Foundations of Computing

Lecture 24

Arkady Yerukhimovich

April 18, 2024

Outline

(1) Lecture 23 Review

(2) Redefining Our Notion of Proof

(3) Interactive Proofs

4 Polynomial Identity Testing

Lecture 23 Review

- 3-Coloring is $\mathcal{N} \mathcal{P}$-complete
- Ladner's Theorem
- The class co- $\mathcal{N} \mathcal{P}$

$\mathcal{N P}$ vs co- $\mathcal{N} \mathcal{P}$

$\mathcal{N P}$ - Yes instances are efficiently verifiable
$L \in \mathcal{N P}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. $V(x, w)=1$

$\mathcal{N P}$ vs co-NP

$\mathcal{N} \mathcal{P}$ - Yes instances are efficiently verifiable

$L \in \mathcal{N P}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. $V(x, w)=1$
co- $\mathcal{N} \mathcal{P}$ - No instances are efficiently verifiable
$L \in \operatorname{co}-\mathcal{N} \mathcal{P}$ if there exists poly-time DTM V s.t. for $x \notin L$ there exists a witness w s.t. $V(x, w)=1$

$\mathcal{N P}$ vs co-NP

$\mathcal{N} \mathcal{P}$ - Yes instances are efficiently verifiable

$L \in \mathcal{N P}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. $V(x, w)=1$
co- $\mathcal{N P}$ - No instances are efficiently verifiable
$L \in \operatorname{co}-\mathcal{N} \mathcal{P}$ if there exists poly-time DTM V s.t. for $x \notin L$ there exists a witness w s.t. $V(x, w)=1$

Comments:

- $L \in \operatorname{co}-\mathcal{N P} \Longleftrightarrow \bar{L} \in \mathcal{N P}$
- co- $\mathcal{N P}$ contains the languages whose complement languages are in $\mathcal{N} \mathcal{P}$

$\mathcal{N P}$ vs co-NP

$\mathcal{N} \mathcal{P}$ - Yes instances are efficiently verifiable

$L \in \mathcal{N P}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. $V(x, w)=1$
co- $\mathcal{N P}$ - No instances are efficiently verifiable
$L \in \operatorname{co}-\mathcal{N} \mathcal{P}$ if there exists poly-time DTM V s.t. for $x \notin L$ there exists a witness w s.t. $V(x, w)=1$

Comments:

- $L \in \operatorname{co}-\mathcal{N P} \Longleftrightarrow \bar{L} \in \mathcal{N P}$
- co- $\mathcal{N P}$ contains the languages whose complement languages are in $\mathcal{N} \mathcal{P}$

$$
\text { Is } S A T \in \operatorname{co}-\mathcal{N P} ?
$$

Outline

(1) Lecture 23 Review
(2) Redefining Our Notion of Proof
(3) Interactive Proofs

4 Polynomial Identity Testing

What is a Proof?

What is a Proof?

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

What is a Proof?

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula

What is a Proof?

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true

What is a Proof?

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- ...

What is a Proof?

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- ...

New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

What is a Proof?

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- ...

New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

- A proof doesn't have to be a string

What is a Proof?

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- ...

New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

- A proof doesn't have to be a string
- Can be an interactive procedure

What is a Proof?

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- ...

New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

- A proof doesn't have to be a string
- Can be an interactive procedure
- The verifier (and prover) can use randomness to decide whether to accept

An Example - Aladdin's Cave

Why Interactive Proofs?

Question

We already know that all $L \in \mathcal{N} \mathcal{P}$ have non-interactive proofs. Why study interactive ones?

Why Interactive Proofs?

Question

We already know that all $L \in \mathcal{N} \mathcal{P}$ have non-interactive proofs. Why study interactive ones?

- Can give proofs for languages not in $\mathcal{N} \mathcal{P}$

Why Interactive Proofs?

Question

We already know that all $L \in \mathcal{N} \mathcal{P}$ have non-interactive proofs. Why study interactive ones?

- Can give proofs for languages not in $\mathcal{N} \mathcal{P}$
- Interactive proofs can be much more efficient (e.g., shorter) than non-interactive ones

Why Interactive Proofs?

Question

We already know that all $L \in \mathcal{N} \mathcal{P}$ have non-interactive proofs. Why study interactive ones?

- Can give proofs for languages not in $\mathcal{N} \mathcal{P}$
- Interactive proofs can be much more efficient (e.g., shorter) than non-interactive ones
- Can have additional properties that traditional proofs cannot satisfy.
- Zero-knowledge

Outline

(1) Lecture 23 Review

(2) Redefining Our Notion of Proof

(3) Interactive Proofs

4 Polynomial Identity Testing

The Class $\mathcal{I P}$

Definition

$L \in \mathcal{I P}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in $|x|$) s.t.

The Class $\mathcal{I P}$

Definition

$L \in \mathcal{I P}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in $|x|$) s.t.
(1) (Completeness) If $x \in L$, then $\operatorname{Pr}[\langle P, V\rangle(x)=1]=1$

The Class $\mathcal{I P}$

Definition

$L \in \mathcal{I P}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in $|x|$) s.t.
(1) (Completeness) If $x \in L$, then $\operatorname{Pr}[\langle P, V\rangle(x)=1]=1$
(2) (Soundness) If $x \notin L$, then for any (possibly unbounded) P^{*}, we have $\operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle(x)=1\right] \leq 1 / 2$

The Class $\mathcal{I P}$

Definition

$L \in \mathcal{I P}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in $|x|$) s.t.
(1) (Completeness) If $x \in L$, then $\operatorname{Pr}[\langle P, V\rangle(x)=1]=1$
(2) (Soundness) If $x \notin L$, then for any (possibly unbounded) P^{*}, we have $\operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle(x)=1\right] \leq 1 / 2$

Examples:

The Class $\mathcal{I P}$

Definition

$L \in \mathcal{I P}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in $|x|$) s.t.
(1) (Completeness) If $x \in L$, then $\operatorname{Pr}[\langle P, V\rangle(x)=1]=1$
(2) (Soundness) If $x \notin L$, then for any (possibly unbounded) P^{*}, we have $\operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle(x)=1\right] \leq 1 / 2$

Examples:

- Aladdin's cave example from earlier

The Class $\mathcal{I P}$

Definition

$L \in \mathcal{I P}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in $|x|$) s.t.
(1) (Completeness) If $x \in L$, then $\operatorname{Pr}[\langle P, V\rangle(x)=1]=1$
(2) (Soundness) If $x \notin L$, then for any (possibly unbounded) P^{*}, we have $\operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle(x)=1\right] \leq 1 / 2$

Examples:

- Aladdin's cave example from earlier
- $\mathcal{P} \subseteq \mathcal{I P}$

The Class $\mathcal{I P}$

Definition

$L \in \mathcal{I P}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in $|x|$) s.t.
(1) (Completeness) If $x \in L$, then $\operatorname{Pr}[\langle P, V\rangle(x)=1]=1$
(2) (Soundness) If $x \notin L$, then for any (possibly unbounded) P^{*}, we have $\operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle(x)=1\right] \leq 1 / 2$

Examples:

- Aladdin's cave example from earlier
- $\mathcal{P} \subseteq \mathcal{I P}$
- $\mathcal{N P} \subseteq \mathcal{I P}$

Another Example - Graph Isomorphism

Another Example - Graph Isomorphism

Claim

Graph Isomorphism $\in \mathcal{I P}$

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic.

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic. - Then G^{*} can only be isomorphic to one of the two graphs

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic.

- Then G^{*} can only be isomorphic to one of the two graphs
- P can perfectly determine which one this is

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic.

- Then G^{*} can only be isomorphic to one of the two graphs
- P can perfectly determine which one this is
- So $\operatorname{Pr}\left[b^{\prime}=b\right]=1$

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic.

- Then G^{*} can only be isomorphic to one of the two graphs
- P can perfectly determine which one this is
- So $\operatorname{Pr}\left[b^{\prime}=b\right]=1$
(2) (Soundness) Suppose that G_{0} and G_{1} are isomorphic

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic.

- Then G^{*} can only be isomorphic to one of the two graphs
- P can perfectly determine which one this is
- So $\operatorname{Pr}\left[b^{\prime}=b\right]=1$
(2) (Soundness) Suppose that G_{0} and G_{1} are isomorphic
- Then G^{*} is isomorphic to both G_{0} and G_{1}

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic.

- Then G^{*} can only be isomorphic to one of the two graphs
- P can perfectly determine which one this is
- So $\operatorname{Pr}\left[b^{\prime}=b\right]=1$
(2) (Soundness) Suppose that G_{0} and G_{1} are isomorphic
- Then G^{*} is isomorphic to both G_{0} and G_{1}
- P has no way to tell which one V started from

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic.

- Then G^{*} can only be isomorphic to one of the two graphs
- P can perfectly determine which one this is
- So $\operatorname{Pr}\left[b^{\prime}=b\right]=1$
(2) (Soundness) Suppose that G_{0} and G_{1} are isomorphic
- Then G^{*} is isomorphic to both G_{0} and G_{1}
- P has no way to tell which one V started from
- Thus, $\operatorname{Pr}\left[b^{\prime}=b\right]=1 / 2$

Important Takeaways

Important Takeaways

- GNI $\in \operatorname{co}-\mathcal{N} \mathcal{P}$

Important Takeaways

- GNI $\in \operatorname{co}-\mathcal{N} \mathcal{P}$
- It is not believed that there is a short witness w s.t. $V\left(\left(G_{0}, G_{1}\right), w\right)=1$ if G_{0} and G_{1} are not isomorphic. l.e., GNI $\notin \mathcal{N} \mathcal{P}$

Important Takeaways

- GNI $\in \operatorname{co}-\mathcal{N} \mathcal{P}$
- It is not believed that there is a short witness w s.t. $V\left(\left(G_{0}, G_{1}\right), w\right)=1$ if G_{0} and G_{1} are not isomorphic. l.e., GNI $\notin \mathcal{N} \mathcal{P}$
- The power of interaction and randomness has allowed us to do what we couldn't do before

Boosting Soundness

So far, we defined soundness as:

$$
\operatorname{Pr}\left[\left\langle P^{*}, v\right\rangle(x)=1\right] \leq 1 / 2
$$

Boosting Soundness

So far, we defined soundness as:

$$
\operatorname{Pr}\left[\left\langle P^{*}, v\right\rangle(x)=1\right] \leq 1 / 2
$$

What if we don't want malicious prover to win so often?

Boosting Soundness

So far, we defined soundness as:

$$
\operatorname{Pr}\left[\left\langle P^{*}, v\right\rangle(x)=1\right] \leq 1 / 2
$$

What if we don't want malicious prover to win so often?

Soundness Amplification

Boosting Soundness

So far, we defined soundness as:

$$
\operatorname{Pr}\left[\left\langle P^{*}, v\right\rangle(x)=1\right] \leq 1 / 2
$$

What if we don't want malicious prover to win so often?

Soundness Amplification

(1) Run the proof n times sequentially on same input x, but different randomness

Boosting Soundness

So far, we defined soundness as:

$$
\operatorname{Pr}\left[\left\langle P^{*}, v\right\rangle(x)=1\right] \leq 1 / 2
$$

What if we don't want malicious prover to win so often?

Soundness Amplification

(1) Run the proof n times sequentially on same input x, but different randomness
(2) Accept if ALL proofs accept

Boosting Soundness

So far, we defined soundness as:

$$
\operatorname{Pr}\left[\left\langle P^{*}, v\right\rangle(x)=1\right] \leq 1 / 2
$$

What if we don't want malicious prover to win so often?

Soundness Amplification

(1) Run the proof n times sequentially on same input x, but different randomness
(2) Accept if ALL proofs accept
(3) P^{*} wins with probability $\leq 1 / 2$ in each run, so

$$
\operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle(x)=1\right] \leq 1 / 2^{n}
$$

Outline

(1) Lecture 23 Review

(2) Redefining Our Notion of Proof

(3) Interactive Proofs

4 Polynomial Identity Testing

Another Example - Polynomial Identity Testing

Polynomial

A polynomial is an equation in one-variable

$$
\begin{aligned}
f(x)= & x^{3}-6 x^{2}+11 x-7= \\
& (x-1)(x-2)(x-3)
\end{aligned}
$$

Another Example - Polynomial Identity Testing

Polynomial

A polynomial is an equation in one-variable

$$
\begin{aligned}
f(x)= & x^{3}-6 x^{2}+11 x-7= \\
& (x-1)(x-2)(x-3)
\end{aligned}
$$

Properties:

- A root of a polynomial f is a value x s.t. $f(x)=0$

Another Example - Polynomial Identity Testing

Polynomial

A polynomial is an equation in one-variable

$$
\begin{aligned}
f(x)= & x^{3}-6 x^{2}+11 x-7= \\
& (x-1)(x-2)(x-3)
\end{aligned}
$$

Properties:

- A root of a polynomial f is a value x s.t. $f(x)=0$
- The degree of a polynomial $f(x)$ is the maximum exponent in f

Another Example - Polynomial Identity Testing

Polynomial

A polynomial is an equation in one-variable

$$
\begin{aligned}
f(x)= & x^{3}-6 x^{2}+11 x-7= \\
& (x-1)(x-2)(x-3)
\end{aligned}
$$

Properties:

- A root of a polynomial f is a value x s.t. $f(x)=0$
- The degree of a polynomial $f(x)$ is the maximum exponent in f
- A polynomial of degree d has at most d roots

Another Example - Polynomial Identity Testing

Polynomial

A polynomial is an equation in one-variable

$$
\begin{aligned}
f(x)= & x^{3}-6 x^{2}+11 x-7= \\
& (x-1)(x-2)(x-3)
\end{aligned}
$$

Properties:

- A root of a polynomial f is a value x s.t. $f(x)=0$
- The degree of a polynomial $f(x)$ is the maximum exponent in f
- A polynomial of degree d has at most d roots
- unless $f(x)=0$

Another Example - Polynomial Identity Testing

PIT Problem

Another Example - Polynomial Identity Testing

PIT Problem

- Prover P chooses a degree d polynomial f and wants to prove that

$$
\forall x, f(x)=0
$$

Another Example - Polynomial Identity Testing

PIT Problem

- Prover P chooses a degree d polynomial f and wants to prove that

$$
\forall x, f(x)=0
$$

- Completeness: If $f(x)=0, V$ should accept after interacting with P
- Soundness: If $f(x) \neq 0, V$ should reject*

Another Example - Polynomial Identity Testing

PIT Problem

- Prover P chooses a degree d polynomial f and wants to prove that

$$
\forall x, f(x)=0
$$

- Completeness: If $f(x)=0, V$ should accept after interacting with P
- Soundness: If $f(x) \neq 0, V$ should reject*

The rules:

- V is allowed to query $f(x)$ at points x of its choice

Another Example - Polynomial Identity Testing

PIT Problem

- Prover P chooses a degree d polynomial f and wants to prove that

$$
\forall x, f(x)=0
$$

- Completeness: If $f(x)=0, V$ should accept after interacting with P
- Soundness: If $f(x) \neq 0, V$ should reject*

The rules:

- V is allowed to query $f(x)$ at points x of its choice
- P is required to answer honestly, but

Another Example - Polynomial Identity Testing

PIT Problem

- Prover P chooses a degree d polynomial f and wants to prove that

$$
\forall x, f(x)=0
$$

- Completeness: If $f(x)=0, V$ should accept after interacting with P
- Soundness: If $f(x) \neq 0, V$ should reject*

The rules:

- V is allowed to query $f(x)$ at points x of its choice
- P is required to answer honestly, but
- P knows V's strategy (i.e., how he chooses the points x)

Another Example - Polynomial Identity Testing

PIT Problem

- Prover P chooses a degree d polynomial f and wants to prove that

$$
\forall x, f(x)=0
$$

- Completeness: If $f(x)=0, V$ should accept after interacting with P
- Soundness: If $f(x) \neq 0, V$ should reject*

The rules:

- V is allowed to query $f(x)$ at points x of its choice
- P is required to answer honestly, but
- P knows V's strategy (i.e., how he chooses the points x)

Question: What should V do? How many queries does he need?

Another Example - Polynomial Identity Testing

PIT Problem

- Prover P chooses a degree d polynomial f and wants to prove that

$$
\forall x, f(x)=0
$$

- Completeness: If $f(x)=0, V$ should accept after interacting with P
- Soundness: If $f(x) \neq 0, V$ should reject*

The rules:

- V is allowed to query $f(x)$ at points x of its choice
- P is required to answer honestly, but
- P knows V's strategy (i.e., how he chooses the points x)

Question: What should V do? How many queries does he need?

- Suppose that V is deterministic.
- What if you allow V to be randomized?

The Power of Randomness in Interactive Proofs

- By allowing V to be randomized we went from $d+1$ queries to 1 query

The Power of Randomness in Interactive Proofs

- By allowing V to be randomized we went from $d+1$ queries to 1 query
- We have strong evidence that derandomizing PIT will be very hard it implies strong complexity results that we have no idea how to prove

The Power of Randomness in Interactive Proofs

- By allowing V to be randomized we went from $d+1$ queries to 1 query
- We have strong evidence that derandomizing PIT will be very hard it implies strong complexity results that we have no idea how to prove

Take away

Randomness and interaction are key to the power of $\mathcal{I P}$

The Power of Randomness in Interactive Proofs

- By allowing V to be randomized we went from $d+1$ queries to 1 query
- We have strong evidence that derandomizing PIT will be very hard it implies strong complexity results that we have no idea how to prove

Take away

Randomness and interaction are key to the power of $\mathcal{I P}$

Next Week

We have seen the power of interactive proofs in convincing a verifier of the truth of some statement.

Question:

What does the verifier learn from seeing the proof?

