is in qaccept

Define a formula �accept that checks that some row contains qaccept

�accept =
_

1i ,jnk

xi ,j ,qaccept

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 19 / 24

SAT is NP-Complete

3 Some row is in qaccept

Define a formula �accept that checks that some row contains qaccept

�accept =
_

1i ,jnk

xi ,j ,qaccept

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 19 / 24

--

SAT is NP-Complete

4 Every pair of adjacent rows represents a valid transition of M

We need to define what is a valid move between two configurations

If the control head is not next to some cell, that cell will not change

For cells after control head, can write to the cell and move left or

right (depending on M)

Every 2⇥ 3 cell window can be checked to follow these rules

Now just take the ^ over all possible 6-cell windows

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 20 / 24

SAT is NP-Complete

4 Every pair of adjacent rows represents a valid transition of M

We need to define what is a valid move between two configurations

If the control head is not next to some cell, that cell will not change

For cells after control head, can write to the cell and move left or

right (depending on M)

Every 2⇥ 3 cell window can be checked to follow these rules

Now just take the ^ over all possible 6-cell windows

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 20 / 24

SAT is NP-Complete

4 Every pair of adjacent rows represents a valid transition of M

We need to define what is a valid move between two configurations

If the control head is not next to some cell, that cell will not change

For cells after control head, can write to the cell and move left or

right (depending on M)

Every 2⇥ 3 cell window can be checked to follow these rules

Now just take the ^ over all possible 6-cell windows

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 20 / 24

- startx. +,
L↓

X. X
,y

↑

x
. g

-
x,

5 x
.

X ,

SAT is NP-Complete

4 Every pair of adjacent rows represents a valid transition of M

We need to define what is a valid move between two configurations

If the control head is not next to some cell, that cell will not change

For cells after control head, can write to the cell and move left or

right (depending on M)

Every 2⇥ 3 cell window can be checked to follow these rules

Now just take the ^ over all possible 6-cell windows

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 20 / 24

SAT is NP-Complete

4 Every pair of adjacent rows represents a valid transition of M

We need to define what is a valid move between two configurations

If the control head is not next to some cell, that cell will not change

For cells after control head, can write to the cell and move left or

right (depending on M)

Every 2⇥ 3 cell window can be checked to follow these rules

Now just take the ^ over all possible 6-cell windows

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 20 / 24

SAT is NP-Complete

4 Every pair of adjacent rows represents a valid transition of M

We need to define what is a valid move between two configurations

If the control head is not next to some cell, that cell will not change

For cells after control head, can write to the cell and move left or

right (depending on M)

Every 2⇥ 3 cell window can be checked to follow these rules

Now just take the ^ over all possible 6-cell windows

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 20 / 24

SAT is NP-Complete

Finally, need to check that this reduction runs in poly time (in

n = |x |)

Recall that the tableau has size n
k ⇥ n

k
, so n

2k
cells

�cell has fixed size for each cell, so O(n
2k
) total

�start has fixed size for each cell in top row, so O(n
k
) total

�move and �accept have fixed size for each cell, so O(n
2k
) total

Summing up, we see |�| = O(n
2k
)

Since k = O(1), this is polynomial in n

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 21 / 24

Xi
, i

,
<1 it cell(i

, j2=

SAT is NP-Complete

Finally, need to check that this reduction runs in poly time (in

n = |x |)
Recall that the tableau has size n

k ⇥ n
k
, so n

2k
cells

�cell has fixed size for each cell, so O(n
2k
) total

�start has fixed size for each cell in top row, so O(n
k
) total

�move and �accept have fixed size for each cell, so O(n
2k
) total

Summing up, we see |�| = O(n
2k
)

Since k = O(1), this is polynomial in n

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 21 / 24

SAT is NP-Complete

Finally, need to check that this reduction runs in poly time (in

n = |x |)
Recall that the tableau has size n

k ⇥ n
k
, so n

2k
cells

�cell has fixed size for each cell, so O(n
2k
) total

�start has fixed size for each cell in top row, so O(n
k
) total

�move and �accept have fixed size for each cell, so O(n
2k
) total

Summing up, we see |�| = O(n
2k
)

Since k = O(1), this is polynomial in n

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 21 / 24

SAT is NP-Complete

Finally, need to check that this reduction runs in poly time (in

n = |x |)
Recall that the tableau has size n

k ⇥ n
k
, so n

2k
cells

�cell has fixed size for each cell, so O(n
2k
) total

�start has fixed size for each cell in top row, so O(n
k
) total

�move and �accept have fixed size for each cell, so O(n
2k
) total

Summing up, we see |�| = O(n
2k
)

Since k = O(1), this is polynomial in n

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 21 / 24

SAT is NP-Complete

Finally, need to check that this reduction runs in poly time (in

n = |x |)
Recall that the tableau has size n

k ⇥ n
k
, so n

2k
cells

�cell has fixed size for each cell, so O(n
2k
) total

�start has fixed size for each cell in top row, so O(n
k
) total

�move and �accept have fixed size for each cell, so O(n
2k
) total

Summing up, we see |�| = O(n
2k
)

Since k = O(1), this is polynomial in n

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 21 / 24

SAT is NP-Complete

Finally, need to check that this reduction runs in poly time (in

n = |x |)
Recall that the tableau has size n

k ⇥ n
k
, so n

2k
cells

�cell has fixed size for each cell, so O(n
2k
) total

�start has fixed size for each cell in top row, so O(n
k
) total

�move and �accept have fixed size for each cell, so O(n
2k
) total

Summing up, we see |�| = O(n
2k
)

Since k = O(1), this is polynomial in n

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 21 / 24

SAT is NP-Complete

Finally, need to check that this reduction runs in poly time (in

n = |x |)
Recall that the tableau has size n

k ⇥ n
k
, so n

2k
cells

�cell has fixed size for each cell, so O(n
2k
) total

�start has fixed size for each cell in top row, so O(n
k
) total

�move and �accept have fixed size for each cell, so O(n
2k
) total

Summing up, we see |�| = O(n
2k
)

Since k = O(1), this is polynomial in n

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 21 / 24

Outline

1 Lecture 20 Review

2 A Review of P and NP

3 Polynomial-Time Reductions

4 NP-Completeness

5 NP-Completeness Using Reductions

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 22 / 24

SAT p A

A = NP

=>

A is NP-complete

The 3SAT Problem

Recall that SAT asks if a Boolean formula has a satisfying assignment

3SAT asks the same question for 3-CNF formulas

3-CNF formulas

A literal is a (possibly negates) Boolean variable – x or x

A clause is several literals connected with _’s – x1 _ x2 _ x3

A Boolean formula is in conjunctive normal form (CNF) if it consists

of clauses connected by ^’s

(x1 _ x2 _ x3 _ x4) ^ (x3 _ x5)

A Boolean formula is a 3-CNF if all the clauses have exactly 3 literals

(x1 _ x2 _ x3) ^ (x3 _ x4 _ x5) ^ (x1 _ x4 _ x2)

3-SAT

3SAT= {h�i | � is a satisfiable 3-CNF formula}
Can show that 3SAT is NP-complete using similar proof to SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 23 / 24

The 3SAT Problem

Recall that SAT asks if a Boolean formula has a satisfying assignment

3SAT asks the same question for 3-CNF formulas

3-CNF formulas

A literal is a (possibly negates) Boolean variable – x or x

A clause is several literals connected with _’s – x1 _ x2 _ x3

A Boolean formula is in conjunctive normal form (CNF) if it consists

of clauses connected by ^’s

(x1 _ x2 _ x3 _ x4) ^ (x3 _ x5)

A Boolean formula is a 3-CNF if all the clauses have exactly 3 literals

(x1 _ x2 _ x3) ^ (x3 _ x4 _ x5) ^ (x1 _ x4 _ x2)

3-SAT

3SAT= {h�i | � is a satisfiable 3-CNF formula}
Can show that 3SAT is NP-complete using similar proof to SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 23 / 24

The 3SAT Problem

Recall that SAT asks if a Boolean formula has a satisfying assignment

3SAT asks the same question for 3-CNF formulas

3-CNF formulas

A literal is a (possibly negates) Boolean variable – x or x

A clause is several literals connected with _’s – x1 _ x2 _ x3

A Boolean formula is in conjunctive normal form (CNF) if it consists

of clauses connected by ^’s

(x1 _ x2 _ x3 _ x4) ^ (x3 _ x5)

A Boolean formula is a 3-CNF if all the clauses have exactly 3 literals

(x1 _ x2 _ x3) ^ (x3 _ x4 _ x5) ^ (x1 _ x4 _ x2)

3-SAT

3SAT= {h�i | � is a satisfiable 3-CNF formula}
Can show that 3SAT is NP-complete using similar proof to SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 23 / 24

The 3SAT Problem

Recall that SAT asks if a Boolean formula has a satisfying assignment

3SAT asks the same question for 3-CNF formulas

3-CNF formulas

A literal is a (possibly negates) Boolean variable – x or x

A clause is several literals connected with _’s – x1 _ x2 _ x3

A Boolean formula is in conjunctive normal form (CNF) if it consists

of clauses connected by ^’s

(x1 _ x2 _ x3 _ x4) ^ (x3 _ x5)

A Boolean formula is a 3-CNF if all the clauses have exactly 3 literals

(x1 _ x2 _ x3) ^ (x3 _ x4 _ x5) ^ (x1 _ x4 _ x2)

3-SAT

3SAT= {h�i | � is a satisfiable 3-CNF formula}
Can show that 3SAT is NP-complete using similar proof to SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 23 / 24

The 3SAT Problem

Recall that SAT asks if a Boolean formula has a satisfying assignment

3SAT asks the same question for 3-CNF formulas

3-CNF formulas

A literal is a (possibly negates) Boolean variable – x or x

A clause is several literals connected with _’s – x1 _ x2 _ x3

A Boolean formula is in conjunctive normal form (CNF) if it consists

of clauses connected by ^’s

(x1 _ x2 _ x3 _ x4) ^ (x3 _ x5)

A Boolean formula is a 3-CNF if all the clauses have exactly 3 literals

(x1 _ x2 _ x3) ^ (x3 _ x4 _ x5) ^ (x1 _ x4 _ x2)

3-SAT

3SAT= {h�i | � is a satisfiable 3-CNF formula}
Can show that 3SAT is NP-complete using similar proof to SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 23 / 24

The 3SAT Problem

Recall that SAT asks if a Boolean formula has a satisfying assignment

3SAT asks the same question for 3-CNF formulas

3-CNF formulas

A literal is a (possibly negates) Boolean variable – x or x

A clause is several literals connected with _’s – x1 _ x2 _ x3

A Boolean formula is in conjunctive normal form (CNF) if it consists

of clauses connected by ^’s

(x1 _ x2 _ x3 _ x4) ^ (x3 _ x5)

A Boolean formula is a 3-CNF if all the clauses have exactly 3 literals

(x1 _ x2 _ x3) ^ (x3 _ x4 _ x5) ^ (x1 _ x4 _ x2)

3-SAT

3SAT= {h�i | � is a satisfiable 3-CNF formula}
Can show that 3SAT is NP-complete using similar proof to SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 23 / 24

The 3SAT Problem

Recall that SAT asks if a Boolean formula has a satisfying assignment

3SAT asks the same question for 3-CNF formulas

3-CNF formulas

A literal is a (possibly negates) Boolean variable – x or x

A clause is several literals connected with _’s – x1 _ x2 _ x3

A Boolean formula is in conjunctive normal form (CNF) if it consists

of clauses connected by ^’s

(x1 _ x2 _ x3 _ x4) ^ (x3 _ x5)

A Boolean formula is a 3-CNF if all the clauses have exactly 3 literals

(x1 _ x2 _ x3) ^ (x3 _ x4 _ x5) ^ (x1 _ x4 _ x2)

3-SAT

3SAT= {h�i | � is a satisfiable 3-CNF formula}
Can show that 3SAT is NP-complete using similar proof to SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 23 / 24

3SAT P CLIQUE

Need to show reduction f from 3SAT formula � to hG , ki where

If � is satisfiable, G has a clique of size k

If � is not satisfiable, G has no clique of size k

Consider � = (x1 _ x1 _ x2) ^ (x1 _ x2 _ x2) ^ (x1 _ x2 _ x2)

x1

x1

x2

x1 x2 x2

x1

x2

x2

If � is satisfiable then G has a k-clique

If G has a k-clique then � is satisfiable

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 24 / 24

- ↑M

3SAT P CLIQUE

Need to show reduction f from 3SAT formula � to hG , ki where
If � is satisfiable, G has a clique of size k

If � is not satisfiable, G has no clique of size k

Consider � = (x1 _ x1 _ x2) ^ (x1 _ x2 _ x2) ^ (x1 _ x2 _ x2)

x1

x1

x2

x1 x2 x2

x1

x2

x2

If � is satisfiable then G has a k-clique

If G has a k-clique then � is satisfiable

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 24 / 24

3SAT P CLIQUE

Need to show reduction f from 3SAT formula � to hG , ki where
If � is satisfiable, G has a clique of size k

If � is not satisfiable, G has no clique of size k

Consider � = (x1 _ x1 _ x2) ^ (x1 _ x2 _ x2) ^ (x1 _ x2 _ x2)

x1

x1

x2

x1 x2 x2

x1

x2

x2

If � is satisfiable then G has a k-clique

If G has a k-clique then � is satisfiable

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 24 / 24

3SAT P CLIQUE

Need to show reduction f from 3SAT formula � to hG , ki where
If � is satisfiable, G has a clique of size k

If � is not satisfiable, G has no clique of size k

Consider � = (x1 _ x1 _ x2) ^ (x1 _ x2 _ x2) ^ (x1 _ x2 _ x2)

x1

x1

x2

x1 x2 x2

x1

x2

x2

If � is satisfiable then G has a k-clique

If G has a k-clique then � is satisfiable

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 24 / 24

3SAT P CLIQUE

Need to show reduction f from 3SAT formula � to hG , ki where
If � is satisfiable, G has a clique of size k

If � is not satisfiable, G has no clique of size k

Consider � = (x1 _ x1 _ x2) ^ (x1 _ x2 _ x2) ^ (x1 _ x2 _ x2)

x1

x1

x2

x1 x2 x2

x1

x2

x2

If � is satisfiable then G has a k-clique

If G has a k-clique then � is satisfiable

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 24 / 24

3SAT P CLIQUE

Need to show reduction f from 3SAT formula � to hG , ki where
If � is satisfiable, G has a clique of size k

If � is not satisfiable, G has no clique of size k

Consider � = (x1 _ x1 _ x2) ^ (x1 _ x2 _ x2) ^ (x1 _ x2 _ x2)

x1

x1

x2

x1 x2 x2

x1

x2

x2

If � is satisfiable then G has a k-clique

If G has a k-clique then � is satisfiable

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 24 / 24

3SAT P CLIQUE

Need to show reduction f from 3SAT formula � to hG , ki where
If � is satisfiable, G has a clique of size k

If � is not satisfiable, G has no clique of size k

Consider � = (x1 _ x1 _ x2) ^ (x1 _ x2 _ x2) ^ (x1 _ x2 _ x2)

x1

x1

x2

x1 x2 x2

x1

x2

x2

If � is satisfiable then G has a k-clique

If G has a k-clique then � is satisfiable

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 9, 2024 24 / 24

