
Foundations of Computing

Lecture 23

Arkady Yerukhimovich

April 16, 2024

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 16, 2024 1 / 22



Final Exam

Final exam will be on Tuesday, May 7, 10:20-12:20.
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Lecture 22 Review

More NP-complete problems
SAT
3SAT
CLIQUE
VERTEX-COVER
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3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors {0, 1, 2} to all
nodes, such that no edges have the same color on both ends.
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3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors {0, 1, 2} to all
nodes, such that no edges have the same color on both ends.

Goal: Prove than 3-Coloring is NP-Complete
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3-Coloring is NP-Complete

1 3-Coloring 2 NP

2 3-SAT p 3-Coloring:

Main Tool

We need gadgets

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 16, 2024 8 / 22



3-Coloring is NP-Complete

1 3-Coloring 2 NP
2 3-SAT p 3-Coloring:

Main Tool

We need gadgets

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 16, 2024 8 / 22



3-Coloring is NP-Complete

1 3-Coloring 2 NP
2 3-SAT p 3-Coloring:

Main Tool

We need gadgets

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 16, 2024 8 / 22

-

0 = (v v 2) 1(dve - f)



Clause Gadget

We have 3 colors: T, F, B

a

b

c

a _ b

a _ b _ c

Claim

If a, b, c are all colored F, then a _ b _ c is colored F

If at least one of a, b, c is colored T, then there is a coloring s.t.
a _ b _ c is colored T
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Variable Gadget

Goal: Need to color variables T or F

B

T F

x0

x0

x1 x1

x2

x2
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Variable Gadget
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Variable Gadget

Goal: Need to color variables T or F
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Putting it All Together

a

b

c

a _ b

a _ b _ c B

T

F

Claim

1 If � is satisfiable, G is 3-colorable

2 If G is 3-colorable than � is satisfiable
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Ladner’s Theorem

Recall that we know that P ✓ NP

Suppose that P 6= NP:

Question: Are all languages either easy or very hard?

Math version: Is there an L 2 NP, s.t. L /2 P and L is not
NP-Complete?

Ladner’s Theorem

If P 6= NP then there exists an L 2 NP s.t.

1 L /2 P, and

2 L is not NP-Complete

Comment: All languages useful for crypto are such NP-intermediate
languages
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Proof

A Useful Language

SATH = {�01nH(n) | � 2 SAT , n = |�|}

1 If H(n) = n, then SATH 2 P
2 If H(n)  c , then SATH is NP-Complete

3 We will define H to be in between these two cases
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Defining H(n)

Let M1,M2, . . . be an enumeration of all TM’s (can do this since TM’s are
countable)

H(n)

Smallest i  log log n s.t. for all x , |x |  log n, Mi (x) halts in i |x |i
steps and accepts i↵ x 2 SATH

If no such Mi exists, H(n) = log log n

1 H(n) is computable since can enumerate all short x

2 Claim: SATH 2 P i↵ H(n) < c for all n
()) By definition of P, there is machine Mk that decides SATH in
knk steps so H(n) = k
(() If H(n) < c , then there is infinitely long stretch where H(x) = i .
But, then Mi decides SATH .
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Completing the proof

Claim

SATH 2 P i↵ H(n) < c for all n

1 SATH /2 P:
Suppose it is in P, then H(n) < c
Can reduce any SAT formula to SATH formula by padding with H(n) 1s
But, SAT is NP-Complete, contradiction!

2 SATH is not NP-Complete
Assume it is, then SAT p SATH

Reduction maps  of length n to �01H(n) of length nc , but H(n) ! 1
so this is super-poly in size of �
Hence |�| << n, so have reduced solving long formula to solving a
much shorter one.
Repeat this enough times to make |�| = O(1) and solve.
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Takeaway

If P 6= NP , then NP-intermediate languages exist!
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Are All Problems in NP?

Question

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

UNSAT = {h�i | � is not satisfiable}

For all possible assignments w 2 {0, 1}|�|, �(w) = 0

Is this in NP?

We define complexity class co-NP to contain all such languages that
are complements of languages in NP
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P , NP and co-NP

P
L 2 P if there exists poly-time DTM M s.t M(x) = [x 2 L]

NP
L 2 NP if there exists poly-time DTM V s.t. for x 2 L there exists a
witness w s.t. V (x ,w) = 1

co-NP
L 2 co-NP if there exists poly-time DTM V s.t. for x 2 L for all w ,
V (x ,w) = 0

Question:

Can you prove that x 2 L, when L 2co-NP?
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Proving that x 2 L for L 2co-NP

The Problem

Suppose, I am given an input formula � and I want to prove that � is not
satisfiable.

It is widely believed that there is no poly-size, e�ciently verifiable
proof w that you could give for UNSAT

NP 6= co-NP
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The Complexity Zoo

There are many other complexity classes

We know some relationships between classes

But, most big questions (e.g., P = NP , NP = co-NP , etc.) are
still not known!!!

Complexity Zoo

The complexity zoo (https://complexityzoo.net/Complexity_Zoo)
now has 547 complexity classes.
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