Foundations of Computing

Lecture 22

Arkady Yerukhimovich

April 11, 2024

Outline

(1) Lecture 21 Review

(2) More $\mathcal{N} \mathcal{P}$-Complete Problems

(3) Graph Coloring

(4) $\operatorname{co}-\mathcal{N P}$

Lecture 21 Review

- \mathcal{P} and $\mathcal{N} \mathcal{P}$
- Polynomial-Time Reductions
- $\mathcal{N} \mathcal{P}$-completeness of SAT

Outline

(1) Lecture 21 Review

(2) More $\mathcal{N} \mathcal{P}$-Complete Problems

(3) Graph Coloring

What We Already Know

(1) SAT is $\mathcal{N} \mathcal{P}$-complete
(2) 3 -SAT is $\mathcal{N} \mathcal{P}$-complete

$$
\left(\begin{array}{llll}
x_{1} & x_{2} \vee & x_{1}
\end{array}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right)
$$

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k\rangle$ where

1. CLique $\in N P$

$$
\omega=0 \quad 0
$$

00
2. 3SAT \leq clique

$3 S A T \leq_{p}$ CLIQUE

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k\rangle$ where - If ϕ is satisfiable, G has a clique of size k

3 SAT \leq_{p} CLIQUE

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k\rangle$ where
- If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k

3 SAT \leq_{p} CLIQUE

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k\rangle$ where
- If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$

$$
x_{1}=0 \quad x_{2}=1
$$

3 SAT \leq_{p} CLIQUE

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k\rangle$ where - If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$

3 SAT \leq_{p} CLIQUE

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k\rangle$ where
- If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$

- If ϕ is satisfiable then G has a k-clique

3 SAT \leq_{p} CLIQUE

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k\rangle$ where
- If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$

- If ϕ is satisfiable then G has a k-clique
- If G has a k-clique then ϕ is satisfiable

A Key Tool to Build Reductions

A Key Tool to Build Reductions

Gadgets

A Key Tool to Build Reductions

Gadgets

- Gadgets are structures in the target problem that can simulate structures in the source problem

A Key Tool to Build Reductions

Gadgets

- Gadgets are structures in the target problem that can simulate structures in the source problem
- For example, in proof of 3 SAT \leq_{P} CLIQUE
- We replaced each variable with a node
- We replaced each clause with 3 nodes (1 for each variable)
- Edges capture independent variables between clauses

A Key Tool to Build Reductions

Gadgets

- Gadgets are structures in the target problem that can simulate structures in the source problem
- For example, in proof of 3 SAT \leq_{P} CLIQUE
- We replaced each variable with a node
- We replaced each clause with 3 nodes (1 for each variable)
- Edges capture independent variables between clauses

Vertex Covers

Given a graph $G=(V, E)$, a vertex cover is a subset of the nodes $C \subseteq V$ s.t. each edge in E has an end-point in C

Vertex Cover Problem

Vertex Cover Problem

VERTEX-COVER $=\{\langle G, k\rangle \mid G$ has a vertex cover of size $\leq k\}$

Vertex Cover Problem

Vertex Cover Problem
 VERTEX-COVER $=\{\langle G, k\rangle \mid G$ has a vertex cover of size $\leq k\}$

Goal: Prove that VC is $\mathcal{N P}$-Complete

Vertex Cover Problem

Vertex Cover Problem

VERTEX-COVER $=\{\langle G, k\rangle \mid G$ has a vertex cover of size $\leq k\}$
Goal: Prove that VC is $\mathcal{N P}$-Complete
(1) Show that $\mathrm{VC} \in \mathcal{N} \mathcal{P}$

Vertex Cover Problem

Vertex Cover Problem

VERTEX-COVER $=\{\langle G, k\rangle \mid G$ has a vertex cover of size $\leq k\}$
Goal: Prove that VC is $\mathcal{N P}$-Complete
(1) Show that $\mathrm{VC} \in \mathcal{N P}$
(2) Show that $3-\mathrm{SAT} \leq_{p} \mathrm{VC}$

$3-\mathrm{SAT} \leq_{p} \mathrm{VC}$

Goal: Show reduction f from 3-SAT to VC s.t.

- if ϕ is satisfiable, $f(\phi)=\langle G, k\rangle$ s.t. G has VC of size $\leq k$
- if ϕ is not satisfiable, $f(\phi)=\langle G, k\rangle$ s.t. G has no VC of size $\leq k$

$3-\mathrm{SAT} \leq_{p} \mathrm{VC}$

Goal: Show reduction f from 3-SAT to VC s.t.

- if ϕ is satisfiable, $f(\phi)=\langle G, k\rangle$ s.t. G has VC of size $\leq k$
- if ϕ is not satisfiable, $f(\phi)=\langle G, k\rangle$ s.t. G has no VC of size $\leq k$

Variable gadget: For every variable x_{1}, draw pair of nodes

Clause gadget: For every (3-term) clause draw a triangle

Observations:

- For each variable need 1 node in cover
- For each triangle need at least 2 nodes
- Need to connect variables to clauses

3 -SAT \leq_{p} VC Example

$$
\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}\right)
$$

(1) A satisfying assignment implies cover $C,|C| \leq 2 c+v$
(2) No satisfying assignment implies smallest cover needs $|C|>2 c+v$

3 -SAT \leq_{p} VC Example

$$
\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}\right)
$$

(1) A satisfying assignment implies cover $C,|C| \leq 2 c+v$
(2) No satisfying assignment implies smallest cover needs $|C|>2 c+v$

3 -SAT \leq_{p} VC Example

$$
\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}\right)
$$

$$
-\quad-\quad-
$$

3 -SAT \leq_{p} VC Example

$$
\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}\right)
$$

(1) A satisfying assignment implies cover $C,|C| \leq 2 c+v$

3 -SAT \leq_{p} VC Example

$$
\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}\right)
$$

(2) No satisfying assignment implies smallest cover needs $|C|>2 c+v$

A Key Tool to Build Reductions

Gadgets

- Gadgets are structures in the target problem that can simulate structures in the source problem
- For example, in proof of 3 SAT \leq_{p} CLIQUE
- We replaced each variable with a node
- We replaced each clause with 3 nodes (1 for each variable)
- Edges capture independent variables between clauses

A Key Tool to Build Reductions

Gadgets

- Gadgets are structures in the target problem that can simulate structures in the source problem
- For example, in proof of 3 SAT \leq_{p} CLIQUE
- We replaced each variable with a node
- We replaced each clause with 3 nodes (1 for each variable)
- Edges capture independent variables between clauses
- Similarly in proof of 3SAT \leq_{P} Vertex Cover

A Key Tool to Build Reductions

Gadgets

- Gadgets are structures in the target problem that can simulate structures in the source problem
- For example, in proof of 3 SAT \leq_{p} CLIQUE
- We replaced each variable with a node
- We replaced each clause with 3 nodes (1 for each variable)
- Edges capture independent variables between clauses
- Similarly in proof of 3SAT \leq_{P} Vertex Cover
- We replaced each clause with a triangle and
- each variable with a pair of nodes connected by an edge

Outline

(1) Lecture 21 Review

(2) More $\mathcal{N} \mathcal{P}$-Complete Problems

(3) Graph Coloring

3-Coloring

Definition

An undirected graph G is 3 -colorable, if can assign colors $\{0,1,2\}$ to all nodes, such that no edges have the same color on both ends.

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0,1,2\}$ to all nodes, such that no edges have the same color on both ends.

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0,1,2\}$ to all nodes, such that no edges have the same color on both ends.

Goal: Prove than 3-Coloring is $\mathcal{N P}$-Complete

NAE-3SAT

NAE-kSAT Problem

NAE-kSAT $=\{\langle\phi\rangle \quad \mid \quad \phi$ is in $k-$ CNF and ϕ has a satisfying assignment s.t. each clause has at least one 0 and at least one 1$\}$

NAE-3SAT

NAE-kSAT Problem

NAE-kSAT $=\{\langle\phi\rangle \quad \mid \quad \phi$ is in $k-$ CNF and ϕ has a satisfying assignment s.t. each clause has at least one 0 and at least one 1$\}$

Definition:

- x is an NAE-assignment of ϕ if $\phi(x)=1$ and x does not assign all the same variables to any clause

NAE-3SAT

NAE-kSAT Problem

NAE-kSAT $=\{\langle\phi\rangle$ ϕ is in k-CNF and ϕ has a satisfying assignment s.t. each clause has at least one 0 and at least one 1$\}$

Definition:

- x is an NAE-assignment of ϕ if $\phi(x)=1$ and x does not assign all the same variables to any clause
Lemma: If x is NAE-assignment of ϕ then \bar{x} is NAE-assignment of ϕ Proof:
- x must assign at least one 1 and at least one 0 to every clause
- \bar{x} must also have at least one 1 and one 0 in every clause
- This means every clause is satisfied, and ϕ is satisfied since it's CNF

Goal

Prove that NAE-3SAT is $\mathcal{N} \mathcal{P}$-complete: 3 SAT \leq_{P} NAE-3SAT

3 SAT \leq_{p} NAE-4SAT

$3 S A T \leq_{p}$ NAE-4SAT

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ^{\prime}

3 SAT \leq_{p} NAE-4SAT

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ^{\prime}
- If ϕ is satisfiable, ϕ^{\prime} is NAE-satisfiable

3 SAT \leq_{P} NAE-4SAT

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ^{\prime}
- If ϕ is satisfiable, ϕ^{\prime} is NAE-satisfiable
- If ϕ^{\prime} is NAE-satisfiable, ϕ is satisfiable

3 SAT \leq_{P} NAE-4SAT

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ^{\prime}
- If ϕ is satisfiable, ϕ^{\prime} is NAE-satisfiable
- If ϕ^{\prime} is NAE-satisfiable, ϕ is satisfiable
- Note that this must hold for every clause of ϕ, ϕ^{\prime}

3 SAT \leq_{P} NAE-4SAT

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ^{\prime}
- If ϕ is satisfiable, ϕ^{\prime} is NAE-satisfiable
- If ϕ^{\prime} is NAE-satisfiable, ϕ is satisfiable
- Note that this must hold for every clause of ϕ, ϕ^{\prime}
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

3 SAT \leq_{P} NAE-4SAT

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ^{\prime}
- If ϕ is satisfiable, ϕ^{\prime} is NAE-satisfiable
- If ϕ^{\prime} is NAE-satisfiable, ϕ is satisfiable
- Note that this must hold for every clause of ϕ, ϕ^{\prime}
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \rightarrow\left(x_{1} \vee x_{2} \vee x_{3} \vee S\right)
$$

3 SAT \leq_{P} NAE-4SAT

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ^{\prime}
- If ϕ is satisfiable, ϕ^{\prime} is NAE-satisfiable
- If ϕ^{\prime} is NAE-satisfiable, ϕ is satisfiable
- Note that this must hold for every clause of ϕ, ϕ^{\prime}
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \rightarrow\left(x_{1} \vee x_{2} \vee x_{3} \vee S\right)
$$

- Why this works:

3 SAT \leq_{P} NAE-4SAT

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ^{\prime}
- If ϕ is satisfiable, ϕ^{\prime} is NAE-satisfiable
- If ϕ^{\prime} is NAE-satisfiable, ϕ is satisfiable
- Note that this must hold for every clause of ϕ, ϕ^{\prime}
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \rightarrow\left(x_{1} \vee x_{2} \vee x_{3} \vee S\right)
$$

- Why this works:
- (\Rightarrow) If $\left(x_{1} \vee x_{2} \vee x_{3}\right)=1$

3 SAT \leq_{P} NAE-4SAT

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ^{\prime}
- If ϕ is satisfiable, ϕ^{\prime} is NAE-satisfiable
- If ϕ^{\prime} is NAE-satisfiable, ϕ is satisfiable
- Note that this must hold for every clause of ϕ, ϕ^{\prime}
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \rightarrow\left(x_{1} \vee x_{2} \vee x_{3} \vee S\right)
$$

- Why this works:
- (\Rightarrow) If $\left(x_{1} \vee x_{2} \vee x_{3}\right)=1$ at least one $x_{i}=1$, so $\left(x_{1} \vee x_{2} \vee x_{3} \vee S\right)=1$. Set $S=0$ to make it NAE-assignment

3 SAT \leq_{P} NAE-4SAT

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ^{\prime}
- If ϕ is satisfiable, ϕ^{\prime} is NAE-satisfiable
- If ϕ^{\prime} is NAE-satisfiable, ϕ is satisfiable
- Note that this must hold for every clause of ϕ, ϕ^{\prime}
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \rightarrow\left(x_{1} \vee x_{2} \vee x_{3} \vee S\right)
$$

- Why this works:
- (\Rightarrow) If $\left(x_{1} \vee x_{2} \vee x_{3}\right)=1$ at least one $x_{i}=1$, so $\left(x_{1} \vee x_{2} \vee x_{3} \vee S\right)=1$. Set $S=0$ to make it NAE-assignment
- (\Leftarrow) If $\left(x_{1} \vee x_{2} \vee x_{3} \vee S\right)=1$

3 SAT \leq_{P} NAE-4SAT

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ^{\prime}
- If ϕ is satisfiable, ϕ^{\prime} is NAE-satisfiable
- If ϕ^{\prime} is NAE-satisfiable, ϕ is satisfiable
- Note that this must hold for every clause of ϕ, ϕ^{\prime}
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \rightarrow\left(x_{1} \vee x_{2} \vee x_{3} \vee S\right)
$$

- Why this works:
- (\Rightarrow) If $\left(x_{1} \vee x_{2} \vee x_{3}\right)=1$ at least one $x_{i}=1$, so $\left(x_{1} \vee x_{2} \vee x_{3} \vee S\right)=1$. Set $S=0$ to make it NAE-assignment
- (\Leftarrow) If $\left(x_{1} \vee x_{2} \vee x_{3} \vee S\right)=1$
- If $S=0$, then at least one $x_{i}=1$, so $\left(x_{1} \vee x_{2} \vee x_{3}\right)=1$

3 SAT \leq_{P} NAE-4SAT

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ^{\prime}
- If ϕ is satisfiable, ϕ^{\prime} is NAE-satisfiable
- If ϕ^{\prime} is NAE-satisfiable, ϕ is satisfiable
- Note that this must hold for every clause of ϕ, ϕ^{\prime}
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \rightarrow\left(x_{1} \vee x_{2} \vee x_{3} \vee S\right)
$$

- Why this works:
- (\Rightarrow) If $\left(x_{1} \vee x_{2} \vee x_{3}\right)=1$ at least one $x_{i}=1$, so $\left(x_{1} \vee x_{2} \vee x_{3} \vee S\right)=1$. Set $S=0$ to make it NAE-assignment
- (\Leftarrow) If $\left(x_{1} \vee x_{2} \vee x_{3} \vee S\right)=1$
- If $S=0$, then at least one $x_{i}=1$, so $\left(x_{1} \vee x_{2} \vee x_{3}\right)=1$
- If $S=1$, then ($\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee 0$) is also NAE-assignment. So,

$$
\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right)=1
$$

NAE-4SAT \leq_{p} NAE-3SAT

NAE-4SAT \leq_{P} NAE-3SAT

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE

NAE-4SAT \leq_{p} NAE-3SAT

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$

NAE-4SAT \leq_{p} NAE-3SAT

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with ($x_{1} \vee x_{2} \vee x_{3} \vee x_{4}$)
- We know that not all x_{i} have the same value

NAE-4SAT \leq_{p} NAE-3SAT

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$
- We know that not all x_{i} have the same value
- At least one of x_{i} is a 1 and one is a 0

NAE-4SAT \leq_{p} NAE-3SAT

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$
- We know that not all x_{i} have the same value
- At least one of x_{i} is a 1 and one is a 0
- Idea: Let's split the variables into two clauses:

NAE-4SAT \leq_{P} NAE-3SAT

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$
- We know that not all x_{i} have the same value
- At least one of x_{i} is a 1 and one is a 0
- Idea: Let's split the variables into two clauses:

$$
\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \rightarrow\left(x_{1} \vee x_{2} \vee z_{i}\right) \wedge\left(x_{3} \vee x_{4} \vee \overline{z_{i}}\right)
$$

NAE-4SAT \leq_{P} NAE-3SAT

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$
- We know that not all x_{i} have the same value
- At least one of x_{i} is a 1 and one is a 0
- Idea: Let's split the variables into two clauses:

$$
\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \rightarrow\left(x_{1} \vee x_{2} \vee z_{i}\right) \wedge\left(x_{3} \vee x_{4} \vee \overline{z_{i}}\right)
$$

- Why this works:

NAE-4SAT \leq_{P} NAE-3SAT

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$
- We know that not all x_{i} have the same value
- At least one of x_{i} is a 1 and one is a 0
- Idea: Let's split the variables into two clauses:

$$
\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \rightarrow\left(x_{1} \vee x_{2} \vee z_{i}\right) \wedge\left(x_{3} \vee x_{4} \vee \overline{z_{i}}\right)
$$

- Why this works:
- (\Leftarrow) If $\left(x_{1} \vee x_{2} \vee z_{i}\right)$ and $\left(x_{3} \vee x_{4} \vee \bar{z}_{i}\right)$ are both NAE

NAE-4SAT \leq_{P} NAE-3SAT

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$
- We know that not all x_{i} have the same value
- At least one of x_{i} is a 1 and one is a 0
- Idea: Let's split the variables into two clauses:

$$
\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \rightarrow\left(x_{1} \vee x_{2} \vee z_{i}\right) \wedge\left(x_{3} \vee x_{4} \vee \overline{z_{i}}\right)
$$

- Why this works:
- (\Leftarrow) If $\left(x_{1} \vee x_{2} \vee z_{i}\right)$ and $\left(x_{3} \vee x_{4} \vee \bar{z}_{i}\right)$ are both NAE, then $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$ is NAE

NAE-4SAT \leq_{P} NAE-3SAT

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$
- We know that not all x_{i} have the same value
- At least one of x_{i} is a 1 and one is a 0
- Idea: Let's split the variables into two clauses:

$$
\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \rightarrow\left(x_{1} \vee x_{2} \vee z_{i}\right) \wedge\left(x_{3} \vee x_{4} \vee \overline{z_{i}}\right)
$$

- Why this works:
- (\Leftarrow) If $\left(x_{1} \vee x_{2} \vee z_{i}\right)$ and $\left(x_{3} \vee x_{4} \vee \overline{z_{i}}\right)$ are both NAE, then $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$ is NAE
- (\Rightarrow) If $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$ is NAE

NAE-4SAT \leq_{P} NAE-3SAT

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$
- We know that not all x_{i} have the same value
- At least one of x_{i} is a 1 and one is a 0
- Idea: Let's split the variables into two clauses:

$$
\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \rightarrow\left(x_{1} \vee x_{2} \vee z_{i}\right) \wedge\left(x_{3} \vee x_{4} \vee \overline{z_{i}}\right)
$$

- Why this works:
- (\Leftarrow) If $\left(x_{1} \vee x_{2} \vee z_{i}\right)$ and $\left(x_{3} \vee x_{4} \vee \overline{z_{i}}\right)$ are both NAE, then $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$ is NAE
- (\Rightarrow) If $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$ is NAE
- If $x_{1} \neq x_{2}$: Set $z_{i}=x_{3}$

NAE-4SAT \leq_{P} NAE-3SAT

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$
- We know that not all x_{i} have the same value
- At least one of x_{i} is a 1 and one is a 0
- Idea: Let's split the variables into two clauses:

$$
\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \rightarrow\left(x_{1} \vee x_{2} \vee z_{i}\right) \wedge\left(x_{3} \vee x_{4} \vee \overline{z_{i}}\right)
$$

- Why this works:
- (\Leftarrow) If $\left(x_{1} \vee x_{2} \vee z_{i}\right)$ and $\left(x_{3} \vee x_{4} \vee \overline{z_{i}}\right)$ are both NAE, then $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$ is NAE
- (\Rightarrow) If $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$ is NAE
- If $x_{1} \neq x_{2}$: Set $z_{i}=x_{3}$
- If $x_{1} \neq x_{3}$: Set $z_{i}=x_{3}$

NAE-4SAT \leq_{P} NAE-3SAT

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$
- We know that not all x_{i} have the same value
- At least one of x_{i} is a 1 and one is a 0
- Idea: Let's split the variables into two clauses:

$$
\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \rightarrow\left(x_{1} \vee x_{2} \vee z_{i}\right) \wedge\left(x_{3} \vee x_{4} \vee \overline{z_{i}}\right)
$$

- Why this works:
- (\Leftarrow) If $\left(x_{1} \vee x_{2} \vee z_{i}\right)$ and $\left(x_{3} \vee x_{4} \vee \overline{z_{i}}\right)$ are both NAE, then $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$ is NAE
- (\Rightarrow) If $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$ is NAE
- If $x_{1} \neq x_{2}$: Set $z_{i}=x_{3}$
- If $x_{1} \neq x_{3}$: Set $z_{i}=x_{3}$
- If $x_{1} \neq x_{4}$: Set $z_{i}=x_{4}$

NAE-4SAT \leq_{p} NAE-3SAT

- Need a gadget to convert 4-CNF clause to CNF clauses that preserves NAE
- Observations: Starting with $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$
- We know that not all x_{i} have the same value
- At least one of x_{i} is a 1 and one is a 0
- Idea: Let's split the variables into two clauses:

$$
\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \rightarrow\left(x_{1} \vee x_{2} \vee z_{i}\right) \wedge\left(x_{3} \vee x_{4} \vee \overline{z_{i}}\right)
$$

- Why this works:
- (\Leftarrow) If $\left(x_{1} \vee x_{2} \vee z_{i}\right)$ and $\left(x_{3} \vee x_{4} \vee \overline{z_{i}}\right)$ are both NAE, then $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$ is NAE
- (\Rightarrow) If $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)$ is NAE
- If $x_{1} \neq x_{2}$: Set $z_{i}=x_{3}$
- If $x_{1} \neq x_{3}$: Set $z_{i}=x_{3}$
- If $x_{1} \neq x_{4}$: Set $z_{i}=x_{4}$

Theorem

3 SAT \leq_{P} NAE-4SAT \leq_{P} NAE-3SAT

NAE-3SAT $\leq_{p} 3$-Coloring

$$
\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}\right)
$$

NAE-3SAT $\leq_{p} 3$-Coloring

$$
\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}\right)
$$

NAE-3SAT $\leq_{p} 3$-Coloring

$$
\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}\right)
$$

NAE-3SAT \leq_{p} 3-Coloring

$$
\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}\right)
$$

(1) If ϕ is NAE-SAT, then not all variables are all 0 or all 1 . So, enough colors to color clauses

NAE-3SAT \leq_{p} 3-Coloring

$$
\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}\right)
$$

(1) If ϕ is NAE-SAT, then not all variables are all 0 or all 1 . So, enough colors to color clauses
(2) If G is 3-colorable, colors indicate a NAE-SAT assignment

Conclusions

- Many useful problems are $\mathcal{N} \mathcal{P}$-complete

Conclusions

- Many useful problems are $\mathcal{N P}$-complete
- But, as long as $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, these are hard

Conclusions

- Many useful problems are $\mathcal{N P}$-complete
- But, as long as $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, these are hard
- Given a problem L, you should:

Conclusions

- Many useful problems are $\mathcal{N P}$-complete
- But, as long as $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, these are hard
- Given a problem L, you should:
(1) Try to solve it $(L \in \mathcal{P})$

Conclusions

- Many useful problems are $\mathcal{N P}$-complete
- But, as long as $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, these are hard
- Given a problem L, you should:
(1) Try to solve it $(L \in \mathcal{P})$
(2) Try to prove $\mathcal{N} \mathcal{P}$-complete

Conclusions

- Many useful problems are $\mathcal{N P}$-complete
- But, as long as $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, these are hard
- Given a problem L, you should:
(1) Try to solve it $(L \in \mathcal{P})$
(2) Try to prove $\mathcal{N} \mathcal{P}$-complete
- But, you must be careful

Conclusions

- Many useful problems are $\mathcal{N P}$-complete
- But, as long as $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, these are hard
- Given a problem L, you should:
(1) Try to solve it $(L \in \mathcal{P})$
(2) Try to prove $\mathcal{N} \mathcal{P}$-complete
- But, you must be careful

3-Coloring is $\mathcal{N} \mathcal{P}$-complete, but 2-Coloring $\in \mathcal{P}$

Outline

(1) Lecture 21 Review

(2) More $\mathcal{N} \mathcal{P}$-Complete Problems

(3) Graph Coloring

(4) $\operatorname{co}-\mathcal{N} \mathcal{P}$

Are All Problems in $\mathcal{N} \mathcal{P}$?

Question
 Do all languages have poly-size proofs?

Are All Problems in $\mathcal{N} \mathcal{P}$?

Question

Do all languages have poly-size proofs?
Consider the following language: UNSAT

UNSAT $=\{\langle\phi\rangle \mid \phi$ is not satisfiable $\}$

Are All Problems in $\mathcal{N} \mathcal{P}$?

Question

Do all languages have poly-size proofs?
Consider the following language:

UNSAT

UNSAT $=\{\langle\phi\rangle \mid \phi$ is not satisfiable $\}$

Problems like UNSAT are in co- $\mathcal{N} \mathcal{P}$

$\mathcal{P}, \mathcal{N P}$ and co- $\mathcal{N P}$

Abstract

\mathcal{P} $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x)=[x \in L]$

$\mathcal{P}, \mathcal{N P}$ and co- $\mathcal{N} \mathcal{P}$

$L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x)=[x \in L]$

NP

$L \in \mathcal{N P}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. $V(x, w)=1$

$\mathcal{P}, \mathcal{N P}$ and co- $\mathcal{N P}$

\mathcal{P}

$L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x)=[x \in L]$

$\mathcal{N P}$

$L \in \mathcal{N P}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. $V(x, w)=1$

co- $\mathcal{N} \mathcal{P}$

$L \in \operatorname{co}-\mathcal{N P}$ if there exists poly-time DTM V s.t. for $x \in L$ for all w, $V(x, w)=0$

$\mathcal{P}, \mathcal{N P}$ and co- $\mathcal{N P}$

\mathcal{P}

$L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x)=[x \in L]$

\mathcal{N}

$L \in \mathcal{N P}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. $V(x, w)=1$

co- $\mathcal{N} \mathcal{P}$

$L \in \operatorname{co}-\mathcal{N P}$ if there exists poly-time DTM V s.t. for $x \in L$ for all w, $V(x, w)=0$

Question:

$$
\text { Is } \mathcal{N P}=\operatorname{co}-\mathcal{N} \mathcal{P} ?
$$

Polynomial Hierarchy (PH)

We can continue in this way to define more powerful classes of languages:

Polynomial Hierarchy (PH)

We can continue in this way to define more powerful classes of languages:

Σ_{2}^{p} (Generalization of $\mathcal{N P}$

$L \in \Sigma_{2}^{p}$ if there exists poly-time DTM V s.t. for $x \in L$, there exists a w_{1} s.t. for all $w_{2}, V\left(x, w_{1}, w_{2}\right)=1$

$$
\exists w_{1} \forall w_{2} \text { s.t. } V\left(x, w_{1}, w_{2}\right)=1
$$

Polynomial Hierarchy (PH)

We can continue in this way to define more powerful classes of languages:

\sum_{2}^{p} (Generalization of $\mathcal{N P}$

$L \in \Sigma_{2}^{p}$ if there exists poly-time DTM V s.t. for $x \in L$, there exists a w_{1} s.t. for all $w_{2}, V\left(x, w_{1}, w_{2}\right)=1$

$$
\exists w_{1} \forall w_{2} \text { s.t. } V\left(x, w_{1}, w_{2}\right)=1
$$

Π_{2}^{p} (Generalization of co- $\mathcal{N} \mathcal{P}$)

$L \in \Pi_{2}^{p}$ if there exists poly-time DTM V s.t. for $x \in L$, for all w_{1} there exists w_{2} s.t. $V\left(x, w_{1}, w_{2}\right)=1$

$$
\forall w_{1} \exists w_{2} \text { s.t. } V\left(x, w_{1}, w_{2}\right)=1
$$

Polynomial Hierarchy (PH)

We can continue in this way to define more powerful classes of languages:

\sum_{2}^{p} (Generalization of $\mathcal{N P}$

$L \in \Sigma_{2}^{p}$ if there exists poly-time DTM V s.t. for $x \in L$, there exists a w_{1} s.t. for all $w_{2}, V\left(x, w_{1}, w_{2}\right)=1$

$$
\exists w_{1} \forall w_{2} \text { s.t. } V\left(x, w_{1}, w_{2}\right)=1
$$

$\Pi_{2}^{p}($ Generalization of co- $\mathcal{N P}$)

$L \in \Pi_{2}^{p}$ if there exists poly-time DTM V s.t. for $x \in L$, for all w_{1} there exists w_{2} s.t. $V\left(x, w_{1}, w_{2}\right)=1$

$$
\forall w_{1} \exists w_{2} \text { s.t. } V\left(x, w_{1}, w_{2}\right)=1
$$

We believe that there are infinitely many levels of the polynomial hierarchy and that $\Pi_{i}^{p} \neq \sum_{i}^{p}$ for $i>0$, but can't prove it.

The Complexity Zoo

- There are many other complexity classes

The Complexity Zoo

- There are many other complexity classes
- We know some relationships between classes

The Complexity Zoo

- There are many other complexity classes
- We know some relationships between classes
- But, most big questions (e.g., $\mathcal{P}=\mathcal{N} \mathcal{P}, \mathcal{N} \mathcal{P}=\operatorname{co}-\mathcal{N} \mathcal{P}$, does PH collapse) are still not known!!!

The Complexity Zoo

- There are many other complexity classes
- We know some relationships between classes
- But, most big questions (e.g., $\mathcal{P}=\mathcal{N} \mathcal{P}, \mathcal{N} \mathcal{P}=\operatorname{co}-\mathcal{N} \mathcal{P}$, does PH collapse) are still not known!!!

Complexity Zoo

The complexity zoo (https://complexityzoo.net/Complexity_Zoo) now has 546 complexity classes.

