Foundations of Computing Lecture 24

Arkady Yerukhimovich

April 18, 2024

Outline

- 1 Lecture 23 Review
- 2 Redefining Our Notion of Proof
- Interactive Proofs
- Polynomial Identity Testing

Lecture 23 Review

- ullet 3-Coloring is \mathcal{NP} -complete
- Ladner's Theorem
- ullet The class co- $\mathcal{N}\mathcal{P}$

\mathcal{NP} – Yes instances are efficiently verifiable

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

\mathcal{NP} – Yes instances are efficiently verifiable

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

co-NP – No instances are efficiently verifiable

 $L \in \text{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \notin L$ there exists a witness w s.t. V(x, w) = 1

\mathcal{NP} – Yes instances are efficiently verifiable

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

$co-\mathcal{NP}$ – No instances are efficiently verifiable

 $L \in \text{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \notin L$ there exists a witness w s.t. V(x, w) = 1

Comments:

- $L \in \text{co-}\mathcal{NP} \iff \overline{L} \in \mathcal{NP}$
- \bullet co- \mathcal{NP} contains the languages whose complement languages are in \mathcal{NP}

\mathcal{NP} – Yes instances are efficiently verifiable

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

$co-\mathcal{NP}$ – No instances are efficiently verifiable

 $L \in \text{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \notin L$ there exists a witness w s.t. V(x,w) = 1

Comments:

- $L \in \text{co-}\mathcal{NP} \iff \overline{L} \in \mathcal{NP}$
- \bullet co- \mathcal{NP} contains the languages whose complement languages are in \mathcal{NP}

Is $SAT \in \text{co-}\mathcal{NP}$?

Outline

- Lecture 23 Review
- Redefining Our Notion of Proof
- Interactive Proofs
- Polynomial Identity Testing

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement \boldsymbol{x}

• x is a satisfiable formula

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- ...

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- ...

New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- ...

New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

• A proof doesn't have to be a string

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- ...

New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

- A proof doesn't have to be a string
- Can be an interactive procedure

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- ...

New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

- A proof doesn't have to be a string
- Can be an interactive procedure
- The verifier (and prover) can use randomness to decide whether to accept

An Example – Aladdin's Cave

Question

We already know that all $L \in \mathcal{NP}$ have non-interactive proofs. Why study interactive ones?

Question

We already know that all $L \in \mathcal{NP}$ have non-interactive proofs. Why study interactive ones?

ullet Can give proofs for languages not in \mathcal{NP}

Question

We already know that all $L \in \mathcal{NP}$ have non-interactive proofs. Why study interactive ones?

- ullet Can give proofs for languages not in \mathcal{NP}
- Interactive proofs can be much more efficient (e.g., shorter) than non-interactive ones

Question

We already know that all $L \in \mathcal{NP}$ have non-interactive proofs. Why study interactive ones?

- ullet Can give proofs for languages not in \mathcal{NP}
- Interactive proofs can be much more efficient (e.g., shorter) than non-interactive ones
- Can have additional properties that traditional proofs cannot satisfy.
 - Zero-knowledge

Outline

- 1 Lecture 23 Review
- 2 Redefining Our Notion of Proof
- Interactive Proofs
- Polynomial Identity Testing

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P,V) with V being poly-time (in |x|) s.t.

① (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Examples:

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Examples:

• Aladdin's cave example from earlier

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Examples:

- Aladdin's cave example from earlier
- \bullet $\mathcal{P} \subset \mathcal{IP}$

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P,V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Examples:

- Aladdin's cave example from earlier
- $\mathcal{P} \subseteq \mathcal{IP}$
- $\mathcal{NP} \subset \mathcal{IP}$

Another Example – Graph Isomorphism

6

3

Another Example – Graph Isomorphism

Claim

Graph Isomorphism $\in \mathcal{IP}$

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

• V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- **1** V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- **3** V accepts if b' = b

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- **3** V accepts if b' = b

Why This Works:

1 (Completeness) Suppose that G_0 and G_1 are not isomorphic.

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G^* can only be isomorphic to one of the two graphs

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1
- ② (Soundness) Suppose that G_0 and G_1 are isomorphic

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1
- **②** (Soundness) Suppose that G_0 and G_1 are isomorphic
 - Then G^* is isomorphic to both G_0 and G_1

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1
- ② (Soundness) Suppose that G_0 and G_1 are isomorphic
 - Then G^* is isomorphic to both G_0 and G_1
 - P has no way to tell which one V started from

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1
- ② (Soundness) Suppose that G_0 and G_1 are isomorphic
 - Then G^* is isomorphic to both G_0 and G_1
 - P has no way to tell which one V started from
 - Thus, $\Pr[b'=b]=1/2$

 $\bullet \ \mathsf{GNI} \in \mathsf{co}\text{-}\mathcal{NP}$

- GNI $\in \text{co-}\mathcal{NP}$
- It is not believed that there is a short witness w s.t. $V((G_0, G_1), w) = 1$ if G_0 and G_1 are not isomorphic. I.e., $\mathsf{GNI} \notin \mathcal{NP}$

- GNI \in co- \mathcal{NP}
- It is not believed that there is a short witness w s.t. $V((G_0, G_1), w) = 1$ if G_0 and G_1 are not isomorphic. I.e., $\mathsf{GNI} \notin \mathcal{NP}$
- The power of interaction and randomness has allowed us to do what we couldn't do before

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

What if we don't want malicious prover to win so often?

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

What if we don't want malicious prover to win so often?

Soundness Amplification

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

What if we don't want malicious prover to win so often?

Soundness Amplification

• Run the proof *n* times sequentially on same input *x*, but different randomness

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

What if we don't want malicious prover to win so often?

Soundness Amplification

- Run the proof n times sequentially on same input x, but different randomness
- Accept if ALL proofs accept

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

What if we don't want malicious prover to win so often?

Soundness Amplification

- Run the proof n times sequentially on same input x, but different randomness
- Accept if ALL proofs accept
- **3** P^* wins with probability $\leq 1/2$ in each run, so

$$\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2^n$$

Outline

- 1 Lecture 23 Review
- 2 Redefining Our Notion of Proof
- Interactive Proofs
- Polynomial Identity Testing

Polynomial

A polynomial is an equation in one-variable

$$f(x) = x^3 - 6x^2 + 11x - 7 = (x - 1)(x - 2)(x - 3)$$

Polynomial

A polynomial is an equation in one-variable

$$f(x) = x^3 - 6x^2 + 11x - 7 = (x - 1)(x - 2)(x - 3)$$

Properties:

• A root of a polynomial f is a value x s.t. f(x) = 0

Polynomial

A polynomial is an equation in one-variable

$$f(x) = x^3 - 6x^2 + 11x - 7 = (x - 1)(x - 2)(x - 3)$$

Properties:

- A root of a polynomial f is a value x s.t. f(x) = 0
- The degree of a polynomial f(x) is the maximum exponent in f

Polynomial

A polynomial is an equation in one-variable

$$f(x) = x^3 - 6x^2 + 11x - 7 = (x - 1)(x - 2)(x - 3)$$

Properties:

- A root of a polynomial f is a value x s.t. f(x) = 0
- The degree of a polynomial f(x) is the maximum exponent in f
- A polynomial of degree d has at most d roots

Polynomial

A polynomial is an equation in one-variable

$$f(x) = x^3 - 6x^2 + 11x - 7 = (x - 1)(x - 2)(x - 3)$$

Properties:

- A root of a polynomial f is a value x s.t. f(x) = 0
- The degree of a polynomial f(x) is the maximum exponent in f
- A polynomial of degree d has at most d roots
 - unless f(x) = 0

PIT Problem

• Prover P chooses a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

PIT Problem

Prover P chooses a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

- Completeness: If f(x) = 0, V should accept after interacting with P
- Soundness: If $f(x) \neq 0$, V should reject*

PIT Problem

Prover P chooses a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

- Completeness: If f(x) = 0, V should accept after interacting with P
- Soundness: If $f(x) \neq 0$, V should reject*

The rules:

• V is allowed to query f(x) at points x of its choice

PIT Problem

Prover P chooses a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

- Completeness: If f(x) = 0, V should accept after interacting with P
- Soundness: If $f(x) \neq 0$, V should reject*

The rules:

- V is allowed to query f(x) at points x of its choice
- P is required to answer honestly, but

PIT Problem

Prover P chooses a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

- Completeness: If f(x) = 0, V should accept after interacting with P
- Soundness: If $f(x) \neq 0$, V should reject*

The rules:

- V is allowed to query f(x) at points x of its choice
- P is required to answer honestly, but
- P knows V's strategy (i.e., how he chooses the points x)

PIT Problem

Prover P chooses a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

- Completeness: If f(x) = 0, V should accept after interacting with P
- Soundness: If $f(x) \neq 0$, V should reject*

The rules:

- V is allowed to query f(x) at points x of its choice
- P is required to answer honestly, but
- P knows V's strategy (i.e., how he chooses the points x)

Question: What should V do? How many queries does he need?

PIT Problem

Prover P chooses a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

- Completeness: If f(x) = 0, V should accept after interacting with P
- Soundness: If $f(x) \neq 0$, V should reject*

The rules:

- V is allowed to query f(x) at points x of its choice
- P is required to answer honestly, but
- P knows V's strategy (i.e., how he chooses the points x)

Question: What should V do? How many queries does he need?

- Suppose that *V* is deterministic.
- What if you allow *V* to be randomized?

ullet By allowing V to be randomized we went from d+1 queries to 1 query

- ullet By allowing V to be randomized we went from d+1 queries to 1 query
- We have strong evidence that derandomizing PIT will be very hard –
 it implies strong complexity results that we have no idea how to prove

- ullet By allowing V to be randomized we went from d+1 queries to 1 query
- We have strong evidence that derandomizing PIT will be very hard –
 it implies strong complexity results that we have no idea how to prove

Take away

Randomness and interaction are key to the power of \mathcal{IP}

- ullet By allowing V to be randomized we went from d+1 queries to 1 query
- We have strong evidence that derandomizing PIT will be very hard –
 it implies strong complexity results that we have no idea how to prove

Take away'

Randomness and interaction are key to the power of \mathcal{IP}

Next Week

We have seen the power of interactive proofs in convincing a verifier of the truth of some statement.

Question:

What does the verifier learn from seeing the proof?