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Lecture 23 Review

Vertex Cover is NP-complete

Ladner’s Theorem

The class co-NP
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NP vs co-NP

NP – Yes instances are e�ciently verifiable

L 2 NP if there exists poly-time DTM V s.t. for x 2 L there exists a
witness w s.t. V (x ,w) = 1

co-NP – No instances are e�ciently verifiable

L 2 co-NP if there exists poly-time DTM V s.t. for x /2 L there exists a
witness w s.t. V (x ,w) = 1

Comments:

L 2 co-NP () L 2 NP
co-NP contains the languages whose complement languages are in
NP

Is SAT 2 co-NP?
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What is a Proof?

Traditional Definition

A proof is a string that convinces us of the truth of some mathematical
statement x

x is a satisfiable formula

The Pythagorean Theorem is true

. . .

New Definition

A proof is any process at the end of which one party (the prover) can
convince the other party (the verifier) of the truth of some statement x

A proof doesn’t have to be a string

Can be an interactive procedure

The verifier (and prover) can use randomness to decide whether to
accept
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An Example – Aladdin’s Cave
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Why Interactive Proofs?

Question

We already know that all L 2 NP have non-interactive proofs. Why study
interactive ones?

Can give proofs for languages not in NP
Interactive proofs can be much more e�cient (e.g., shorter) than
non-interactive ones

Can have additional properties that traditional proofs cannot satisfy.
Zero-knowledge
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The Class IP

Definition

L 2 IP if there exist a pair of interactive algorithms (P ,V ) with V being
poly-time (in |x |) s.t.

1 (Completeness) If x 2 L, then Pr[hP ,V i(x) = 1] = 1

2 (Soundness) If x /2 L, then for any (possibly unbounded) P⇤, we have
Pr[hP⇤,V i(x) = 1]  1/2

Examples:

Aladdin’s cave example from earlier

P ✓ IP
NP ✓ IP
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Another Example – Graph Isomorphism

Claim

Graph Isomorphism 2 IP
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Graph Non-Isomorphism

Question

How can we prove that two graphs G0 and G1 are NOT isomorphic?

The Protocol:
1 V chooses b  {0, 1}, and applies a random permutation ⇡ to the

vertices of Gb and sends this graph G ⇤ to P
2 P determines if G ⇤ is isomorphic to G0 and sends b0 = 0 if so, or

b0 = 1 otherwise back to V
3 V accepts if b0 = b

Why This Works:
1 (Completeness) Suppose that G0 and G1 are not isomorphic.

Then G⇤ can only be isomorphic to one of the two graphs
P can perfectly determine which one this is
So Pr[b0 = b] = 1

2 (Soundness) Suppose that G0 and G1 are isomorphic
Then G⇤ is isomorphic to both G0 and G1

P has no way to tell which one V started from
Thus, Pr[b0 = b] = 1/2
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Important Takeaways

GNI 2 co-NP
It is not believed that there is a short witness w s.t.
V ((G0,G1),w) = 1 if G0 and G1 are not isomorphic.
I.e., GNI /2 NP
The power of interaction and randomness has allowed us to do what
we couldn’t do before
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Boosting Soundness

So far, we defined soundness as:

Pr[hP⇤, vi(x) = 1]  1/2

What if we don’t want malicious prover to win so often?

Soundness Amplification

1 Run the proof n times sequentially on same input x , but di↵erent
randomness

2 Accept if ALL proofs accept

3 P⇤ wins with probability  1/2 in each run, so

Pr[hP⇤,V i(x) = 1]  1/2n
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Another Example – Polynomial Identity Testing

Polynomial

A polynomial is an equation in one-variable

f (x) = x3 � 6x2 + 11x � 7 =

(x � 1)(x � 2)(x � 3)

Properties:

A root of a polynomial f is a value x s.t. f (x) = 0

The degree of a polynomial f (x) is the maximum exponent in f

A polynomial of degree d has at most d roots
unless f (x) = 0
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Another Example – Polynomial Identity Testing

PIT Problem

Prover P chooses a degree d polynomial f and wants to prove that

8x , f (x) = 0

Completeness: If f (x) = 0, V should accept after interacting with P

Soundness: If f (x) 6= 0, V should reject

The rules:

V is allowed to query f (x) at points x of its choice

P is required to answer honestly, but

P knows V ’s strategy (i.e., how he chooses the points x)

Question: What should V do? How many queries does he need?

Suppose that V is deterministic.

What if you allow V to be randomized?
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The Power of Randomness in Interactive Proofs

By allowing V to be randomized we went from d + 1 queries to 1
query

We have strong evidence that derandomizing PIT will be very hard –
it implies strong complexity results that we have no idea how to prove

Take away

Randomness and interaction are key to the power of IP
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Next Week

We have seen the power of interactive proofs in convincing a verifier of the
truth of some statement.

Question:

What does the verifier learn from seeing the proof?
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