
Foundations of Computing
Lecture 22

Arkady Yerukhimovich

April 11, 2024

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 1 / 26

Outline

1 Lecture 21 Review

2 More NP-Complete Problems

3 Graph Coloring

4 co-NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 2 / 26

Lecture 21 Review

P and NP
Polynomial-Time Reductions

NP-completeness of SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 3 / 26

Outline

1 Lecture 21 Review

2 More NP-Complete Problems

3 Graph Coloring

4 co-NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 4 / 26

What We Already Know

1 SAT is NP-complete

2 3-SAT is NP-complete

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 5 / 26

(x ,
vxvx

,
) 1(E,

vE vx
,)

3SAT P CLIQUE

Need to show reduction f from 3SAT formula � to hG , ki where

If � is satisfiable, G has a clique of size k
If � is not satisfiable, G has no clique of size k

Consider � = (x1 _ x1 _ x2) ^ (x1 _ x2 _ x2) ^ (x1 _ x2 _ x2)

x1

x1

x2

x1 x2 x2

x1

x2

x2

If � is satisfiable then G has a k-clique

If G has a k-clique then � is satisfiable

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 6 / 26

1. CLigue E NP

W = O O

6 O

1. SAT p Clique

3SAT P CLIQUE

Need to show reduction f from 3SAT formula � to hG , ki where
If � is satisfiable, G has a clique of size k

If � is not satisfiable, G has no clique of size k

Consider � = (x1 _ x1 _ x2) ^ (x1 _ x2 _ x2) ^ (x1 _ x2 _ x2)

x1

x1

x2

x1 x2 x2

x1

x2

x2

If � is satisfiable then G has a k-clique

If G has a k-clique then � is satisfiable

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 6 / 26

3SAT P CLIQUE

Need to show reduction f from 3SAT formula � to hG , ki where
If � is satisfiable, G has a clique of size k
If � is not satisfiable, G has no clique of size k

Consider � = (x1 _ x1 _ x2) ^ (x1 _ x2 _ x2) ^ (x1 _ x2 _ x2)

x1

x1

x2

x1 x2 x2

x1

x2

x2

If � is satisfiable then G has a k-clique

If G has a k-clique then � is satisfiable

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 6 / 26

3SAT P CLIQUE

Need to show reduction f from 3SAT formula � to hG , ki where
If � is satisfiable, G has a clique of size k
If � is not satisfiable, G has no clique of size k

Consider � = (x1 _ x1 _ x2) ^ (x1 _ x2 _ x2) ^ (x1 _ x2 _ x2)

x1

x1

x2

x1 x2 x2

x1

x2

x2

If � is satisfiable then G has a k-clique

If G has a k-clique then � is satisfiable

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 6 / 26

X1: 0 X
,
= 4

3SAT P CLIQUE

Need to show reduction f from 3SAT formula � to hG , ki where
If � is satisfiable, G has a clique of size k
If � is not satisfiable, G has no clique of size k

Consider � = (x1 _ x1 _ x2) ^ (x1 _ x2 _ x2) ^ (x1 _ x2 _ x2)

x1

x1

x2

x1 x2 x2

x1

x2

x2

If � is satisfiable then G has a k-clique

If G has a k-clique then � is satisfiable

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 6 / 26

C-

C
,

#
C

3SAT P CLIQUE

Need to show reduction f from 3SAT formula � to hG , ki where
If � is satisfiable, G has a clique of size k
If � is not satisfiable, G has no clique of size k

Consider � = (x1 _ x1 _ x2) ^ (x1 _ x2 _ x2) ^ (x1 _ x2 _ x2)

x1

x1

x2

x1 x2 x2

x1

x2

x2

If � is satisfiable then G has a k-clique

If G has a k-clique then � is satisfiable

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 6 / 26

M
-

3SAT P CLIQUE

Need to show reduction f from 3SAT formula � to hG , ki where
If � is satisfiable, G has a clique of size k
If � is not satisfiable, G has no clique of size k

Consider � = (x1 _ x1 _ x2) ^ (x1 _ x2 _ x2) ^ (x1 _ x2 _ x2)

x1

x1

x2

x1 x2 x2

x1

x2

x2

If � is satisfiable then G has a k-clique

If G has a k-clique then � is satisfiable
Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 6 / 26

- A

- X

↑ /-
es

-I
&

A Key Tool to Build Reductions

Gadgets

Gadgets are structures in the target problem that can simulate
structures in the source problem

For example, in proof of 3SAT P CLIQUE
We replaced each variable with a node
We replaced each clause with 3 nodes (1 for each variable)
Edges capture independent variables between clauses

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 7 / 26

A Key Tool to Build Reductions

Gadgets

Gadgets are structures in the target problem that can simulate
structures in the source problem

For example, in proof of 3SAT P CLIQUE
We replaced each variable with a node
We replaced each clause with 3 nodes (1 for each variable)
Edges capture independent variables between clauses

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 7 / 26

A Key Tool to Build Reductions

Gadgets

Gadgets are structures in the target problem that can simulate
structures in the source problem

For example, in proof of 3SAT P CLIQUE
We replaced each variable with a node
We replaced each clause with 3 nodes (1 for each variable)
Edges capture independent variables between clauses

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 7 / 26

A Key Tool to Build Reductions

Gadgets

Gadgets are structures in the target problem that can simulate
structures in the source problem

For example, in proof of 3SAT P CLIQUE
We replaced each variable with a node
We replaced each clause with 3 nodes (1 for each variable)
Edges capture independent variables between clauses

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 7 / 26

A Key Tool to Build Reductions

Gadgets

Gadgets are structures in the target problem that can simulate
structures in the source problem

For example, in proof of 3SAT P CLIQUE
We replaced each variable with a node
We replaced each clause with 3 nodes (1 for each variable)
Edges capture independent variables between clauses

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 7 / 26

Vertex Covers

Given a graph G = (V ,E), a vertex cover is a subset of the nodes C ✓ V
s.t. each edge in E has an end-point in V .

1 2

3 4

5 6

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 8 / 26

O
O

O

Vertex Cover Problem

Vertex Cover Problem

VERTEX-COVER = {hG , ki | G has a vertex cover of size  k}

Goal: Prove that VC is NP-Complete

1 Show that VC 2 NP
2 Show that 3-SAT p VC

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 9 / 26

Vertex Cover Problem

Vertex Cover Problem

VERTEX-COVER = {hG , ki | G has a vertex cover of size  k}

Goal: Prove that VC is NP-Complete

1 Show that VC 2 NP
2 Show that 3-SAT p VC

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 9 / 26

Vertex Cover Problem

Vertex Cover Problem

VERTEX-COVER = {hG , ki | G has a vertex cover of size  k}

Goal: Prove that VC is NP-Complete

1 Show that VC 2 NP

2 Show that 3-SAT p VC

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 9 / 26

Vertex Cover Problem

Vertex Cover Problem

VERTEX-COVER = {hG , ki | G has a vertex cover of size  k}

Goal: Prove that VC is NP-Complete

1 Show that VC 2 NP
2 Show that 3-SAT p VC

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 9 / 26

3-SAT p VC

Goal: Show reduction f from 3-SAT to VC s.t.

if � is satisfiable, f (�) = hG , ki s.t. G has VC of size  k

if � is not satisfiable, f (�) = hG , ki s.t. G has no VC of size  k

Variable gadget: For every variable x1, draw pair of nodes

Clause gadget: For every (3-term) clause draw a triangle

Observations:

For each variable need 1 node in cover

For each triangle need at least 2 nodes

Need to connect variables to clauses

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 10 / 26

3-SAT p VC

Goal: Show reduction f from 3-SAT to VC s.t.

if � is satisfiable, f (�) = hG , ki s.t. G has VC of size  k

if � is not satisfiable, f (�) = hG , ki s.t. G has no VC of size  k

Variable gadget: For every variable x1, draw pair of nodes

Clause gadget: For every (3-term) clause draw a triangle

Observations:

For each variable need 1 node in cover

For each triangle need at least 2 nodes

Need to connect variables to clauses
Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 10 / 26

-

&
An OO Xe--

3-SAT p VC Example

� = (x1 _ x2 _ x3) ^ (x2 _ x3 _ x4)

x1 x1 x2 x2 x3 x3 x4 x4

x2

x1 x3

x3

x2 x4

1 A satisfying assignment implies cover C , |C |  2c + v

2 No satisfying assignment implies smallest cover needs |C | > 2c + v

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 11 / 26

3-SAT p VC Example

� = (x1 _ x2 _ x3) ^ (x2 _ x3 _ x4)

x1 x1 x2 x2 x3 x3 x4 x4

x2

x1 x3

x3

x2 x4

1 A satisfying assignment implies cover C , |C |  2c + v

2 No satisfying assignment implies smallest cover needs |C | > 2c + v

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 11 / 26

3-SAT p VC Example

� = (x1 _ x2 _ x3) ^ (x2 _ x3 _ x4)

x1 x1 x2 x2 x3 x3 x4 x4

x2

x1 x3

x3

x2 x4

1 A satisfying assignment implies cover C , |C |  2c + v

2 No satisfying assignment implies smallest cover needs |C | > 2c + v

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 11 / 26

- :.↑
'

,

-
--

3-SAT p VC Example

� = (x1 _ x2 _ x3) ^ (x2 _ x3 _ x4)

x1 x1 x2 x2 x3 x3 x4 x4

x2

x1 x3

x3

x2 x4

1 A satisfying assignment implies cover C , |C |  2c + v

2 No satisfying assignment implies smallest cover needs |C | > 2c + v

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 11 / 26

& x + 0O

X O
00X P

3-SAT p VC Example

� = (x1 _ x2 _ x3) ^ (x2 _ x3 _ x4)

x1 x1 x2 x2 x3 x3 x4 x4

x2

x1 x3

x3

x2 x4

1 A satisfying assignment implies cover C , |C |  2c + v

2 No satisfying assignment implies smallest cover needs |C | > 2c + v

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 11 / 26

--
·

O-

A Key Tool to Build Reductions

Gadgets

Gadgets are structures in the target problem that can simulate
structures in the source problem

For example, in proof of 3SAT P CLIQUE
We replaced each variable with a node
We replaced each clause with 3 nodes (1 for each variable)
Edges capture independent variables between clauses

Similarly in proof of 3SAT P Vertex Cover
We replaced each clause with a triangle and
each variable with a pair of nodes connected by an edge

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 12 / 26

A Key Tool to Build Reductions

Gadgets

Gadgets are structures in the target problem that can simulate
structures in the source problem

For example, in proof of 3SAT P CLIQUE
We replaced each variable with a node
We replaced each clause with 3 nodes (1 for each variable)
Edges capture independent variables between clauses

Similarly in proof of 3SAT P Vertex Cover

We replaced each clause with a triangle and
each variable with a pair of nodes connected by an edge

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 12 / 26

A Key Tool to Build Reductions

Gadgets

Gadgets are structures in the target problem that can simulate
structures in the source problem

For example, in proof of 3SAT P CLIQUE
We replaced each variable with a node
We replaced each clause with 3 nodes (1 for each variable)
Edges capture independent variables between clauses

Similarly in proof of 3SAT P Vertex Cover
We replaced each clause with a triangle and
each variable with a pair of nodes connected by an edge

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 12 / 26

-%--X

Outline

1 Lecture 21 Review

2 More NP-Complete Problems

3 Graph Coloring

4 co-NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 13 / 26

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors {0, 1, 2} to all
nodes, such that no edges have the same color on both ends.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 14 / 26

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors {0, 1, 2} to all
nodes, such that no edges have the same color on both ends.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 14 / 26

O I

I 2

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors {0, 1, 2} to all
nodes, such that no edges have the same color on both ends.

Goal: Prove than 3-Coloring is NP-Complete

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 15 / 26

NAE-3SAT

NAE-kSAT Problem

NAE-kSAT = {h�i | � is in k-CNF and � has a satisfying assignment s.t.

each clause has at least one 0 and at least one 1}

Definition:
x is an NAE-assignment of � if �(x) = 1 and x does not assign all
the same variables to any clause

Lemma: If x is NAE-assignment of � then x is NAE-assignment of �

Proof:
x must assign at least one 1 and at least one 0 to every clause
x must also have at least one 1 and one 0 in every clause
This means every clause is satisfied, and � is satisfied since it’s CNF

Goal
Prove that NAE-3SAT is NP-complete: 3SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 16 / 26

NAE-3SAT

NAE-kSAT Problem

NAE-kSAT = {h�i | � is in k-CNF and � has a satisfying assignment s.t.

each clause has at least one 0 and at least one 1}

Definition:
x is an NAE-assignment of � if �(x) = 1 and x does not assign all
the same variables to any clause

Lemma: If x is NAE-assignment of � then x is NAE-assignment of �

Proof:
x must assign at least one 1 and at least one 0 to every clause
x must also have at least one 1 and one 0 in every clause
This means every clause is satisfied, and � is satisfied since it’s CNF

Goal
Prove that NAE-3SAT is NP-complete: 3SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 16 / 26

NAE-3SAT

NAE-kSAT Problem

NAE-kSAT = {h�i | � is in k-CNF and � has a satisfying assignment s.t.

each clause has at least one 0 and at least one 1}

Definition:
x is an NAE-assignment of � if �(x) = 1 and x does not assign all
the same variables to any clause

Lemma: If x is NAE-assignment of � then x is NAE-assignment of �

Proof:
x must assign at least one 1 and at least one 0 to every clause
x must also have at least one 1 and one 0 in every clause
This means every clause is satisfied, and � is satisfied since it’s CNF

Goal
Prove that NAE-3SAT is NP-complete: 3SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 16 / 26

3SAT P NAE-4SAT

We need a reduction f that takes 3SAT instance � and converts it
into NAE-4SAT instance �0

If � is satisfiable, �0 is NAE-satisfiable
If �0 is NAE-satisfiable, � is satisfiable
Note that this must hold for every clause of �, �0

Idea: Can we build a “gadget” for each clause of � to enforce this
condition?

(x1 _ x2 _ x3) ! (x1 _ x2 _ x3 _ S)

Why this works:
()) If (x1 _ x2 _ x3) = 1 at least one xi = 1, so (x1 _ x2 _ x3 _ S) = 1.
Set S = 0 to make it NAE-assignment
(() If (x1 _ x2 _ x3 _ S) = 1

If S = 0, then at least one xi = 1, so (x1 _ x2 _ x3) = 1
If S = 1, then (x1 _ x2 _ x3 _ 0) is also NAE-assignment. So,
(x1 _ x2 _ x3) = 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 17 / 26

3SAT P NAE-4SAT

We need a reduction f that takes 3SAT instance � and converts it
into NAE-4SAT instance �0

If � is satisfiable, �0 is NAE-satisfiable
If �0 is NAE-satisfiable, � is satisfiable
Note that this must hold for every clause of �, �0

Idea: Can we build a “gadget” for each clause of � to enforce this
condition?

(x1 _ x2 _ x3) ! (x1 _ x2 _ x3 _ S)

Why this works:
()) If (x1 _ x2 _ x3) = 1 at least one xi = 1, so (x1 _ x2 _ x3 _ S) = 1.
Set S = 0 to make it NAE-assignment
(() If (x1 _ x2 _ x3 _ S) = 1

If S = 0, then at least one xi = 1, so (x1 _ x2 _ x3) = 1
If S = 1, then (x1 _ x2 _ x3 _ 0) is also NAE-assignment. So,
(x1 _ x2 _ x3) = 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 17 / 26

3SAT P NAE-4SAT

We need a reduction f that takes 3SAT instance � and converts it
into NAE-4SAT instance �0

If � is satisfiable, �0 is NAE-satisfiable

If �0 is NAE-satisfiable, � is satisfiable
Note that this must hold for every clause of �, �0

Idea: Can we build a “gadget” for each clause of � to enforce this
condition?

(x1 _ x2 _ x3) ! (x1 _ x2 _ x3 _ S)

Why this works:
()) If (x1 _ x2 _ x3) = 1 at least one xi = 1, so (x1 _ x2 _ x3 _ S) = 1.
Set S = 0 to make it NAE-assignment
(() If (x1 _ x2 _ x3 _ S) = 1

If S = 0, then at least one xi = 1, so (x1 _ x2 _ x3) = 1
If S = 1, then (x1 _ x2 _ x3 _ 0) is also NAE-assignment. So,
(x1 _ x2 _ x3) = 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 17 / 26

3SAT P NAE-4SAT

We need a reduction f that takes 3SAT instance � and converts it
into NAE-4SAT instance �0

If � is satisfiable, �0 is NAE-satisfiable
If �0 is NAE-satisfiable, � is satisfiable

Note that this must hold for every clause of �, �0

Idea: Can we build a “gadget” for each clause of � to enforce this
condition?

(x1 _ x2 _ x3) ! (x1 _ x2 _ x3 _ S)

Why this works:
()) If (x1 _ x2 _ x3) = 1 at least one xi = 1, so (x1 _ x2 _ x3 _ S) = 1.
Set S = 0 to make it NAE-assignment
(() If (x1 _ x2 _ x3 _ S) = 1

If S = 0, then at least one xi = 1, so (x1 _ x2 _ x3) = 1
If S = 1, then (x1 _ x2 _ x3 _ 0) is also NAE-assignment. So,
(x1 _ x2 _ x3) = 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 17 / 26

3SAT P NAE-4SAT

We need a reduction f that takes 3SAT instance � and converts it
into NAE-4SAT instance �0

If � is satisfiable, �0 is NAE-satisfiable
If �0 is NAE-satisfiable, � is satisfiable
Note that this must hold for every clause of �, �0

Idea: Can we build a “gadget” for each clause of � to enforce this
condition?

(x1 _ x2 _ x3) ! (x1 _ x2 _ x3 _ S)

Why this works:
()) If (x1 _ x2 _ x3) = 1 at least one xi = 1, so (x1 _ x2 _ x3 _ S) = 1.
Set S = 0 to make it NAE-assignment
(() If (x1 _ x2 _ x3 _ S) = 1

If S = 0, then at least one xi = 1, so (x1 _ x2 _ x3) = 1
If S = 1, then (x1 _ x2 _ x3 _ 0) is also NAE-assignment. So,
(x1 _ x2 _ x3) = 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 17 / 26

3SAT P NAE-4SAT

We need a reduction f that takes 3SAT instance � and converts it
into NAE-4SAT instance �0

If � is satisfiable, �0 is NAE-satisfiable
If �0 is NAE-satisfiable, � is satisfiable
Note that this must hold for every clause of �, �0

Idea: Can we build a “gadget” for each clause of � to enforce this
condition?

(x1 _ x2 _ x3) ! (x1 _ x2 _ x3 _ S)

Why this works:
()) If (x1 _ x2 _ x3) = 1 at least one xi = 1, so (x1 _ x2 _ x3 _ S) = 1.
Set S = 0 to make it NAE-assignment
(() If (x1 _ x2 _ x3 _ S) = 1

If S = 0, then at least one xi = 1, so (x1 _ x2 _ x3) = 1
If S = 1, then (x1 _ x2 _ x3 _ 0) is also NAE-assignment. So,
(x1 _ x2 _ x3) = 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 17 / 26

3SAT P NAE-4SAT

We need a reduction f that takes 3SAT instance � and converts it
into NAE-4SAT instance �0

If � is satisfiable, �0 is NAE-satisfiable
If �0 is NAE-satisfiable, � is satisfiable
Note that this must hold for every clause of �, �0

Idea: Can we build a “gadget” for each clause of � to enforce this
condition?

(x1 _ x2 _ x3) ! (x1 _ x2 _ x3 _ S)

Why this works:
()) If (x1 _ x2 _ x3) = 1 at least one xi = 1, so (x1 _ x2 _ x3 _ S) = 1.
Set S = 0 to make it NAE-assignment
(() If (x1 _ x2 _ x3 _ S) = 1

If S = 0, then at least one xi = 1, so (x1 _ x2 _ x3) = 1
If S = 1, then (x1 _ x2 _ x3 _ 0) is also NAE-assignment. So,
(x1 _ x2 _ x3) = 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 17 / 26

3SAT P NAE-4SAT

We need a reduction f that takes 3SAT instance � and converts it
into NAE-4SAT instance �0

If � is satisfiable, �0 is NAE-satisfiable
If �0 is NAE-satisfiable, � is satisfiable
Note that this must hold for every clause of �, �0

Idea: Can we build a “gadget” for each clause of � to enforce this
condition?

(x1 _ x2 _ x3) ! (x1 _ x2 _ x3 _ S)

Why this works:

()) If (x1 _ x2 _ x3) = 1 at least one xi = 1, so (x1 _ x2 _ x3 _ S) = 1.
Set S = 0 to make it NAE-assignment
(() If (x1 _ x2 _ x3 _ S) = 1

If S = 0, then at least one xi = 1, so (x1 _ x2 _ x3) = 1
If S = 1, then (x1 _ x2 _ x3 _ 0) is also NAE-assignment. So,
(x1 _ x2 _ x3) = 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 17 / 26

3SAT P NAE-4SAT

We need a reduction f that takes 3SAT instance � and converts it
into NAE-4SAT instance �0

If � is satisfiable, �0 is NAE-satisfiable
If �0 is NAE-satisfiable, � is satisfiable
Note that this must hold for every clause of �, �0

Idea: Can we build a “gadget” for each clause of � to enforce this
condition?

(x1 _ x2 _ x3) ! (x1 _ x2 _ x3 _ S)

Why this works:
()) If (x1 _ x2 _ x3) = 1

at least one xi = 1, so (x1 _ x2 _ x3 _ S) = 1.
Set S = 0 to make it NAE-assignment
(() If (x1 _ x2 _ x3 _ S) = 1

If S = 0, then at least one xi = 1, so (x1 _ x2 _ x3) = 1
If S = 1, then (x1 _ x2 _ x3 _ 0) is also NAE-assignment. So,
(x1 _ x2 _ x3) = 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 17 / 26

3SAT P NAE-4SAT

We need a reduction f that takes 3SAT instance � and converts it
into NAE-4SAT instance �0

If � is satisfiable, �0 is NAE-satisfiable
If �0 is NAE-satisfiable, � is satisfiable
Note that this must hold for every clause of �, �0

Idea: Can we build a “gadget” for each clause of � to enforce this
condition?

(x1 _ x2 _ x3) ! (x1 _ x2 _ x3 _ S)

Why this works:
()) If (x1 _ x2 _ x3) = 1 at least one xi = 1, so (x1 _ x2 _ x3 _ S) = 1.
Set S = 0 to make it NAE-assignment

(() If (x1 _ x2 _ x3 _ S) = 1
If S = 0, then at least one xi = 1, so (x1 _ x2 _ x3) = 1
If S = 1, then (x1 _ x2 _ x3 _ 0) is also NAE-assignment. So,
(x1 _ x2 _ x3) = 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 17 / 26

3SAT P NAE-4SAT

We need a reduction f that takes 3SAT instance � and converts it
into NAE-4SAT instance �0

If � is satisfiable, �0 is NAE-satisfiable
If �0 is NAE-satisfiable, � is satisfiable
Note that this must hold for every clause of �, �0

Idea: Can we build a “gadget” for each clause of � to enforce this
condition?

(x1 _ x2 _ x3) ! (x1 _ x2 _ x3 _ S)

Why this works:
()) If (x1 _ x2 _ x3) = 1 at least one xi = 1, so (x1 _ x2 _ x3 _ S) = 1.
Set S = 0 to make it NAE-assignment
(() If (x1 _ x2 _ x3 _ S) = 1

If S = 0, then at least one xi = 1, so (x1 _ x2 _ x3) = 1
If S = 1, then (x1 _ x2 _ x3 _ 0) is also NAE-assignment. So,
(x1 _ x2 _ x3) = 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 17 / 26

3SAT P NAE-4SAT

We need a reduction f that takes 3SAT instance � and converts it
into NAE-4SAT instance �0

If � is satisfiable, �0 is NAE-satisfiable
If �0 is NAE-satisfiable, � is satisfiable
Note that this must hold for every clause of �, �0

Idea: Can we build a “gadget” for each clause of � to enforce this
condition?

(x1 _ x2 _ x3) ! (x1 _ x2 _ x3 _ S)

Why this works:
()) If (x1 _ x2 _ x3) = 1 at least one xi = 1, so (x1 _ x2 _ x3 _ S) = 1.
Set S = 0 to make it NAE-assignment
(() If (x1 _ x2 _ x3 _ S) = 1

If S = 0, then at least one xi = 1, so (x1 _ x2 _ x3) = 1

If S = 1, then (x1 _ x2 _ x3 _ 0) is also NAE-assignment. So,
(x1 _ x2 _ x3) = 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 17 / 26

3SAT P NAE-4SAT

We need a reduction f that takes 3SAT instance � and converts it
into NAE-4SAT instance �0

If � is satisfiable, �0 is NAE-satisfiable
If �0 is NAE-satisfiable, � is satisfiable
Note that this must hold for every clause of �, �0

Idea: Can we build a “gadget” for each clause of � to enforce this
condition?

(x1 _ x2 _ x3) ! (x1 _ x2 _ x3 _ S)

Why this works:
()) If (x1 _ x2 _ x3) = 1 at least one xi = 1, so (x1 _ x2 _ x3 _ S) = 1.
Set S = 0 to make it NAE-assignment
(() If (x1 _ x2 _ x3 _ S) = 1

If S = 0, then at least one xi = 1, so (x1 _ x2 _ x3) = 1
If S = 1, then (x1 _ x2 _ x3 _ 0) is also NAE-assignment. So,
(x1 _ x2 _ x3) = 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 17 / 26

NAE-4SAT P NAE-3SAT

Need a gadget to convert 4-CNF clause to CNF clauses that preserves
NAE
Observations: Starting with (x1 _ x2 _ x3 _ x4)

We know that not all xi have the same value
At least one of xi is a 1 and one is a 0
Idea: Let’s split the variables into two clauses:

(x1 _ x2 _ x3 _ x4) ! (x1 _ x2 _ zi) ^ (x3 _ x4 _ zi)

Why this works:
(() If (x1 _ x2 _ zi) and (x3 _ x4 _ zi) are both NAE, then
(x1 _ x2 _ x3 _ x4) is NAE
()) If (x1 _ x2 _ x3 _ x4) is NAE

If x1 6= x2: Set zi = x3
If x1 6= x3: Set zi = x3
If x1 6= x4: Set zi = x4

Theorem
3SAT P NAE-4SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 18 / 26

NAE-4SAT P NAE-3SAT

Need a gadget to convert 4-CNF clause to CNF clauses that preserves
NAE

Observations: Starting with (x1 _ x2 _ x3 _ x4)
We know that not all xi have the same value
At least one of xi is a 1 and one is a 0
Idea: Let’s split the variables into two clauses:

(x1 _ x2 _ x3 _ x4) ! (x1 _ x2 _ zi) ^ (x3 _ x4 _ zi)

Why this works:
(() If (x1 _ x2 _ zi) and (x3 _ x4 _ zi) are both NAE, then
(x1 _ x2 _ x3 _ x4) is NAE
()) If (x1 _ x2 _ x3 _ x4) is NAE

If x1 6= x2: Set zi = x3
If x1 6= x3: Set zi = x3
If x1 6= x4: Set zi = x4

Theorem
3SAT P NAE-4SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 18 / 26

NAE-4SAT P NAE-3SAT

Need a gadget to convert 4-CNF clause to CNF clauses that preserves
NAE
Observations: Starting with (x1 _ x2 _ x3 _ x4)

We know that not all xi have the same value
At least one of xi is a 1 and one is a 0
Idea: Let’s split the variables into two clauses:

(x1 _ x2 _ x3 _ x4) ! (x1 _ x2 _ zi) ^ (x3 _ x4 _ zi)

Why this works:
(() If (x1 _ x2 _ zi) and (x3 _ x4 _ zi) are both NAE, then
(x1 _ x2 _ x3 _ x4) is NAE
()) If (x1 _ x2 _ x3 _ x4) is NAE

If x1 6= x2: Set zi = x3
If x1 6= x3: Set zi = x3
If x1 6= x4: Set zi = x4

Theorem
3SAT P NAE-4SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 18 / 26

NAE-4SAT P NAE-3SAT

Need a gadget to convert 4-CNF clause to CNF clauses that preserves
NAE
Observations: Starting with (x1 _ x2 _ x3 _ x4)

We know that not all xi have the same value

At least one of xi is a 1 and one is a 0
Idea: Let’s split the variables into two clauses:

(x1 _ x2 _ x3 _ x4) ! (x1 _ x2 _ zi) ^ (x3 _ x4 _ zi)

Why this works:
(() If (x1 _ x2 _ zi) and (x3 _ x4 _ zi) are both NAE, then
(x1 _ x2 _ x3 _ x4) is NAE
()) If (x1 _ x2 _ x3 _ x4) is NAE

If x1 6= x2: Set zi = x3
If x1 6= x3: Set zi = x3
If x1 6= x4: Set zi = x4

Theorem
3SAT P NAE-4SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 18 / 26

NAE-4SAT P NAE-3SAT

Need a gadget to convert 4-CNF clause to CNF clauses that preserves
NAE
Observations: Starting with (x1 _ x2 _ x3 _ x4)

We know that not all xi have the same value
At least one of xi is a 1 and one is a 0

Idea: Let’s split the variables into two clauses:
(x1 _ x2 _ x3 _ x4) ! (x1 _ x2 _ zi) ^ (x3 _ x4 _ zi)

Why this works:
(() If (x1 _ x2 _ zi) and (x3 _ x4 _ zi) are both NAE, then
(x1 _ x2 _ x3 _ x4) is NAE
()) If (x1 _ x2 _ x3 _ x4) is NAE

If x1 6= x2: Set zi = x3
If x1 6= x3: Set zi = x3
If x1 6= x4: Set zi = x4

Theorem
3SAT P NAE-4SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 18 / 26

NAE-4SAT P NAE-3SAT

Need a gadget to convert 4-CNF clause to CNF clauses that preserves
NAE
Observations: Starting with (x1 _ x2 _ x3 _ x4)

We know that not all xi have the same value
At least one of xi is a 1 and one is a 0
Idea: Let’s split the variables into two clauses:

(x1 _ x2 _ x3 _ x4) ! (x1 _ x2 _ zi) ^ (x3 _ x4 _ zi)

Why this works:
(() If (x1 _ x2 _ zi) and (x3 _ x4 _ zi) are both NAE, then
(x1 _ x2 _ x3 _ x4) is NAE
()) If (x1 _ x2 _ x3 _ x4) is NAE

If x1 6= x2: Set zi = x3
If x1 6= x3: Set zi = x3
If x1 6= x4: Set zi = x4

Theorem
3SAT P NAE-4SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 18 / 26

NAE-4SAT P NAE-3SAT

Need a gadget to convert 4-CNF clause to CNF clauses that preserves
NAE
Observations: Starting with (x1 _ x2 _ x3 _ x4)

We know that not all xi have the same value
At least one of xi is a 1 and one is a 0
Idea: Let’s split the variables into two clauses:

(x1 _ x2 _ x3 _ x4) ! (x1 _ x2 _ zi) ^ (x3 _ x4 _ zi)

Why this works:
(() If (x1 _ x2 _ zi) and (x3 _ x4 _ zi) are both NAE, then
(x1 _ x2 _ x3 _ x4) is NAE
()) If (x1 _ x2 _ x3 _ x4) is NAE

If x1 6= x2: Set zi = x3
If x1 6= x3: Set zi = x3
If x1 6= x4: Set zi = x4

Theorem
3SAT P NAE-4SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 18 / 26

NAE-4SAT P NAE-3SAT

Need a gadget to convert 4-CNF clause to CNF clauses that preserves
NAE
Observations: Starting with (x1 _ x2 _ x3 _ x4)

We know that not all xi have the same value
At least one of xi is a 1 and one is a 0
Idea: Let’s split the variables into two clauses:

(x1 _ x2 _ x3 _ x4) ! (x1 _ x2 _ zi) ^ (x3 _ x4 _ zi)

Why this works:

(() If (x1 _ x2 _ zi) and (x3 _ x4 _ zi) are both NAE, then
(x1 _ x2 _ x3 _ x4) is NAE
()) If (x1 _ x2 _ x3 _ x4) is NAE

If x1 6= x2: Set zi = x3
If x1 6= x3: Set zi = x3
If x1 6= x4: Set zi = x4

Theorem
3SAT P NAE-4SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 18 / 26

NAE-4SAT P NAE-3SAT

Need a gadget to convert 4-CNF clause to CNF clauses that preserves
NAE
Observations: Starting with (x1 _ x2 _ x3 _ x4)

We know that not all xi have the same value
At least one of xi is a 1 and one is a 0
Idea: Let’s split the variables into two clauses:

(x1 _ x2 _ x3 _ x4) ! (x1 _ x2 _ zi) ^ (x3 _ x4 _ zi)

Why this works:
(() If (x1 _ x2 _ zi) and (x3 _ x4 _ zi) are both NAE

, then
(x1 _ x2 _ x3 _ x4) is NAE
()) If (x1 _ x2 _ x3 _ x4) is NAE

If x1 6= x2: Set zi = x3
If x1 6= x3: Set zi = x3
If x1 6= x4: Set zi = x4

Theorem
3SAT P NAE-4SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 18 / 26

NAE-4SAT P NAE-3SAT

Need a gadget to convert 4-CNF clause to CNF clauses that preserves
NAE
Observations: Starting with (x1 _ x2 _ x3 _ x4)

We know that not all xi have the same value
At least one of xi is a 1 and one is a 0
Idea: Let’s split the variables into two clauses:

(x1 _ x2 _ x3 _ x4) ! (x1 _ x2 _ zi) ^ (x3 _ x4 _ zi)

Why this works:
(() If (x1 _ x2 _ zi) and (x3 _ x4 _ zi) are both NAE, then
(x1 _ x2 _ x3 _ x4) is NAE

()) If (x1 _ x2 _ x3 _ x4) is NAE
If x1 6= x2: Set zi = x3
If x1 6= x3: Set zi = x3
If x1 6= x4: Set zi = x4

Theorem
3SAT P NAE-4SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 18 / 26

NAE-4SAT P NAE-3SAT

Need a gadget to convert 4-CNF clause to CNF clauses that preserves
NAE
Observations: Starting with (x1 _ x2 _ x3 _ x4)

We know that not all xi have the same value
At least one of xi is a 1 and one is a 0
Idea: Let’s split the variables into two clauses:

(x1 _ x2 _ x3 _ x4) ! (x1 _ x2 _ zi) ^ (x3 _ x4 _ zi)

Why this works:
(() If (x1 _ x2 _ zi) and (x3 _ x4 _ zi) are both NAE, then
(x1 _ x2 _ x3 _ x4) is NAE
()) If (x1 _ x2 _ x3 _ x4) is NAE

If x1 6= x2: Set zi = x3
If x1 6= x3: Set zi = x3
If x1 6= x4: Set zi = x4

Theorem
3SAT P NAE-4SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 18 / 26

NAE-4SAT P NAE-3SAT

Need a gadget to convert 4-CNF clause to CNF clauses that preserves
NAE
Observations: Starting with (x1 _ x2 _ x3 _ x4)

We know that not all xi have the same value
At least one of xi is a 1 and one is a 0
Idea: Let’s split the variables into two clauses:

(x1 _ x2 _ x3 _ x4) ! (x1 _ x2 _ zi) ^ (x3 _ x4 _ zi)

Why this works:
(() If (x1 _ x2 _ zi) and (x3 _ x4 _ zi) are both NAE, then
(x1 _ x2 _ x3 _ x4) is NAE
()) If (x1 _ x2 _ x3 _ x4) is NAE

If x1 6= x2: Set zi = x3

If x1 6= x3: Set zi = x3
If x1 6= x4: Set zi = x4

Theorem
3SAT P NAE-4SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 18 / 26

NAE-4SAT P NAE-3SAT

Need a gadget to convert 4-CNF clause to CNF clauses that preserves
NAE
Observations: Starting with (x1 _ x2 _ x3 _ x4)

We know that not all xi have the same value
At least one of xi is a 1 and one is a 0
Idea: Let’s split the variables into two clauses:

(x1 _ x2 _ x3 _ x4) ! (x1 _ x2 _ zi) ^ (x3 _ x4 _ zi)

Why this works:
(() If (x1 _ x2 _ zi) and (x3 _ x4 _ zi) are both NAE, then
(x1 _ x2 _ x3 _ x4) is NAE
()) If (x1 _ x2 _ x3 _ x4) is NAE

If x1 6= x2: Set zi = x3
If x1 6= x3: Set zi = x3

If x1 6= x4: Set zi = x4

Theorem
3SAT P NAE-4SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 18 / 26

NAE-4SAT P NAE-3SAT

Need a gadget to convert 4-CNF clause to CNF clauses that preserves
NAE
Observations: Starting with (x1 _ x2 _ x3 _ x4)

We know that not all xi have the same value
At least one of xi is a 1 and one is a 0
Idea: Let’s split the variables into two clauses:

(x1 _ x2 _ x3 _ x4) ! (x1 _ x2 _ zi) ^ (x3 _ x4 _ zi)

Why this works:
(() If (x1 _ x2 _ zi) and (x3 _ x4 _ zi) are both NAE, then
(x1 _ x2 _ x3 _ x4) is NAE
()) If (x1 _ x2 _ x3 _ x4) is NAE

If x1 6= x2: Set zi = x3
If x1 6= x3: Set zi = x3
If x1 6= x4: Set zi = x4

Theorem
3SAT P NAE-4SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 18 / 26

NAE-4SAT P NAE-3SAT

Need a gadget to convert 4-CNF clause to CNF clauses that preserves
NAE
Observations: Starting with (x1 _ x2 _ x3 _ x4)

We know that not all xi have the same value
At least one of xi is a 1 and one is a 0
Idea: Let’s split the variables into two clauses:

(x1 _ x2 _ x3 _ x4) ! (x1 _ x2 _ zi) ^ (x3 _ x4 _ zi)

Why this works:
(() If (x1 _ x2 _ zi) and (x3 _ x4 _ zi) are both NAE, then
(x1 _ x2 _ x3 _ x4) is NAE
()) If (x1 _ x2 _ x3 _ x4) is NAE

If x1 6= x2: Set zi = x3
If x1 6= x3: Set zi = x3
If x1 6= x4: Set zi = x4

Theorem
3SAT P NAE-4SAT P NAE-3SAT

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 18 / 26

NAE-3SAT p 3-Coloring

� = (x1 _ x2 _ x3) ^ (x2 _ x3 _ x4)

x1 x1 x2 x2 x3 x3 x4 x4

2

x2

x1 x3

x3

x2 x4

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 19 / 26

NAE-3SAT p 3-Coloring

� = (x1 _ x2 _ x3) ^ (x2 _ x3 _ x4)

x1 x1 x2 x2 x3 x3 x4 x4

2

x2

x1 x3

x3

x2 x4

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 19 / 26

NAE-3SAT p 3-Coloring

� = (x1 _ x2 _ x3) ^ (x2 _ x3 _ x4)

x1 x1 x2 x2 x3 x3 x4 x4

2

x2

x1 x3

x3

x2 x4

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 19 / 26

NAE-3SAT p 3-Coloring

� = (x1 _ x2 _ x3) ^ (x2 _ x3 _ x4)

x1 x1 x2 x2 x3 x3 x4 x4

2

x2

x1 x3

x3

x2 x4

1 If � is NAE-SAT, then not all variables are all 0 or all 1. So, enough
colors to color clauses

2 If G is 3-colorable, colors indicate a NAE-SAT assignment

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 20 / 26

NAE-3SAT p 3-Coloring

� = (x1 _ x2 _ x3) ^ (x2 _ x3 _ x4)

x1 x1 x2 x2 x3 x3 x4 x4

2

x2

x1 x3

x3

x2 x4

1 If � is NAE-SAT, then not all variables are all 0 or all 1. So, enough
colors to color clauses

2 If G is 3-colorable, colors indicate a NAE-SAT assignment
Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 20 / 26

Conclusions

Many useful problems are NP-complete

But, as long as P 6= NP, these are hard

Given a problem L, you should:
1 Try to solve it (L 2 P)
2 Try to prove NP-complete

But, you must be careful

3-Coloring is NP-complete, but 2-Coloring 2 P

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 21 / 26

Conclusions

Many useful problems are NP-complete

But, as long as P 6= NP , these are hard

Given a problem L, you should:
1 Try to solve it (L 2 P)
2 Try to prove NP-complete

But, you must be careful

3-Coloring is NP-complete, but 2-Coloring 2 P

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 21 / 26

Conclusions

Many useful problems are NP-complete

But, as long as P 6= NP , these are hard

Given a problem L, you should:

1 Try to solve it (L 2 P)
2 Try to prove NP-complete

But, you must be careful

3-Coloring is NP-complete, but 2-Coloring 2 P

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 21 / 26

Conclusions

Many useful problems are NP-complete

But, as long as P 6= NP , these are hard

Given a problem L, you should:
1 Try to solve it (L 2 P)

2 Try to prove NP-complete

But, you must be careful

3-Coloring is NP-complete, but 2-Coloring 2 P

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 21 / 26

Conclusions

Many useful problems are NP-complete

But, as long as P 6= NP , these are hard

Given a problem L, you should:
1 Try to solve it (L 2 P)
2 Try to prove NP-complete

But, you must be careful

3-Coloring is NP-complete, but 2-Coloring 2 P

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 21 / 26

Conclusions

Many useful problems are NP-complete

But, as long as P 6= NP , these are hard

Given a problem L, you should:
1 Try to solve it (L 2 P)
2 Try to prove NP-complete

But, you must be careful

3-Coloring is NP-complete, but 2-Coloring 2 P

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 21 / 26

Conclusions

Many useful problems are NP-complete

But, as long as P 6= NP , these are hard

Given a problem L, you should:
1 Try to solve it (L 2 P)
2 Try to prove NP-complete

But, you must be careful

3-Coloring is NP-complete, but 2-Coloring 2 P

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 21 / 26

Outline

1 Lecture 21 Review

2 More NP-Complete Problems

3 Graph Coloring

4 co-NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 22 / 26

Are All Problems in NP?

Question
Do all languages have poly-size proofs?

Consider the following language:

UNSAT

UNSAT = {h�i | � is not satisfiable}

Problems like UNSAT are in co-NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 23 / 26

Are All Problems in NP?

Question
Do all languages have poly-size proofs?

Consider the following language:

UNSAT

UNSAT = {h�i | � is not satisfiable}

Problems like UNSAT are in co-NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 23 / 26

Are All Problems in NP?

Question
Do all languages have poly-size proofs?

Consider the following language:

UNSAT

UNSAT = {h�i | � is not satisfiable}

Problems like UNSAT are in co-NP

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 23 / 26

P , NP and co-NP

P
L 2 P if there exists poly-time DTM M s.t M(x) = [x 2 L]

NP
L 2 NP if there exists poly-time DTM V s.t. for x 2 L there exists a
witness w s.t. V (x ,w) = 1

co-NP
L 2 co-NP if there exists poly-time DTM V s.t. for x 2 L for all w ,
V (x ,w) = 0

Question:

Is NP = co-NP?

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 24 / 26

P , NP and co-NP

P
L 2 P if there exists poly-time DTM M s.t M(x) = [x 2 L]

NP
L 2 NP if there exists poly-time DTM V s.t. for x 2 L there exists a
witness w s.t. V (x ,w) = 1

co-NP
L 2 co-NP if there exists poly-time DTM V s.t. for x 2 L for all w ,
V (x ,w) = 0

Question:

Is NP = co-NP?

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 24 / 26

P , NP and co-NP

P
L 2 P if there exists poly-time DTM M s.t M(x) = [x 2 L]

NP
L 2 NP if there exists poly-time DTM V s.t. for x 2 L there exists a
witness w s.t. V (x ,w) = 1

co-NP
L 2 co-NP if there exists poly-time DTM V s.t. for x 2 L for all w ,
V (x ,w) = 0

Question:

Is NP = co-NP?

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 24 / 26

P , NP and co-NP

P
L 2 P if there exists poly-time DTM M s.t M(x) = [x 2 L]

NP
L 2 NP if there exists poly-time DTM V s.t. for x 2 L there exists a
witness w s.t. V (x ,w) = 1

co-NP
L 2 co-NP if there exists poly-time DTM V s.t. for x 2 L for all w ,
V (x ,w) = 0

Question:

Is NP = co-NP?

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 24 / 26

Polynomial Hierarchy (PH)

We can continue in this way to define more powerful classes of languages:

⌃p
2 (Generalization of NP

L 2 ⌃p
2 if there exists poly-time DTM V s.t. for x 2 L, there exists a w1

s.t. for all w2, V (x ,w1,w2) = 1

9w18w2 s.t. V (x ,w1,w2) = 1

⇧p
2 (Generalization of co-NP)

L 2 ⇧p
2 if there exists poly-time DTM V s.t. for x 2 L, for all w1 there

exists w2 s.t. V (x ,w1,w2) = 1

8w19w2 s.t. V (x ,w1,w2) = 1

We believe that there are infinitely many levels of the polynomial hierarchy
and that ⇧p

i 6= ⌃p
i for i > 0, but can’t prove it.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 25 / 26

Polynomial Hierarchy (PH)

We can continue in this way to define more powerful classes of languages:

⌃p
2 (Generalization of NP

L 2 ⌃p
2 if there exists poly-time DTM V s.t. for x 2 L, there exists a w1

s.t. for all w2, V (x ,w1,w2) = 1

9w18w2 s.t. V (x ,w1,w2) = 1

⇧p
2 (Generalization of co-NP)

L 2 ⇧p
2 if there exists poly-time DTM V s.t. for x 2 L, for all w1 there

exists w2 s.t. V (x ,w1,w2) = 1

8w19w2 s.t. V (x ,w1,w2) = 1

We believe that there are infinitely many levels of the polynomial hierarchy
and that ⇧p

i 6= ⌃p
i for i > 0, but can’t prove it.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 25 / 26

Polynomial Hierarchy (PH)

We can continue in this way to define more powerful classes of languages:

⌃p
2 (Generalization of NP

L 2 ⌃p
2 if there exists poly-time DTM V s.t. for x 2 L, there exists a w1

s.t. for all w2, V (x ,w1,w2) = 1

9w18w2 s.t. V (x ,w1,w2) = 1

⇧p
2 (Generalization of co-NP)

L 2 ⇧p
2 if there exists poly-time DTM V s.t. for x 2 L, for all w1 there

exists w2 s.t. V (x ,w1,w2) = 1

8w19w2 s.t. V (x ,w1,w2) = 1

We believe that there are infinitely many levels of the polynomial hierarchy
and that ⇧p

i 6= ⌃p
i for i > 0, but can’t prove it.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 25 / 26

Polynomial Hierarchy (PH)

We can continue in this way to define more powerful classes of languages:

⌃p
2 (Generalization of NP

L 2 ⌃p
2 if there exists poly-time DTM V s.t. for x 2 L, there exists a w1

s.t. for all w2, V (x ,w1,w2) = 1

9w18w2 s.t. V (x ,w1,w2) = 1

⇧p
2 (Generalization of co-NP)

L 2 ⇧p
2 if there exists poly-time DTM V s.t. for x 2 L, for all w1 there

exists w2 s.t. V (x ,w1,w2) = 1

8w19w2 s.t. V (x ,w1,w2) = 1

We believe that there are infinitely many levels of the polynomial hierarchy
and that ⇧p

i 6= ⌃p
i for i > 0, but can’t prove it.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 25 / 26

The Complexity Zoo

There are many other complexity classes

We know some relationships between classes

But, most big questions (e.g., P = NP , NP = co-NP , does PH
collapse) are still not known!!!

Complexity Zoo

The complexity zoo (https://complexityzoo.net/Complexity_Zoo)
now has 546 complexity classes.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 26 / 26

The Complexity Zoo

There are many other complexity classes

We know some relationships between classes

But, most big questions (e.g., P = NP , NP = co-NP , does PH
collapse) are still not known!!!

Complexity Zoo

The complexity zoo (https://complexityzoo.net/Complexity_Zoo)
now has 546 complexity classes.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 26 / 26

The Complexity Zoo

There are many other complexity classes

We know some relationships between classes

But, most big questions (e.g., P = NP , NP = co-NP , does PH
collapse) are still not known!!!

Complexity Zoo

The complexity zoo (https://complexityzoo.net/Complexity_Zoo)
now has 546 complexity classes.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 26 / 26

The Complexity Zoo

There are many other complexity classes

We know some relationships between classes

But, most big questions (e.g., P = NP , NP = co-NP , does PH
collapse) are still not known!!!

Complexity Zoo

The complexity zoo (https://complexityzoo.net/Complexity_Zoo)
now has 546 complexity classes.

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 11, 2024 26 / 26

