Foundations of Computing

Lecture 23

Arkady Yerukhimovich

April 16, 2024

Final Exam

Final exam will be on Tuesday, May 7, 10:20-12:20.

Outline

(1) Lecture 22 Review

(2) Graph Coloring

(3) $\mathcal{N P}$-Intermediate Languages

(4) $\operatorname{co}-\mathcal{N} \mathcal{P}$

Lecture 22 Review

- More $\mathcal{N} \mathcal{P}$-complete problems
- SAT
- 3SAT
- CLIQUE
- VERTEX-COVER

Outline

(1) Lecture 22 Review

(2) Graph Coloring

(3) $\mathcal{N} \mathcal{P}$-Intermediate Languages

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0,1,2\}$ to all nodes, such that no edges have the same color on both ends.

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0,1,2\}$ to all nodes, such that no edges have the same color on both ends.

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0,1,2\}$ to all nodes, such that no edges have the same color on both ends.

Goal: Prove than 3-Coloring is $\mathcal{N P}$-Complete

3-Coloring is $\mathcal{N P}$-Complete

(1) 3-Coloring $\in \mathcal{N P}$

3-Coloring is $\mathcal{N P}$-Complete

(1) 3-Coloring $\in \mathcal{N P}$
(2) 3-SAT \leq_{p} 3-Coloring:

3-Coloring is $\mathcal{N P}$-Complete

(1) 3-Coloring $\in \mathcal{N P}$
(2) 3-SAT \leq_{p} 3-Coloring:

Main Tool

We need gadgets

Clause Gadget

We have 3 colors: T, F, B

Claim

- If a, b, c are all colored F, then $a \vee b \vee c$ is colored F
- If at least one of a, b, c is colored T , then there is a coloring s.t.
$a \vee b \vee c$ is colored T

Variable Gadget

Goal: Need to color variables T or F

Variable Gadget

Goal: Need to color variables T or F

Variable Gadget

Goal: Need to color variables T or F

Variable Gadget

Goal: Need to color variables T or F

Putting it All Together

Putting it All Together

Claim

(1) If ϕ is satisfiable, G is 3-colorable

Putting it All Together

Claim

(1) If ϕ is satisfiable, G is 3 -colorable
(2) If G is 3 -colorable than ϕ is satisfiable

Outline

(1) Lecture 22 Review

(2) Graph Coloring

(3) $\mathcal{N} \mathcal{P}$-Intermediate Languages

Ladner's Theorem

- Recall that we know that $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$

Ladner's Theorem

- Recall that we know that $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$
- Suppose that $\mathcal{P} \neq \mathcal{N} \mathcal{P}$:

Ladner's Theorem

- Recall that we know that $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$
- Suppose that $\mathcal{P} \neq \mathcal{N} \mathcal{P}$:

Question: Are all languages either easy or very hard?

$$
\text { If then an } L \in N^{P} \text { sol }
$$

$$
L \notin P \quad \text { and }
$$

L is ad $N P$-couple

Ladner's Theorem

- Recall that we know that $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$
- Suppose that $\mathcal{P} \neq \mathcal{N} \mathcal{P}$:

Question: Are all languages either easy or very hard?
Math version: Is there an $L \in \mathcal{N} \mathcal{P}$, s.t. $L \notin \mathcal{P}$ and L is not $\mathcal{N} \mathcal{P}$-Complete?

Ladner's Theorem

If $\mathcal{P} \neq \mathcal{N} \mathcal{P}$ then there exists an $L \in \mathcal{N} \mathcal{P}$ s.t.
(1) $L \notin \mathcal{P}$, and
(2) L is not $\mathcal{N P}$-Complete

Ladner's Theorem

- Recall that we know that $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$
- Suppose that $\mathcal{P} \neq \mathcal{N} \mathcal{P}$:

Question: Are all languages either easy or very hard?
Math version: Is there an $L \in \mathcal{N} \mathcal{P}$, s.t. $L \notin \mathcal{P}$ and L is not $\mathcal{N} \mathcal{P}$-Complete?

Ladner's Theorem

If $\mathcal{P} \neq \mathcal{N} \mathcal{P}$ then there exists an $L \in \mathcal{N} \mathcal{P}$ s.t.
(1) $L \notin \mathcal{P}$, and
(2) L is not $\mathcal{N P}$-Complete

Comment: All languages useful for crypto are such $\mathcal{N} \mathcal{P}$-intermediate languages

Proof

A Useful Language

$$
S A T_{H}=\left\{\phi 01^{\underline{H}(n)}|\phi \in S A T, n=|\phi|\}\right.
$$

Proof

$$
\begin{aligned}
S A T_{H} & =\left\{\phi 01^{n^{c}}(\phi \in S A T,|\phi|=n\}\right. \\
n & +1+n^{c}
\end{aligned}
$$

A Useful Language

$$
S A T_{H}=\left\{\phi 01^{n H(n)}|\phi \in S A T, n=|\phi|\}\right.
$$

(1) If $H(n)=n$, then $S A T_{H} \in \mathcal{P}$
(2) If $H(n) \leq c$, then $S A T_{H}$ is $\mathcal{N P}$-Complete
(3) We will define H to be in between these two cases

$$
\begin{aligned}
& \text { sAT } \in P=3 \text { poly f. r. } M(x) \text { ray in } \\
& \text { tine } \leqslant f(|x|) \\
& |x|=n^{n}+n+1
\end{aligned}
$$

Defining $H(n)$

Let M_{1}, M_{2}, \ldots be an enumeration of all TM's (can do this since TM's are countable)
$H(n)$

- Smallest $i \leq \log \log n$ s.t. for all $x,|x| \leq \log n, M_{i}(x)$ halts in $i|x|^{i}$ steps and accepts iff $x \in S A T_{H}$
- If no such M_{i} exists, $H(n)=\log \log n$

Defining $H(n)$

Let M_{1}, M_{2}, \ldots be an enumeration of all TM's (can do this since TM's are countable)
$H(n)$

- Smallest $i \leq \log \log n$ s.t. for all $x,|x| \leq \log n, M_{i}(x)$ halts in $i|x|^{i}$ steps and accepts iff $x \in S A T_{H}$
- If no such M_{i} exists, $H(n)=\log \log n$
(1) $H(n)$ is computable since can enumerate all short x

Defining $H(n)$

Let M_{1}, M_{2}, \ldots be an enumeration of all TM's (can do this since TM's are countable)
$H(n)$

- Smallest $i \leq \log \log n$ s.t. for all $x,|x| \leq \log n, M_{i}(x)$ halts in $i|x|^{i}$ steps and accepts iff $x \in S A T_{H}$
- If no such M_{i} exists, $H(n)=\log \log n$
(1) $H(n)$ is computable since can enumerate all short x
(2) Claim: $S A T_{H} \in \mathcal{P}$ iff $H(n)<c$ for all n

Defining $H(n)$

Let M_{1}, M_{2}, \ldots be an enumeration of all TM's (can do this since TM's are countable)
$H(n)$

- Smallest $i \leq \log \log n$ s.t. for all $x,|x| \leq \log n, M_{i}(x)$ halts in $i|x|^{i}$ steps and accepts iff $x \in S A T_{H}$
- If no such M_{i} exists, $H(n)=\log \log n$
(1) $H(n)$ is computable since can enumerate all short x
(2) Claim: $S A T_{H} \in \mathcal{P}$ iff $H(n)<c$ for all n (\Rightarrow) By definition of \mathcal{P}, there is machine M_{k} that decides $S A T_{H}$ in $k n^{k}$ steps so $H(n)=k$

Defining $H(n)$

Let M_{1}, M_{2}, \ldots be an enumeration of all TM's (can do this since TM's are countable)
$H(n)$

- Smallest $i \leq \log \log n$ s.t. for all $x,|x| \leq \log n, M_{i}(x)$ halts in $i|x|^{i}$ steps and accepts iff $x \in S A T_{H}$
- If no such M_{i} exists, $H(n)=\log \log n$
(1) $H(n)$ is computable since can enumerate all short x
(2) Claim: $S A T_{H} \in \mathcal{P}$ iff $H(n)<c$ for all n (\Rightarrow) By definition of \mathcal{P}, there is machine M_{k} that decides $S A T_{H}$ in $k n^{k}$ steps so $H(n)=k$
(\Leftarrow) If $H(n)<c$, then there is infinitely long stretch where $H(x)=i$.
But, then M_{i} decides $S A T_{H}$.

Completing the proof

Claim

$S A T_{H} \in \mathcal{P}$ iff $H(n)<c$ for all n

Completing the proof

Claim

$S A T_{H} \in \mathcal{P}$ iff $H(n)<c$ for all n
(1) $S A T_{H} \notin \mathcal{P}$:

- Suppose it is in \mathcal{P}, then $H(n)<c$
- Can reduce any SAT formula to $S A T_{H}$ formula by padding with $H(n)$ 1s
- But, SAT is $\mathcal{N} \mathcal{P}$-Complete, contradiction!

Completing the proof

Claim

$S A T_{H} \in \mathcal{P}$ iff $H(n)<c$ for all n

(1) $S A T_{H} \notin \mathcal{P}$:

- Suppose it is in \mathcal{P}, then $H(n)<c$
- Can reduce any SAT formula to $S A T_{H}$ formula by padding with $H(n)$ 1s
- But, SAT is $\mathcal{N P}$-Complete, contradiction!
(2) $S A T_{H}$ is not $\mathcal{N P}$-Complete
- Assume it is, then $S A T \leq_{p} S A T_{H}$
- Reduction maps ψ of length n to $\phi 01^{\left.H^{(}()\right)}$of length n^{c}, but $H(n) \rightarrow \infty$ so this is super-poly in size of ϕ
- Hence $|\phi| \ll n$, so have reduced solving long formula to solving a much shorter one.
- Repeat this enough times to make $|\phi|=O(1)$ and solve.

Takeaway

If $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, then $\mathcal{N} \mathcal{P}$-intermediate languages exist!

Outline

(1) Lecture 22 Review
 (2) Graph Coloring

(3) $\mathcal{N} \mathcal{P}$-Intermediate Languages

(4) $\operatorname{co}-\mathcal{N P}$

Are All Problems in $\mathcal{N} \mathcal{P}$?

Question
 Do all languages have poly-size proofs?

Are All Problems in $\mathcal{N} \mathcal{P}$?

Question

Do all languages have poly-size proofs?
Consider the following language: UNSAT

UNSAT $=\{\langle\phi\rangle \mid \phi$ is not satisfiable $\}$

Are All Problems in $\mathcal{N} \mathcal{P}$?

Question

Do all languages have poly-size proofs?
Consider the following language:

UNSAT

UNSAT $=\{\langle\phi\rangle \mid \phi$ is not satisfiable $\}$

- For all possible assignments $w \in\{0,1\}^{|\phi|}, \phi(w)=0$

Are All Problems in $\mathcal{N} \mathcal{P}$?

Question

Do all languages have poly-size proofs?
Consider the following language:

UNSAT

UNSAT $=\{\langle\phi\rangle \mid \phi$ is not satisfiable $\}$

- For all possible assignments $w \in\{0,1\}^{|\phi|}, \phi(w)=0$
- Is this in $\mathcal{N P}$?

Are All Problems in $\mathcal{N} \mathcal{P}$?

Question

Do all languages have poly-size proofs?
Consider the following language:

UNSAT

UNSAT $=\{\langle\phi\rangle \mid \phi$ is not satisfiable $\}$

- For all possible assignments $w \in\{0,1\}^{|\phi|}, \phi(w)=0$
- Is this in $\mathcal{N} \mathcal{P}$?
- We define complexity class co- $\mathcal{N P}$ to contain all such languages that are complements of languages in $\mathcal{N P}$
Ф All $\phi,|\phi|=u \quad$ unsAT $=\Phi / S A T$

$\mathcal{P}, \mathcal{N P}$ and co- $\mathcal{N P}$

```
P
\(L \in \mathcal{P}\) if there exists poly-time DTM \(M\) s.t \(M(x)=[x \in L]\)
```


$\mathcal{P}, \mathcal{N P}$ and co- $\mathcal{N P}$

\mathcal{P}

$L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x)=[x \in L]$

NP

$L \in \mathcal{N P}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. $V(x, w)=1$

$\mathcal{P}, \mathcal{N P}$ and co- $\mathcal{N P}$

$L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x)=[x \in L]$

NP

$L \in \mathcal{N P}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. $V(x, w)=1$

co- $N \mathcal{P}$

$L \in \operatorname{co}-\mathcal{N P}$ if there exists poly-time DTM V s.t. for $x \in L$ for all w, $V(x, w)=0$

$\mathcal{P}, \mathcal{N P}$ and co- $\mathcal{N P}$

\mathcal{P}

$L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x)=[x \in L]$

NP

$L \in \mathcal{N P}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. $V(x, w)=1$

co- $N \mathcal{P}$

$L \in \operatorname{co-} \mathcal{N} \mathcal{P}$ if there exists poly-time DTM V s.t. for $x \in L$ for all w, $V(x, w)=0$

Question:
Can you prove that $x \in L$, when $L \in \operatorname{co}-\mathcal{N} \mathcal{P}$?

Proving that $x \in L$ for $L \in \operatorname{co}-\mathcal{N} \mathcal{P}$

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

Proving that $x \in L$ for $L \in \operatorname{co}-\mathcal{N P}$

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

- It is widely believed that there is no poly-size, efficiently verifiable proof w that you could give for UNSAT

Proving that $x \in L$ for $L \in \operatorname{co}-\mathcal{N P}$

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

- It is widely believed that there is no poly-size, efficiently verifiable proof w that you could give for UNSAT
- $\mathcal{N} \mathcal{P} \neq \operatorname{co}-\mathcal{N} \mathcal{P}$

The Complexity Zoo

- There are many other complexity classes

The Complexity Zoo

- There are many other complexity classes
- We know some relationships between classes

The Complexity Zoo

- There are many other complexity classes
- We know some relationships between classes
- But, most big questions (e.g., $\mathcal{P}=\mathcal{N} \mathcal{P}, \mathcal{N} \mathcal{P}=\operatorname{co}-\mathcal{N} \mathcal{P}$, etc.) are still not known!!!

The Complexity Zoo

- There are many other complexity classes
- We know some relationships between classes
- But, most big questions (e.g., $\mathcal{P}=\mathcal{N} \mathcal{P}, \mathcal{N} \mathcal{P}=\operatorname{co}-\mathcal{N} \mathcal{P}$, etc.) are still not known!!!

Complexity Zoo

The complexity zoo (https://complexityzoo.net/Complexity_Zoo) now has 547 complexity classes.

