## Foundations of Computing Lecture 24

Arkady Yerukhimovich

April 17, 2025

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 17, 2025

∃ >

## Lecture 23 Review

- 2 Redefining Our Notion of Proof
- 3 Interactive Proofs
- 4 Polynomial Identity Testing

< 4<sup>™</sup> ▶

< ∃⇒

- $\bullet$  Vertex Cover is  $\mathcal{NP}\text{-complete}$
- Ladner's Theorem
- $\bullet$  The class co- $\mathcal{NP}$

Arkady Yerukhimovich

< 1 k

3. 3

 $L \in \mathcal{NP}$  if there exists poly-time DTM V s.t. for  $x \in L$  there exists a witness w s.t. V(x, w) = 1

∃ ⇒

 $L \in \mathcal{NP}$  if there exists poly-time DTM V s.t. for  $x \in L$  there exists a witness w s.t. V(x, w) = 1

### co- $\mathcal{NP}$ – No instances are efficiently verifiable

 $L \in \text{co-}\mathcal{NP}$  if there exists poly-time DTM V s.t. for  $x \notin L$  there exists a witness w s.t. V(x, w) = 1

 $L \in \mathcal{NP}$  if there exists poly-time DTM V s.t. for  $x \in L$  there exists a witness w s.t. V(x, w) = 1

### co- $\mathcal{NP}$ – No instances are efficiently verifiable

 $L \in \text{co-}\mathcal{NP}$  if there exists poly-time DTM V s.t. for  $x \notin L$  there exists a witness w s.t. V(x, w) = 1

#### Comments:

• 
$$L \in \operatorname{co-}\mathcal{NP} \iff \overline{L} \in \mathcal{NP}$$

 $\bullet$  co- $\mathcal{NP}$  contains the languages whose complement languages are in  $\mathcal{NP}$ 

 $L \in \mathcal{NP}$  if there exists poly-time DTM V s.t. for  $x \in L$  there exists a witness w s.t. V(x, w) = 1

### co- $\mathcal{NP}$ – No instances are efficiently verifiable

 $L \in \text{co-}\mathcal{NP}$  if there exists poly-time DTM V s.t. for  $x \notin L$  there exists a witness w s.t. V(x, w) = 1

Comments:

• 
$$L \in \operatorname{co-}\mathcal{NP} \iff \overline{L} \in \mathcal{NP}$$

 $\bullet$  co- $\mathcal{NP}$  contains the languages whose complement languages are in  $\mathcal{NP}$ 

Is 
$$SAT \in \text{co-}\mathcal{NP}$$
?



## 2 Redefining Our Notion of Proof

- 3 Interactive Proofs
- 4 Polynomial Identity Testing

< 47 ▶

∃ →

Arkady Yerukhimovich

<ロト <問ト < 目ト < 目ト

3

## Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement  $\boldsymbol{x}$ 

## Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement  $\boldsymbol{x}$ 

• x is a satisfiable formula

## Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true

## Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement  $\boldsymbol{x}$ 

- x is a satisfiable formula
- The Pythagorean Theorem is true

• . . .

## Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- . . .

#### New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

## Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- . . .

#### New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

#### A proof doesn't have to be a string

## Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- . . .

#### New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

- A proof doesn't have to be a string
- Can be an interactive procedure

## Traditional Definition

A proof is a string that convinces us of the truth of some mathematical statement x

- x is a satisfiable formula
- The Pythagorean Theorem is true
- . . .

### New Definition

A proof is any process at the end of which one party (the prover) can convince the other party (the verifier) of the truth of some statement x

- A proof doesn't have to be a string
- Can be an interactive procedure
- The verifier (and prover) can use randomness to decide whether to accept

## An Example – Aladdin's Cave



Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 17, 2025

< 1 k

문 🛌 🖻

We already know that all  $L \in \mathcal{NP}$  have non-interactive proofs. Why study interactive ones?

We already know that all  $L \in \mathcal{NP}$  have non-interactive proofs. Why study interactive ones?

 $\bullet\,$  Can give proofs for languages not in  $\mathcal{NP}$ 

We already know that all  $L \in \mathcal{NP}$  have non-interactive proofs. Why study interactive ones?

- $\bullet\,$  Can give proofs for languages not in  $\mathcal{NP}$
- Interactive proofs can be much more efficient (e.g., shorter) than non-interactive ones

We already know that all  $L \in \mathcal{NP}$  have non-interactive proofs. Why study interactive ones?

- $\bullet\,$  Can give proofs for languages not in  $\mathcal{NP}$
- Interactive proofs can be much more efficient (e.g., shorter) than non-interactive ones
- Can have additional properties that traditional proofs cannot satisfy.
  - Zero-knowledge



- 2 Redefining Our Notion of Proof
- 3 Interactive Proofs
- Polynomial Identity Testing

< 47 ▶

< ∃⇒

 $L \in \mathcal{IP}$  if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- 3 ▶

 $L \in \mathcal{IP}$  if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

(Completeness) If  $x \in L$ , then  $\Pr[\langle P, V \rangle(x) = 1] = 1$ 

- 3 ▶

 $L \in \mathcal{IP}$  if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If  $x \in L$ , then  $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If  $x \notin L$ , then for any (possibly unbounded)  $P^*$ , we have  $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

-∢ ∃ ▶

 $L \in \mathcal{IP}$  if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If  $x \in L$ , then  $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If  $x \notin L$ , then for any (possibly unbounded)  $P^*$ , we have  $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Examples:

э

3 1 4 3 1

April 17, 2025

 $L \in \mathcal{IP}$  if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If  $x \in L$ , then  $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If  $x \notin L$ , then for any (possibly unbounded)  $P^*$ , we have  $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Examples:

• Aladdin's cave example from earlier

 $L \in \mathcal{IP}$  if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If  $x \in L$ , then  $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If  $x \notin L$ , then for any (possibly unbounded)  $P^*$ , we have  $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Examples:

- Aladdin's cave example from earlier
- $\mathcal{P} \subseteq \mathcal{IP}$

 $L \in \mathcal{IP}$  if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If  $x \in L$ , then  $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If  $x \notin L$ , then for any (possibly unbounded)  $P^*$ , we have  $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Examples:

- Aladdin's cave example from earlier
- $\mathcal{P} \subseteq \mathcal{IP}$
- $\mathcal{NP} \subseteq \mathcal{IP}$

## Another Example – Graph Isomorphism



< □ > < 同 >

э

< ∃⇒

## Another Example – Graph Isomorphism



#### Claim

Graph Isomorphism  $\in \mathcal{IP}$ 

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 17, 2025

< 47 ▶

< ∃⇒

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

< 4<sup>™</sup> ▶

< ∃⇒

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

< 1 k

### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P

### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses  $b \leftarrow \{0,1\}$ , and applies a random permutation  $\pi$  to the vertices of  $G_b$  and sends this graph  $G^*$  to P
- 2 P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- I V accepts if b' = b

Arkady Yerukhimovich

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses  $b \leftarrow \{0,1\}$ , and applies a random permutation  $\pi$  to the vertices of  $G_b$  and sends this graph  $G^*$  to P
- <sup>(2)</sup> *P* determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to *V*
- **3** *V* accepts if b' = b

Why This Works:

April 17, 2025

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **③** *V* accepts if b' = b

Why This Works:

**(**Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- 2 P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **③** *V* accepts if b' = b

- (Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.
  - Then  $G^*$  can only be isomorphic to one of the two graphs

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **③** *V* accepts if b' = b

- (Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.
  - Then  $G^*$  can only be isomorphic to one of the two graphs
  - P can perfectly determine which one this is

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **3** V accepts if b' = b

- (Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.
  - Then  $G^*$  can only be isomorphic to one of the two graphs
  - P can perfectly determine which one this is

• So 
$$\Pr[b' = b] = 1$$

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **③** *V* accepts if b' = b

- (Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.
  - Then  $G^*$  can only be isomorphic to one of the two graphs
  - P can perfectly determine which one this is
  - So  $\Pr[b' = b] = 1$
- **2** (Soundness) Suppose that  $G_0$  and  $G_1$  are isomorphic

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **3** V accepts if b' = b

- **(**Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.
  - Then  $G^*$  can only be isomorphic to one of the two graphs
  - P can perfectly determine which one this is
  - So  $\Pr[b' = b] = 1$
- **2** (Soundness) Suppose that  $G_0$  and  $G_1$  are isomorphic
  - $\bullet\,$  Then  $G^*$  is isomorphic to both  $G_0$  and  $G_1$

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **3** V accepts if b' = b

- (Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.
  - Then  $G^*$  can only be isomorphic to one of the two graphs
  - P can perfectly determine which one this is
  - So  $\Pr[b' = b] = 1$
- **2** (Soundness) Suppose that  $G_0$  and  $G_1$  are isomorphic
  - Then  $G^*$  is isomorphic to both  $G_0$  and  $G_1$
  - P has no way to tell which one V started from

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses  $b \leftarrow \{0,1\}$ , and applies a random permutation  $\pi$  to the vertices of  $G_b$  and sends this graph  $G^*$  to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **3** V accepts if b' = b

- **(**Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.
  - Then  $G^*$  can only be isomorphic to one of the two graphs
  - P can perfectly determine which one this is
  - So  $\Pr[b' = b] = 1$
- **2** (Soundness) Suppose that  $G_0$  and  $G_1$  are isomorphic
  - Then  $G^*$  is isomorphic to both  $G_0$  and  $G_1$
  - P has no way to tell which one V started from

• Thus, 
$$\Pr[b' = b] = 1/2$$

### Important Takeaways

Arkady Yerukhimovich

• • • • • • • •

→ < ∃ →</p>

æ

#### $\bullet \ \mathsf{GNI} \in \mathsf{co}\text{-}\mathcal{NP}$

Arkady Yerukhimovich

Image: A matrix and a matrix

æ

- $\mathsf{GNI} \in \mathsf{co-}\mathcal{NP}$
- It is not believed that there is a short witness w s.t.  $V((G_0, G_1), w) = 1$  if  $G_0$  and  $G_1$  are not isomorphic. I.e., GNI  $\notin NP$

- $\bullet \ \mathsf{GNI} \in \mathsf{co-}\mathcal{NP}$
- It is not believed that there is a short witness w s.t.  $V((G_0, G_1), w) = 1$  if  $G_0$  and  $G_1$  are not isomorphic. I.e., GNI  $\notin NP$
- The power of interaction and randomness has allowed us to do what we couldn't do before

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

< 47 ▶

표 제 표

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

What if we don't want malicious prover to win so often?

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

What if we don't want malicious prover to win so often?

Soundness Amplification

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

What if we don't want malicious prover to win so often?

#### Soundness Amplification

Run the proof n times sequentially on same input x, but different randomness

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

What if we don't want malicious prover to win so often?

#### Soundness Amplification

- Run the proof n times sequentially on same input x, but different randomness
- 2 Accept if ALL proofs accept

So far, we defined soundness as:

$$\Pr[\langle P^*, v \rangle(x) = 1] \le 1/2$$

What if we don't want malicious prover to win so often?

#### Soundness Amplification

- Run the proof n times sequentially on same input x, but different randomness
- Accept if ALL proofs accept
- **③**  $P^*$  wins with probability  $\leq 1/2$  in each run, so

 $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2^n$ 

#### Lecture 23 Review

- 2 Redefining Our Notion of Proof
- 3 Interactive Proofs



< 1 k

∃ →

#### Polynomial

A polynomial is an equation in one-variable

$$f(x) = \underbrace{x^3}_{(x-1)(x-2)(x-3)} - 6x^2 + 11x - 7 = (x-1)(x-2)(x-3)$$

#### Polynomial

A polynomial is an equation in one-variable

$$f(x) = x^3 - 6x^2 + 11x - 7 = (x - 1)(x - 2)(x - 3)$$

Properties:

• A root of a polynomial f is a value x s.t. f(x) = 0

#### Polynomial

A polynomial is an equation in one-variable

$$f(x) = x = 6x^{2} + 11x - 7 = (x - 1)(x - 2)(x - 3)$$

Properties:

- A root of a polynomial f is a value x s.t. f(x) = 0
- The degree of a polynomial f(x) is the maximum exponent in f

#### Polynomial

A polynomial is an equation in one-variable

$$f(x) = x^3 - 6x^2 + 11x - 7 = (x - 1)(x - 2)(x - 3)$$

Properties:

- A root of a polynomial f is a value x s.t. f(x) = 0
- The degree of a polynomial f(x) is the maximum exponent in f
- A polynomial of degree d has at most d roots

#### Polynomial

A polynomial is an equation in one-variable

$$f(x) = x^3 - 6x^2 + 11x - 7 = (x - 1)(x - 2)(x - 3)$$

Properties:

- A root of a polynomial f is a value x s.t. f(x) = 0
- The degree of a polynomial f(x) is the maximum exponent in f
- A polynomial of degree d has at most d roots
  - unless f(x) = 0

#### **PIT** Problem

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 17, 2025

3 N 3

### **PIT** Problem

• Prover P chooses a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

### **PIT** Problem

• Prover P chooses a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

• Completeness: If f(x) = 0, V should accept after interacting with P

• Soundness: If  $f(x) \neq 0$ , V should reject

### **PIT** Problem

• Prover P chooses a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

- Completeness: If f(x) = 0, V should accept after interacting with P
- Soundness: If  $f(x) \neq 0$ , V should reject

The rules:

• V is allowed to query f(x) at points x of its choice

### **PIT Problem**

• Prover P chooses a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

- Completeness: If f(x) = 0, V should accept after interacting with P
- Soundness: If  $f(x) \neq 0$ , V should reject

The rules:

- V is allowed to query f(x) at points x of its choice
- P is required to answer honestly, but

### **PIT Problem**

• Prover P chooses a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

- Completeness: If f(x) = 0, V should accept after interacting with P
- Soundness: If  $f(x) \neq 0$ , V should reject

The rules:

- V is allowed to query f(x) at points x of its choice
- P is required to answer honestly, but
- *P* knows *V*'s strategy (i.e., how he chooses the points *x*)

### **PIT Problem**

• Prover P chooses a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

- Completeness: If f(x) = 0, V should accept after interacting with P
- Soundness: If  $f(x) \neq 0$ , V should reject

The rules:

- V is allowed to query f(x) at points x of its choice
- P is required to answer honestly, but
- *P* knows *V*'s strategy (i.e., how he chooses the points *x*)

Question: What should V do? How many queries does he need?

### **PIT Problem**

• Prover P chooses a degree d polynomial f and wants to prove that

 $\forall x, f(x) = 0$ 

- Completeness: If f(x) = 0, V should accept after interacting with P
- Soundness: If  $f(x) \neq 0$ , V should reject

The rules:

- V is allowed to query f(x) at points x of its choice
- P is required to answer honestly, but
- *P* knows *V*'s strategy (i.e., how he chooses the points *x*)

Question: What should V do? How many queries does he need?

- Suppose that V is deterministic.
- What if you allow V to be randomized?

• By allowing V to be randomized we went from d + 1 queries to 1 query

- By allowing V to be randomized we went from d + 1 queries to 1 query
- We have strong evidence that derandomizing PIT will be very hard it implies strong complexity results that we have no idea how to prove
- By allowing V to be randomized we went from d + 1 queries to 1 query
- We have strong evidence that derandomizing PIT will be very hard it implies strong complexity results that we have no idea how to prove

## Take away

Randomness and interaction are key to the power of  $\mathcal{IP}$ 

- By allowing V to be randomized we went from d + 1 queries to 1 query
- We have strong evidence that derandomizing PIT will be very hard it implies strong complexity results that we have no idea how to prove

## Take away

Randomness and interaction are key to the power of  $\mathcal{IP}$ 

## Next Week

We have seen the power of interactive proofs in convincing a verifier of the truth of some statement.

## Question:

What does the verifier learn from seeing the proof?