Foundations of Computing Lecture 23

Arkady Yerukhimovich

April 16, 2024

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 16, 2024

∃ >

Final exam will be on Tuesday, May 7, 10:20-12:20.

< ∃⇒

Image: A matched black

1 Lecture 22 Review

2 Graph Coloring

 \bigcirc \mathcal{NP} -Intermediate Languages

4 co- \mathcal{NP}

▶ < ∃ >

$\bullet~\mbox{More}~\ensuremath{\mathcal{NP}}\xspace$ of the model o

- SAT
- 3SAT
- CLIQUE
- VERTEX-COVER

< 1 k

< ∃⇒

э

Arkady Yerukhimovich

3 \mathcal{NP} -Intermediate Languages

< ∃⇒

Image: A matched black

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0, 1, 2\}$ to all nodes, such that no edges have the same color on both ends.

Image: A matrix and a matrix

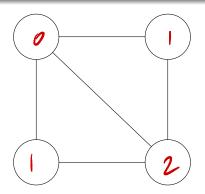
3 × < 3 ×

э

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0, 1, 2\}$ to all nodes, such that no edges have the same color on both ends.

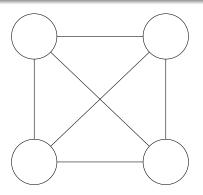


- 3 ▶

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0, 1, 2\}$ to all nodes, such that no edges have the same color on both ends.



Goal: Prove than 3-Coloring is \mathcal{NP} -Complete

$\textcircled{0} \ \textbf{3-Coloring} \in \mathcal{NP}$

Arkady Yerukhimovich

∃ ⇒

Image: A matched black

- **1** 3-Coloring $\in \mathcal{NP}$
- **2** 3-SAT \leq_p 3-Coloring:

< 4[™] >

→

э

- **1** 3-Coloring $\in \mathcal{NP}$
- **2** 3-SAT \leq_p 3-Coloring:

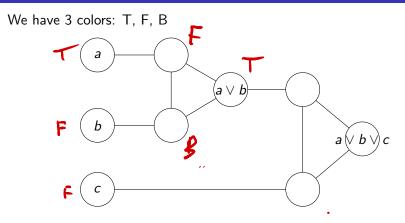
Main Tool

We need gadgets

(avivc) 1 (dvevf)

э

Clause Gadget



Claim

- If a, b, c are all colored F, then $a \lor b \lor c$ is colored F
- If at least one of a, b, c is colored T, then there is a coloring s.t. $a \lor b \lor c$ is colored T

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

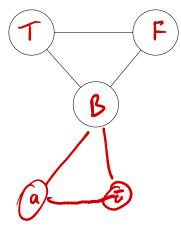
April 16, 2024

Arkady Yerukhimovich

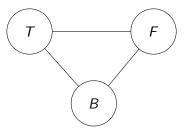
Goal: Need to color variables T or F

< ∃⇒

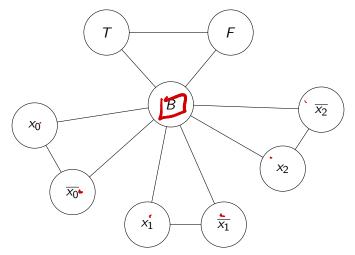
Goal: Need to color variables T or F



Goal: Need to color variables T or F



Goal: Need to color variables T or F

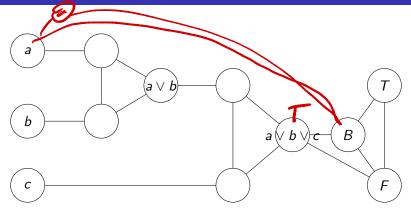


< □ > < 同 >

æ

< ∃⇒

Putting it All Together



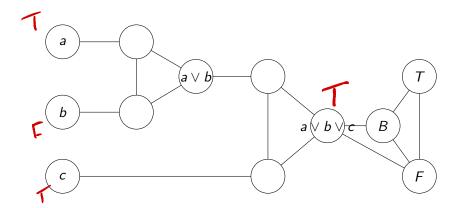
Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 16, 2024

ヨト・イヨト

Putting it All Together



Claim

1 If ϕ is satisfiable, *G* is 3-colorable

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 16, 2024

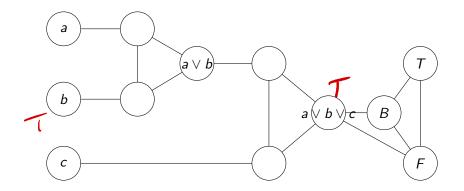
э

- (日)

11/22

э

Putting it All Together



Claim

- **1** If ϕ is satisfiable, *G* is 3-colorable
- **2** If G is 3-colorable than ϕ is satisfiable

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 16, 2024

Arkady Yerukhimovich

< 1 k

Arkady Yerukhimovich

 $\bullet\,$ Recall that we know that $\mathcal{P}\subseteq\mathcal{NP}$

Image: A matched black

- \bullet Recall that we know that $\mathcal{P}\subseteq\mathcal{NP}$
- Suppose that $\mathcal{P} \neq \mathcal{NP}$:

< 4[™] >

∃ ⇒

э

- Recall that we know that $\mathcal{P}\subseteq\mathcal{NP}$
- Suppose that $\mathcal{P} \neq \mathcal{NP}$:

Question: Are all languages either easy or very hard?

there an LENP s.L LEP and L is and NP - complete

< A > <

글 에 에 글 어

э

- Recall that we know that $\mathcal{P}\subseteq\mathcal{NP}$
- Suppose that $\mathcal{P} \neq \mathcal{NP}$:

Question: Are all languages either easy or very hard?

Math version: Is there an $L \in \mathcal{NP}$, s.t. $L \notin \mathcal{P}$ and L is not \mathcal{NP} -Complete?

Ladner's Theorem

- If $\mathcal{P} \neq \mathcal{NP}$ then there exists an $L \in \mathcal{NP}$ s.t.
 - $L \notin \mathcal{P}$, and
 - **2** *L* is not \mathcal{NP} -Complete

- Recall that we know that $\mathcal{P}\subseteq\mathcal{NP}$
- Suppose that $\mathcal{P} \neq \mathcal{NP}$:

Question: Are all languages either easy or very hard?

Math version: Is there an $L \in \mathcal{NP}$, s.t. $L \notin \mathcal{P}$ and L is not \mathcal{NP} -Complete?

Ladner's Theorem

- If $\mathcal{P} \neq \mathcal{NP}$ then there exists an $L \in \mathcal{NP}$ s.t.
 - $L \notin \mathcal{P}$, and
 - **2** *L* is not \mathcal{NP} -Complete

Comment: All languages useful for crypto are such $\mathcal{NP}\text{-}\textsc{intermediate}$ languages

April 16, 2024

< 4[™] >

→

Proof

$$SAT_{H} = 2001^{n^{c}} (0 esat 10)^{n^{c}}$$

A Useful Language

$$SAT_{H} = \{\phi 01^{n^{H(n)}} \mid \phi \in SAT, n = |\phi|\}$$

• If
$$H(n) = n$$
, then $SAT_H \in \mathcal{P}$

② If
$$H(n) \leq c$$
, then SAT_H is \mathcal{NP} -Complete

 \bigcirc We will define *H* to be in between these two cases

표 제 표

H(n)

- Smallest i ≤ log log n s.t. for all x, |x| ≤ log n, M_i(x) halts in i|x|ⁱ steps and accepts iff x ∈ SAT_H
- If no such M_i exists, $H(n) = \log \log n$

H(n)

- Smallest i ≤ log log n s.t. for all x, |x| ≤ log n, M_i(x) halts in i|x|ⁱ steps and accepts iff x ∈ SAT_H
- If no such M_i exists, $H(n) = \log \log n$
- H(n) is computable since can enumerate all short x

H(n)

- Smallest i ≤ log log n s.t. for all x, |x| ≤ log n, M_i(x) halts in i|x|ⁱ steps and accepts iff x ∈ SAT_H
- If no such M_i exists, $H(n) = \log \log n$
- H(n) is computable since can enumerate all short x
- **2** Claim: $SAT_H \in \mathcal{P}$ iff H(n) < c for all n

H(n)

- Smallest i ≤ log log n s.t. for all x, |x| ≤ log n, M_i(x) halts in i|x|ⁱ steps and accepts iff x ∈ SAT_H
- If no such M_i exists, $H(n) = \log \log n$
- H(n) is computable since can enumerate all short x
- Q Claim: SAT_H ∈ P iff H(n) < c for all n
 (⇒) By definition of P, there is machine M_k that decides SAT_H in kn^k steps so H(n) = k

15/22

H(n)

- Smallest i ≤ log log n s.t. for all x, |x| ≤ log n, M_i(x) halts in i|x|ⁱ steps and accepts iff x ∈ SAT_H
- If no such M_i exists, $H(n) = \log \log n$
- H(n) is computable since can enumerate all short x
- Claim: SAT_H ∈ P iff H(n) < c for all n
 (⇒) By definition of P, there is machine M_k that decides SAT_H in kn^k steps so H(n) = k
 (⇐) If H(n) < c, then there is infinitely long stretch where H(x) = i. But, then M_i decides SAT_H.

- 4 同 ト 4 三 ト - 4 三 ト - -

Completing the proof

Arkady Yerukhimovich

Claim

 $SAT_H \in \mathcal{P}$ iff H(n) < c for all n

★ ∃ >

< □ > < 同 >

Claim

 $SAT_H \in \mathcal{P}$ iff H(n) < c for all n

- SAT_H $\notin \mathcal{P}$:
 - Suppose it is in \mathcal{P} , then H(n) < c
 - Can reduce any SAT formula to SAT_H formula by padding with H(n) 1s
 - But, SAT is \mathcal{NP} -Complete, contradiction!

0 12

\$

Claim

 $SAT_H \in \mathcal{P}$ iff H(n) < c for all n

- **○** $SAT_H \notin \mathcal{P}$:
 - Suppose it is in \mathcal{P} , then H(n) < c
 - Can reduce any SAT formula to SAT_H formula by padding with H(n) 1s
 - But, SAT is NP-Complete, contradiction! 1001H(-1) 6nc
- 2 SAT_H is not \mathcal{NP} -Complete
 - Assume it is, then $SAT \leq_p SAT_H$
 - Reduction maps $\underline{\psi}$ of length n to $\phi 01^H$ of length n^c , but $H(n) \to \infty$ so this is super-poly in size of $\phi >$
 - Hence $|\phi| \ll n$, so have reduced solving long formula to solving a much shorter one.
 - Repeat this enough times to make $|\phi| = O(1)$ and solve.

If $\mathcal{P} \neq \mathcal{NP}$, then \mathcal{NP} -intermediate languages exist!

< 47 ▶

★ ∃ >

1 Lecture 22 Review

Arkady Yerukhimovich

2 Graph Coloring

③ NP-Intermediate Languages

æ

Do all languages have poly-size proofs?

3. 3

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

$\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$

< ∃⇒

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

 $\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$

• For all possible assignments $w \in \{0,1\}^{|\phi|}$, $\phi(w) = 0$

э

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

 $\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$

- For all possible assignments $w \in \{0,1\}^{|\phi|}$, $\phi(w) = 0$
- Is this in NP?

э

April 16, 2024

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

 $\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$

- For all possible assignments $w \in \{0,1\}^{|\phi|}$, $\phi(w) = 0$
- Is this in NP?
- We define complexity class co- \mathcal{NP} to contain all such languages that are complements of languages in \mathcal{NP}

$\mathcal P$, \mathcal{NP} and co- \mathcal{NP}

$L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

Image: Image:

∃ ⇒

æ

${\mathcal{P}}$, ${\mathcal{NP}}$ and co- ${\mathcal{NP}}$

$$L \in \mathcal{P}$$
 if there exists poly-time DTM *M* s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

< A > <

∃ ⇒

æ

$\mathcal P$, \mathcal{NP} and co- \mathcal{NP}

 \mathcal{P}

$$L \in \mathcal{P}$$
 if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

co- \mathcal{NP}

 $L \in \text{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ for all w, V(x,w) = 0

A ► <

2

$\mathcal P$, \mathcal{NP} and co- \mathcal{NP}

$$x \in \mathcal{P}$$
 if there exists poly-time DTM *M* s.t $M(x) = [x \in L]$

$\overline{\mathcal{NP}}$

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

co- \mathcal{NP}

 $L\in$ co- \mathcal{NP} if there exists poly-time DTM V s.t. for $x\in L$ for all w, V(x,w)=0

Question:

Can you prove that $x \in L$, when $L \in \text{co-}\mathcal{NP}$?

2

Proving that $x \in L$ for $L \in \text{co-}\mathcal{NP}$

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

.∋...>

Proving that $x \in L$ for $L \in \text{co-}\mathcal{NP}$

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

• It is widely believed that there is no poly-size, efficiently verifiable proof *w* that you could give for UNSAT

Proving that $x \in L$ for $L \in \text{co-}\mathcal{NP}$

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

- It is widely believed that there is no poly-size, efficiently verifiable proof *w* that you could give for UNSAT
- $\mathcal{NP} \neq \text{co-}\mathcal{NP}$

Arkady Yerukhimovich

• There are many other complexity classes

< 1 k

글▶ 글

- There are many other complexity classes
- We know some relationships between classes

- There are many other complexity classes
- We know some relationships between classes
- But, most big questions (e.g., $\mathcal{P} = \mathcal{NP}$, $\mathcal{NP} = \text{co-}\mathcal{NP}$, etc.) are still not known!!!

- There are many other complexity classes
- We know some relationships between classes
- But, most big questions (e.g., $\mathcal{P} = \mathcal{NP}$, $\mathcal{NP} = \text{co-}\mathcal{NP}$, etc.) are still not known!!!

Complexity Zoo

The complexity zoo (https://complexityzoo.net/Complexity_Zoo) now has 547 complexity classes.