Foundations of Computing Lecture 25

Arkady Yerukhimovich

April 23, 2024

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 23, 2024

∃ >

Lecture 24 Review

- 2 A New Goal for Proofs
- 3 Defining Knowledge
- 4 Examples of Zero-Knowledge Proofs
- 5 Zero-Knowledge on the Blockchain

-

- Interactive Proofs
- Proof for Graph Non-Isomorphism
- Polynomial Identity Testing

3 N 3

1 Lecture 24 Review

- 2 A New Goal for Proofs
 - 3 Defining Knowledge
- 4 Examples of Zero-Knowledge Proofs
- 5 Zero-Knowledge on the Blockchain

-

Definition of \mathcal{IP}

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

• (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$

- 3 ▶

Definition of \mathcal{IP}

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Definition of \mathcal{IP}

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

A New Property

We say that a proof is *zero-knowledge* if the verifier learns nothing (other than the truth of the statement) from seeing the proof.

э

An Example – Where's Waldo

CS 3313 - Foundations of Computing

ヨト・イヨト

æ

An Example

Arkady Yerukhimovich

∃ ⇒

æ

A Second Example – Puppy and Panda

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 23, 2024

2

• = •

1 Lecture 24 Review

2 A New Goal for Proofs

Optiming Knowledge

4 Examples of Zero-Knowledge Proofs

5 Zero-Knowledge on the Blockchain

What does it mean for a machine to know/learn something?

Image: A matrix and a matrix

3 × < 3 ×

æ

What does it mean for a machine to know/learn something?

Answer: A poly-time TM M "knows" x, if it can output x after an efficient computation.

→ ∃ →

What does it mean for a machine to know/learn something?

Answer: A poly-time TM M "knows" x, if it can output x after an efficient computation.

Question

What does it mean for a machine to learn nothing from a proof?

What does it mean for a machine to know/learn something?

Answer: A poly-time TM M "knows" x, if it can output x after an efficient computation.

Question

What does it mean for a machine to learn nothing from a proof?

Answer: Whatever it can (efficiently) compute after seeing the proof, it could have efficiently computed before seeing the proof.

Arkady Yerukhimovich

Consider an interactive proof between Prover (P) and Verifier (V): $\langle P, V \rangle(x)$

CS 3313 - Foundations of Computing

< 47 ▶

< ∃ >

э

Consider an interactive proof between Prover (P) and Verifier (V): $\langle P, V \rangle (x)$

Define V's view of this interaction by:

 $VIEW_V(\langle P, V \rangle(x))$

→ ∃ →

Consider an interactive proof between Prover (P) and Verifier (V): $\langle P, V \rangle(x)$

Define V's view of this interaction by:

 $VIEW_V(\langle P, V \rangle(x))$

This includes:

- V's randomness
- Any messages that V receives

Consider an interactive proof between Prover (P) and Verifier (V):

 $\langle P, V \rangle(x)$

Define V's view of this interaction by:

 $VIEW_V(\langle P, V \rangle(x))$

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proof

Consider an interactive proof between Prover (P) and Verifier (V):

 $\langle P, V \rangle(x)$

Define V's view of this interaction by:

 $VIEW_V(\langle P, V \rangle(x))$

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proof

A proof $\langle P, V \rangle(x)$ for a language L is zero-knowledge if

• For any (possibly malicious) poly-time verifier V^*

Consider an interactive proof between Prover (P) and Verifier (V):

 $\langle P, V \rangle(x)$

Define V's view of this interaction by:

 $VIEW_V(\langle P, V \rangle(x))$

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proof

- For any (possibly malicious) poly-time verifier V^*
- There exists a poly-time *Simulator S* s.t.

$$\forall x \in L, \qquad VIEW_{V^*}(\langle P, V^* \rangle(x)) = S(x)$$

Zero-Knowledge Proof

- For any (possibly malicious) poly-time verifier V^*
- There exists a poly-time *Simulator S* s.t.

$$\forall x \in L, \qquad VIEW_{V^*}(\langle P, V^* \rangle(x)) = S(x)$$

Zero-Knowledge Proof

A proof $\langle P, V \rangle(x)$ for a language L is zero-knowledge if

- For any (possibly malicious) poly-time verifier V^*
- There exists a poly-time *Simulator S* s.t.

$$\forall x \in L$$
, $VIEW_{V^*}(\langle P, V^* \rangle(x)) = S(x)$

• S(x) captures what V knows about x

Zero-Knowledge Proof

- For any (possibly malicious) poly-time verifier V^*
- There exists a poly-time *Simulator S* s.t.

$$\forall x \in L, \qquad VIEW_{V^*}(\langle P, V^* \rangle(x)) = S(x)$$

- S(x) captures what V knows about x
- If S can produce V's view in the proof, then this everything in this view is "known" to V before the proof.

Zero-Knowledge Proof

- For any (possibly malicious) poly-time verifier V^*
- There exists a poly-time *Simulator S* s.t.

$$\forall x \in L, \qquad VIEW_{V^*}(\langle P, V^* \rangle(x)) = S(x)$$

- S(x) captures what V knows about x
- If S can produce V's view in the proof, then this everything in this view is "known" to V before the proof.
- Thus, the proof is zero-knowledge: V learns nothing more than that $x \in L$

Zero-Knowledge Proof

- For any (possibly malicious) poly-time verifier V^*
- There exists a poly-time *Simulator S* s.t.

$$\forall x \in L$$
, $VIEW_{V^*}(\langle P, V^* \rangle(x)) = S(x)$

- S(x) captures what V knows about x
- If S can produce V's view in the proof, then this everything in this view is "known" to V before the proof.
- Thus, the proof is zero-knowledge: V learns nothing more than that $x \in L$
- IMPORTANT: *VIEW*^{*}_V and *S*(*x*) are both distributions, not values. So, equality is of distributions

- Lecture 24 Review
- 2 A New Goal for Proofs
- 3 Defining Knowledge
- 4 Examples of Zero-Knowledge Proofs
 - 5 Zero-Knowledge on the Blockchain

B b

Where's Waldo

Arkady Yerukhimovich

April 23, 2024

æ

∃ ⇒

Puppy and Panda

5 I throse flip/no file ontype the VIE ~, > (. i ., . . .)

< 日 > < 同 > < 回 > < 回 > < 回 > <

э

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

Image: A matrix

< ∃⇒

э

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

The Proof

< 1 k

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

The Proof

• P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

The Proof

- P chooses $b \leftarrow \{0, 1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- 2 V chooses $b' \leftarrow \{0,1\}$ and sends it to P

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

The Proof

- P chooses $b \leftarrow \{0, 1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- 2 V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- P sends V the permutation π' mapping $G_{b'}$ to H

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

Input: $x = (G_0, G_1)$ Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

The Proof

• P chooses $b \leftarrow \{0, 1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V

2 V chooses
$$b' \leftarrow \{0,1\}$$
 and sends it to P

• P sends V the permutation π' mapping $G_{b'}$ to H

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

• V accepts iff $H = \pi'(G_{b'})$

1

The Proof

- P chooses $b \leftarrow \{0, 1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- 2 V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **③** *P* sends *V* the permutation π' mapping $G_{b'}$ to *H*

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

• V accepts iff $H = \pi'(G_{b'})$

The Proof

- P chooses $b \leftarrow \{0, 1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- 2 V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **③** *P* sends *V* the permutation π' mapping $G_{b'}$ to *H*

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

• V accepts iff $H = \pi'(G_{b'})$

() Completeness: If $\pi(G_0) = G_1$, then π' correctly maps $G_{b'}$ to H

The Proof

- P chooses $b \leftarrow \{0, 1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- 2 V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **③** *P* sends *V* the permutation π' mapping $G_{b'}$ to *H*

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

• V accepts iff $H = \pi'(G_{b'})$

- **(**) Completeness: If $\pi(G_0) = G_1$, then π' correctly maps $G_{b'}$ to H
- 2 Soundness: Suppose G₀ is not isomorphic to G₁, so there is no such π. Then, if b ≠ b', there is no permutation that P can give that V will accept

The Proof

- P chooses $b \leftarrow \{0, 1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- 2 V chooses $b' \leftarrow \{0,1\}$ and sends it to P

③ *P* sends *V* the permutation π' mapping $G_{b'}$ to *H*

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

• V accepts iff $H = \pi'(G_{b'})$

The Proof

- P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- 2 V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **③** *P* sends *V* the permutation π' mapping $G_{b'}$ to *H*

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

• V accepts iff $H = \pi'(G_{b'})$

Zero-Knowledge

The Proof

- P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- 2 V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **③** *P* sends *V* the permutation π' mapping $G_{b'}$ to *H*

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

• V accepts iff $H = \pi'(G_{b'})$

Zero-Knowledge

We define simulator $S(G_0, G_1)$ as follows:

The Proof

- P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- 2 V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **③** *P* sends *V* the permutation π' mapping $G_{b'}$ to *H*

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

• V accepts iff $H = \pi'(G_{b'})$

Zero-Knowledge

We define simulator $S(G_0, G_1)$ as follows:

 $\textcircled{O} S \text{ chooses } b \leftarrow \{0,1\} \text{ and a random permutation } \sigma$

The Proof

- P chooses $b \leftarrow \{0, 1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- 2 V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **③** *P* sends *V* the permutation π' mapping $G_{b'}$ to *H*

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

• V accepts iff $H = \pi'(G_{b'})$

Zero-Knowledge

We define simulator $S(G_0, G_1)$ as follows:

- $\texttt{O} \hspace{0.1in} \textbf{S} \hspace{0.1in} \textbf{chooses} \hspace{0.1in} b \leftarrow \{0,1\} \hspace{0.1in} \textbf{and} \hspace{0.1in} \textbf{a} \hspace{0.1in} \textbf{random} \hspace{0.1in} \textbf{permutation} \hspace{0.1in} \sigma$
- Set $H = \sigma(G_b)$ and let $b' = V^*(G_0, G_1, H)$

The Proof

- P chooses $b \leftarrow \{0, 1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- 2 V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **③** *P* sends *V* the permutation π' mapping $G_{b'}$ to *H*

 $\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$

• V accepts iff $H = \pi'(G_{b'})$

Zero-Knowledge

We define simulator $S(G_0, G_1)$ as follows:

- $\textcircled{O} S \text{ chooses } b \leftarrow \{0,1\} \text{ and a random permutation } \sigma$
- 2 Set $H = \sigma(G_b)$ and let $b' = V^*(G_0, G_1, H)$
- So If b' = b, output (b', H, σ) . Otherwise, restart with new σ, b .

We define simulator $S(G_0, G_1)$ as follows:

- $\bullet S \text{ chooses } b \leftarrow \{0,1\} \text{ and a random permutation } \sigma$
- 2 Set $H = \sigma(G_b)$ and let $b' = V^*(G_0, G_1, H)$
- So If b' = b, output (b', H, σ) . Otherwise, restart with new σ, b .

< ∃ ►

э

We define simulator $S(G_0, G_1)$ as follows:

- $\bullet S \text{ chooses } b \leftarrow \{0,1\} \text{ and a random permutation } \sigma$
- 3 Set $H = \sigma(G_b)$ and let $b' = V^*(G_0, G_1, H)$
- So If b' = b, output (b', H, σ) . Otherwise, restart with new σ, b .

Observations:

- ₹ 🖬 🕨

э

We define simulator $S(G_0, G_1)$ as follows:

- $\bullet S \text{ chooses } b \leftarrow \{0,1\} \text{ and a random permutation } \sigma$
- 3 Set $H = \sigma(G_b)$ and let $b' = V^*(G_0, G_1, H)$
- So If b' = b, output (b', H, σ) . Otherwise, restart with new σ, b .

Observations:

• If b' = b, then S's simulation is perfect.

We define simulator $S(G_0, G_1)$ as follows:

- $\bullet S \text{ chooses } b \leftarrow \{0,1\} \text{ and a random permutation } \sigma$
- Set $H = \sigma(G_b)$ and let $b' = V^*(G_0, G_1, H)$
- So If b' = b, output (b', H, σ) . Otherwise, restart with new σ, b .

Observations:

- If b' = b, then S's simulation is perfect.
- If G_0 and G_1 are isomorphic, then b' cannot depend on b

We define simulator $S(G_0, G_1)$ as follows:

- S chooses $b \leftarrow \{0,1\}$ and a random permutation σ
- Set $H = \sigma(G_b)$ and let $b' = V^*(G_0, G_1, H)$
- So If b' = b, output (b', H, σ) . Otherwise, restart with new σ, b .

Observations:

- If b' = b, then S's simulation is perfect.
- If G_0 and G_1 are isomorphic, then b' cannot depend on b
- So, b = b' with probability 1/2. Thus, S expected to stop after two rounds

< 回 > < 回 > < 回 >

We define simulator $S(G_0, G_1)$ as follows:

- $\bullet S \text{ chooses } b \leftarrow \{0,1\} \text{ and a random permutation } \sigma$
- Set $H = \sigma(G_b)$ and let $b' = V^*(G_0, G_1, H)$
- So If b' = b, output (b', H, σ) . Otherwise, restart with new σ, b .

Observations:

- If b' = b, then S's simulation is perfect.
- If G_0 and G_1 are isomorphic, then b' cannot depend on b
- So, b = b' with probability 1/2. Thus, S expected to stop after two rounds
- When S stops, he produces a perfect simulation

э

Graph 3-Coloring

<ロト <問ト < 目と < 目と

3

- 1 Lecture 24 Review
- 2 A New Goal for Proofs
- 3 Defining Knowledge
- 4 Examples of Zero-Knowledge Proofs
- 5 Zero-Knowledge on the Blockchain

∃ →

Zero-Knowledge (ZK) Proofs on the Blockchain

ZK proofs have found practical importance in critical Blockchain applications:

Blockchain Transactions in a Nutshell

 Blockchain consists of a sequence of "valid" transactions (e.g., Send 5 Bitcoins from Alice to Bob)

- Blockchain consists of a sequence of "valid" transactions (e.g., Send 5 Bitcoins from Alice to Bob)
- Miners need to be able to verify that transactions are valid

- Blockchain consists of a sequence of "valid" transactions (e.g., Send 5 Bitcoins from Alice to Bob)
- Miners need to be able to verify that transactions are valid
- Bitcoin does this by making the transactions public

- Blockchain consists of a sequence of "valid" transactions (e.g., Send 5 Bitcoins from Alice to Bob)
- Miners need to be able to verify that transactions are valid
- Bitcoin does this by making the transactions public
- But, what if we want to keep the details of our transaction secret?

Blockchain Transactions in a Nutshell

- Blockchain consists of a sequence of "valid" transactions (e.g., Send 5 Bitcoins from Alice to Bob)
- Miners need to be able to verify that transactions are valid
- Bitcoin does this by making the transactions public
- But, what if we want to keep the details of our transaction secret?

ZK Proofs enable privacy-preserving transactions on a public Blockchain!