Foundations of Computing Lecture 22

Arkady Yerukhimovich

April 11, 2024

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 11, 2024

э

1 Lecture 21 Review

2 More \mathcal{NP} -Complete Problems

3 Graph Coloring

4 co- \mathcal{NP}

▶ < ∃ >

æ

- $\bullet \ \mathcal{P} \ \text{and} \ \mathcal{N} \mathcal{P}$
- Polynomial-Time Reductions
- $\mathcal{NP}\text{-completeness of SAT}$

3 N 3

2 More \mathcal{NP} -Complete Problems

3 Graph Coloring

4 co- \mathcal{NP}

- ∢ ⊒ →

æ

SAT is *NP*-complete
3-SAT is *NP*-complete

$(x, v, x, v, x_i) \land (\overline{x}, v \overline{x}, v x_i)$

• Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where

1. Clique ENP w= 0 \mathcal{O} n. 3SAT E, Clique

イロト 不得 トイヨト イヨト

3

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where
 - If ϕ is satisfiable, ${\it G}$ has a clique of size ${\it k}$

< 4[™] >

< ∃⇒

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where
 - If ϕ is satisfiable, G has a clique of size k
 - If ϕ is not satisfiable, G has no clique of size k

-∢ ∃ ▶

< 17 > <

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where
 - If ϕ is satisfiable, G has a clique of size k
 - If ϕ is not satisfiable, G has no clique of size k

• Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

Xi: = Xi=1

< 4³ ► <

• Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where

- If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

< A > <

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where
 - If ϕ is satisfiable, G has a clique of size k
 - If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

• If ϕ is satisfiable then G has a k-clique

< A > <

• Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where

- If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$ X_1 X2
- If ϕ is satisfiable then G has a k-clique
- If G has a k-clique then ϕ is satisfiable

Arkady Yerukhimovich

< 4[™] ▶

æ

< ∃⇒

Arkady Yerukhimovich

< 1 k

< ∃⇒

э

Gadgets

• Gadgets are structures in the target problem that can simulate structures in the source problem

- Gadgets are structures in the target problem that can simulate structures in the source problem
- For example, in proof of 3SAT \leq_P CLIQUE
 - We replaced each variable with a node
 - We replaced each clause with 3 nodes (1 for each variable)
 - Edges capture independent variables between clauses

- Gadgets are structures in the target problem that can simulate structures in the source problem
- For example, in proof of 3SAT \leq_P CLIQUE
 - We replaced each variable with a node
 - We replaced each clause with 3 nodes (1 for each variable)
 - Edges capture independent variables between clauses

Vertex Covers

Given a graph G = (V, E), a <u>vertex cover</u> is a subset of the nodes $C \subseteq V$ s.t. each edge in E has an end-point in $\mathcal{U}_{\mathcal{L}}$

Vertex Cover Problem

$\mathsf{VERTEX}\mathsf{-}\mathsf{COVER} = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } \leq k \}$

Image: A matrix and a matrix

글 에 에 글 에 다

æ

Vertex Cover Problem

$$\mathsf{VERTEX}\mathsf{-}\mathsf{COVER} = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } \leq k \}$$

Goal: Prove that VC is \mathcal{NP} -Complete

< ∃⇒

э

Vertex Cover Problem

 $\mathsf{VERTEX}\mathsf{-}\mathsf{COVER} = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } \leq k \}$

- Goal: Prove that VC is \mathcal{NP} -Complete
 - **1** Show that $VC \in \mathcal{NP}$

Arkady Yerukhimovich

- 3 ▶

э

Vertex Cover Problem

 $\mathsf{VERTEX}\mathsf{-}\mathsf{COVER} = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } \leq k \}$

- Goal: Prove that VC is \mathcal{NP} -Complete
 - $\textcircled{9} \hspace{0.1 cm} \text{Show that} \hspace{0.1 cm} \mathsf{VC} \in \mathcal{NP}$
 - 2 Show that 3-SAT \leq_p VC

$3\text{-SAT} \leq_p VC$

Goal: Show reduction f from 3-SAT to VC s.t.

- if ϕ is satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has VC of size $\leq k$
- if ϕ is not satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has no VC of size $\leq k$

$3\text{-SAT} \leq_p VC$

Goal: Show reduction f from 3-SAT to VC s.t.

- if ϕ is satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has VC of size $\leq k$
- if ϕ is not satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has no VC of size $\leq k$

Variable gadget: For every variable x_1 , draw pair of nodes

Clause gadget: For every (3-term) clause draw a triangle

- For each variable need 1 node in cover
- For each triangle need at least 2 nodes
- Need to connect variables to clauses

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \land (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

- A satisfying assignment implies cover C, $|C| \le 2c + v$
- **2** No satisfying assignment implies smallest cover needs |C| > 2c + v

- **(**) A satisfying assignment implies cover C, $|C| \le 2c + v$
- **2** No satisfying assignment implies smallest cover needs |C| > 2c + v

 $\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee x_4)$

____April 11, 2024

< ∃⇒

< (17) × <

э

 $\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee x_4)$

• A satisfying assignment implies cover C, $|C| \leq 2c + v$

- ∢ ∃ →

< A > < B >

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \land (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

2

< 4³ ► <

- Gadgets are structures in the target problem that can simulate structures in the source problem
- For example, in proof of 3SAT \leq_P CLIQUE
 - We replaced each variable with a node
 - We replaced each clause with 3 nodes (1 for each variable)
 - Edges capture independent variables between clauses

- Gadgets are structures in the target problem that can simulate structures in the source problem
- For example, in proof of 3SAT \leq_P CLIQUE
 - We replaced each variable with a node
 - We replaced each clause with 3 nodes (1 for each variable)
 - Edges capture independent variables between clauses
- Similarly in proof of 3SAT \leq_P Vertex Cover

- Gadgets are structures in the target problem that can simulate structures in the source problem
- For example, in proof of 3SAT \leq_P CLIQUE
 - We replaced each variable with a node
 - We replaced each clause with 3 nodes (1 for each variable)
 - Edges capture independent variables between clauses
- Similarly in proof of 3SAT \leq_P Vertex Cover
 - We replaced each clause with a triangle and
 - each variable with a pair of nodes connected by an edge

1 Lecture 21 Review

2) More $\mathcal{NP} ext{-Complete}$ Problems

3 Graph Coloring

Arkady Yerukhimovich

4 co- \mathcal{NP}

Image: A matched block

æ

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0, 1, 2\}$ to all nodes, such that no edges have the same color on both ends.

Image: A matrix and a matrix

3 × < 3 ×

э

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0, 1, 2\}$ to all nodes, such that no edges have the same color on both ends.

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0, 1, 2\}$ to all nodes, such that no edges have the same color on both ends.

Goal: Prove than 3-Coloring is \mathcal{NP} -Complete
NAE-kSAT Problem

$$\begin{split} \mathsf{NAE-kSAT} &= \{ \langle \phi \rangle \quad | \quad \phi \text{ is in } k\text{-}\mathsf{CNF} \text{ and } \phi \text{ has a satisfying assignment s.t.} \\ &\quad \mathsf{each \ clause \ has \ at \ least \ one \ 0 \ and \ at \ least \ one \ 1 } \end{split}$$

∃ ► < ∃ ►

< 4 ₽ × <

э

NAE-kSAT Problem

NAE-kSAT = { $\langle \phi \rangle$ | ϕ is in *k*-CNF and ϕ has a satisfying assignment s.t. each clause has at least one 0 and at least one 1}

Definition:

 x is an NAE-assignment of φ if φ(x) = 1 and x does not assign all the same variables to any clause

NAE-kSAT Problem

NAE-kSAT = { $\langle \phi \rangle$ | ϕ is in *k*-CNF and ϕ has a satisfying assignment s.t. each clause has at least one 0 and at least one 1}

Definition:

 x is an NAE-assignment of φ if φ(x) = 1 and x does not assign all the same variables to any clause

Lemma: If x is NAE-assignment of ϕ then $\overline{\mathbf{x}}$ is NAE-assignment of ϕ

Proof:

- x must assign at least one 1 and at least one 0 to every clause
- \overline{x} must also have at least one 1 and one 0 in every clause
- This means every clause is satisfied, and ϕ is satisfied since it's CNF

Goal

Prove that NAE-3SAT is \mathcal{NP} -complete: 3SAT \leq_P NAE-3SAT

Arkady Yerukhimovich

Arkady Yerukhimovich

3

• We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'

- 3 ▶

< 1 k

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - $\bullet\,$ Note that this must hold for every clause of $\phi,\,\phi'$

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - $\bullet\,$ Note that this must hold for every clause of $\phi,\,\phi'$
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - $\bullet\,$ Note that this must hold for every clause of $\phi,\,\phi'$
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

 $(x_1 \lor x_2 \lor x_3) \to (x_1 \lor x_2 \lor x_3 \lor S)$

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - $\bullet\,$ Note that this must hold for every clause of $\phi,\,\phi'$
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$(x_1 \lor x_2 \lor x_3) \to (x_1 \lor x_2 \lor x_3 \lor S)$$

• Why this works:

April 11, 2024

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - $\bullet\,$ Note that this must hold for every clause of $\phi,\,\phi'$
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$(x_1 \lor x_2 \lor x_3) \to (x_1 \lor x_2 \lor x_3 \lor S)$$

• Why this works:

• (
$$\Rightarrow$$
) If ($x_1 \lor x_2 \lor x_3$) = 1

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - $\bullet\,$ Note that this must hold for every clause of $\phi,\,\phi'$
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$(x_1 \lor x_2 \lor x_3) \to (x_1 \lor x_2 \lor x_3 \lor S)$$

- Why this works:
 - (\Rightarrow) If $(x_1 \lor x_2 \lor x_3) = 1$ at least one $x_i = 1$, so $(x_1 \lor x_2 \lor x_3 \lor S) = 1$. Set S = 0 to make it NAE-assignment

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - $\bullet\,$ Note that this must hold for every clause of $\phi,\,\phi'$
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$(x_1 \lor x_2 \lor x_3) \to (x_1 \lor x_2 \lor x_3 \lor S)$$

- Why this works:
 - (\Rightarrow) If $(x_1 \lor x_2 \lor x_3) = 1$ at least one $x_i = 1$, so $(x_1 \lor x_2 \lor x_3 \lor S) = 1$. Set S = 0 to make it NAE-assignment
 - (\Leftarrow) If $(x_1 \lor x_2 \lor x_3 \lor S) = 1$

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - $\bullet\,$ Note that this must hold for every clause of $\phi,\,\phi'$
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$(x_1 \lor x_2 \lor x_3) \to (x_1 \lor x_2 \lor x_3 \lor S)$$

- Why this works:
 - (\Rightarrow) If $(x_1 \lor x_2 \lor x_3) = 1$ at least one $x_i = 1$, so $(x_1 \lor x_2 \lor x_3 \lor S) = 1$. Set S = 0 to make it NAE-assignment

• (
$$\Leftarrow$$
) If $(x_1 \lor x_2 \lor x_3 \lor S) = 1$

• If S = 0, then at least one $x_i = 1$, so $(x_1 \lor x_2 \lor x_3) = 1$

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - $\bullet\,$ Note that this must hold for every clause of $\phi,\,\phi'$
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$(x_1 \lor x_2 \lor x_3) \to (x_1 \lor x_2 \lor x_3 \lor S)$$

- Why this works:
 - (\Rightarrow) If $(x_1 \lor x_2 \lor x_3) = 1$ at least one $x_i = 1$, so $(x_1 \lor x_2 \lor x_3 \lor S) = 1$. Set S = 0 to make it NAE-assignment
 - (\Leftarrow) If $(x_1 \lor x_2 \lor x_3 \lor S) = 1$
 - If S = 0, then at least one $x_i = 1$, so $(x_1 \lor x_2 \lor x_3) = 1$
 - If S = 1, then $(\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor 0)$ is also NAE-assignment. So, $(\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) = 1$

Arkady Yerukhimovich

イロト イポト イヨト イヨト

3

 Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE

< 1 k

< ∃⇒

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses:

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses:

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses:

Why this works:

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses:

- Why this works:
 - (\Leftarrow) If $(x_1 \lor x_2 \lor z_i)$ and $(x_3 \lor x_4 \lor \overline{z_i})$ are both NAE

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses:

- Why this works:
 - (\Leftarrow) If $(x_1 \lor x_2 \lor z_i)$ and $(x_3 \lor x_4 \lor \overline{z_i})$ are both NAE, then $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses:

- Why this works:
 - (\Leftarrow) If $(x_1 \lor x_2 \lor z_i)$ and $(x_3 \lor x_4 \lor \overline{z_i})$ are both NAE, then $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE • (\Rightarrow) If $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses:

- Why this works:
 - (\Leftarrow) If $(x_1 \lor x_2 \lor z_i)$ and $(x_3 \lor x_4 \lor \overline{z_i})$ are both NAE, then $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE • (\Rightarrow) If $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE
 - - If $x_1 \neq x_2$: Set $z_i = x_3$

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses:

- Why this works:
 - (\Leftarrow) If $(x_1 \lor x_2 \lor z_i)$ and $(x_3 \lor x_4 \lor \overline{z_i})$ are both NAE, then $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE
 - (\Rightarrow) If $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE
 - If $x_1 \neq x_2$: Set $z_i = x_3$
 - If $x_1 \neq x_3$: Set $z_i = x_3$

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses:

- Why this works:
 - (\Leftarrow) If $(x_1 \lor x_2 \lor z_i)$ and $(x_3 \lor x_4 \lor \overline{z_i})$ are both NAE, then $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE
 - (\Rightarrow) If $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE
 - If $x_1 \neq x_2$: Set $z_i = x_3$
 - If $x_1 \neq x_3$: Set $z_i = x_3$
 - If $x_1 \neq x_4$: Set $z_i = x_4$

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses:

- Why this works:
 - (\Leftarrow) If $(x_1 \lor x_2 \lor z_i)$ and $(x_3 \lor x_4 \lor \overline{z_i})$ are both NAE, then $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE
 - (\Rightarrow) If $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE
 - If $x_1 \neq x_2$: Set $z_i = x_3$
 - If $x_1 \neq x_3$: Set $z_i = x_3$
 - If $x_1 \neq x_4$: Set $z_i = x_4$

Theorem

 $3SAT \leq_P NAE-4SAT \leq_P NAE-3SAT$

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \land (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

イロト イヨト イヨト イヨト

3

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \land (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \land (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

____April 11, 2024

イロト イヨト イヨト イヨト

æ

• If ϕ is NAE-SAT, then not all variables are all 0 or all 1. So, enough colors to color clauses

Arkady Yerukhimovich

April 11, 2024

- If φ is NAE-SAT, then not all variables are all 0 or all 1. So, enough colors to color clauses
- **2** If G is 3-colorable, colors indicate a NAE-SAT assignment

Arkady Yerukhimovich

CS 3313 - Foundations of Computing
\bullet Many useful problems are $\mathcal{NP}\text{-}\mathsf{complete}$

- ∢ /⊐ >

문 🛌 🖻

- $\bullet\,$ Many useful problems are $\mathcal{NP}\text{-complete}$
- $\bullet\,$ But, as long as $\mathcal{P}\neq\mathcal{NP}$, these are hard

- $\bullet\,$ Many useful problems are $\mathcal{NP}\text{-complete}$
- But, as long as $\mathcal{P} \neq \mathcal{NP}$, these are hard
- Given a problem *L*, you should:

- $\bullet\,$ Many useful problems are $\mathcal{NP}\text{-complete}$
- But, as long as $\mathcal{P} \neq \mathcal{NP}$, these are hard
- Given a problem *L*, you should:
 - **1** Try to solve it $(L \in \mathcal{P})$

- $\bullet\,$ Many useful problems are $\mathcal{NP}\text{-complete}$
- $\bullet\,$ But, as long as $\mathcal{P}\neq\mathcal{NP}$, these are hard
- Given a problem *L*, you should:
 - **1** Try to solve it $(L \in \mathcal{P})$
 - **2** Try to prove \mathcal{NP} -complete

- $\bullet\,$ Many useful problems are $\mathcal{NP}\text{-}\mathsf{complete}$
- But, as long as $\mathcal{P} \neq \mathcal{NP}$, these are hard
- Given a problem *L*, you should:
 - **1** Try to solve it $(L \in \mathcal{P})$
 - **2** Try to prove \mathcal{NP} -complete
- But, you must be careful

- $\bullet\,$ Many useful problems are $\mathcal{NP}\text{-complete}$
- But, as long as $\mathcal{P} \neq \mathcal{NP}$, these are hard
- Given a problem *L*, you should:
 - **1** Try to solve it $(L \in \mathcal{P})$
 - **2** Try to prove \mathcal{NP} -complete
- But, you must be careful

3-Coloring is $\mathcal{NP}\text{-}\mathsf{complete}, \ \mathsf{but} \ 2\text{-}\mathsf{Coloring} \in \mathcal{P}$

1 Lecture 21 Review

2) More $\mathcal{NP} ext{-Complete}$ Problems

3 Graph Coloring

Arkady Yerukhimovich

æ

Question

Do all languages have poly-size proofs?

문 문 문

Question

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

$\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$

Question

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

$\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$

Problems like UNSAT are in co- \mathcal{NP}

э

$L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

Image: A matrix and a matrix

→ < ∃ →</p>

æ

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

æ

 \mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

co- \mathcal{NP}

 $L \in \text{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ for all w, V(x,w) = 0

2

 \mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

$\mathsf{co}\text{-}\mathcal{NP}$

 $L \in \text{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ for all w, V(x,w) = 0

Question:

Is
$$\mathcal{NP} = \text{co-}\mathcal{NP}$$
?

2

We can continue in this way to define more powerful classes of languages:

∃ →

We can continue in this way to define more powerful classes of languages:

Σ_2^p (Generalization of \mathcal{NP}

 $L \in \Sigma_2^{p}$ if there exists poly-time DTM V s.t. for $x \in L$, there exists a w_1 s.t. for all w_2 , $V(x, w_1, w_2) = 1$

 $\exists w_1 \forall w_2 \text{ s.t. } V(x, w_1, w_2) = 1$

We can continue in this way to define more powerful classes of languages:

Σ_2^p (Generalization of \mathcal{NP}

 $L \in \Sigma_2^{\rho}$ if there exists poly-time DTM V s.t. for $x \in L$, there exists a w_1 s.t. for all w_2 , $V(x, w_1, w_2) = 1$

 $\exists w_1 \forall w_2 \text{ s.t. } V(x, w_1, w_2) = 1$

Π_2^p (Generalization of co- \mathcal{NP})

 $L \in \Pi_2^p$ if there exists poly-time DTM V s.t. for $x \in L$, for all w_1 there exists w_2 s.t. $V(x, w_1, w_2) = 1$

$$\forall w_1 \exists w_2 \text{ s.t. } V(x, w_1, w_2) = 1$$

We can continue in this way to define more powerful classes of languages:

Σ_2^p (Generalization of \mathcal{NP}

 $L \in \Sigma_2^{\rho}$ if there exists poly-time DTM V s.t. for $x \in L$, there exists a w_1 s.t. for all w_2 , $V(x, w_1, w_2) = 1$

 $\exists w_1 \forall w_2 \text{ s.t. } V(x, w_1, w_2) = 1$

Π_2^p (Generalization of co- \mathcal{NP})

 $L \in \Pi_2^p$ if there exists poly-time DTM V s.t. for $x \in L$, for all w_1 there exists w_2 s.t. $V(x, w_1, w_2) = 1$

 $\forall w_1 \exists w_2 \text{ s.t. } V(x, w_1, w_2) = 1$

We believe that there are infinitely many levels of the polynomial hierarchy and that $\prod_{i}^{p} \neq \sum_{i}^{p}$ for i > 0, but can't prove it.

• There are many other complexity classes

< 4 ► >

문 🛌 🖻

- There are many other complexity classes
- We know some relationships between classes

∃ >

- There are many other complexity classes
- We know some relationships between classes
- But, most big questions (e.g., $\mathcal{P} = \mathcal{NP}$, $\mathcal{NP} = \text{co-}\mathcal{NP}$, does PH collapse) are still not known!!!

- There are many other complexity classes
- We know some relationships between classes
- But, most big questions (e.g., $\mathcal{P} = \mathcal{NP}$, $\mathcal{NP} = \text{co-}\mathcal{NP}$, does PH collapse) are still not known!!!

Complexity Zoo

The complexity zoo (https://complexityzoo.net/Complexity_Zoo) now has 546 complexity classes.