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Lecture 24 Review

@ Interactive Proofs
@ Proof for Graph Non-Isomorphism

@ Polynomial Identity Testing
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© A New Goal for Proofs
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Reviewing the Definition of ZP

Definition of ZP

L € TP if there exist a pair of interactive algorithms (P, V) with V being
poly-time (in |x]|) s.t.

O (Completeness) If x € L, then Pr[(P,V)(x) =1] =1
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Reviewing the Definition of ZP

Definition of ZP

L € TP if there exist a pair of interactive algorithms (P, V) with V being
poly-time (in |x]|) s.t.

O (Completeness) If x € L, then Pr[(P,V)(x) =1] =1

@ (Soundness) If x ¢ L, then for any (possibly unbounded) P*, we have
Pr[(P*, V)(x) =1] < 1/2

A New Property

| \

We say that a proof is zero-knowledge if the verifier learns nothing (other
than the truth of the statement) from seeing the proof.

\
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An Example — Where's Waldo

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 23, 2024



An Example
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A Second Example — Puppy and Panda
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9 Defining Knowledge
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Defining Knowledge

What does it mean for a machine to know/learn something?
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Defining Knowledge

What does it mean for a machine to know/learn something?

Answer: A poly-time TM M "knows" x, if it can output x after an
efficient computation.
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Defining Knowledge

What does it mean for a machine to know/learn something?

Answer: A poly-time TM M "knows" x, if it can output x after an
efficient computation.

What does it mean for a machine to learn nothing from a proof? \
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Defining Knowledge

What does it mean for a machine to know/learn something?

Answer: A poly-time TM M "knows" x, if it can output x after an
efficient computation.

What does it mean for a machine to learn nothing from a proof?

Answer: Whatever it can (efficiently) compute after seeing the proof, it
could have efficiently computed before seeing the proof.
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Formalizing the Definition

Consider an interactive proof between Prover (P) and Verifier (V):

(P, V)(x)
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Consider an interactive proof between Prover (P) and Verifier (V):
(P, V)(x)
Define V's view of this interaction by:

VIEWy ((P, V)(x))
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Formalizing the Definition

Consider an interactive proof between Prover (P) and Verifier (V):

(P, V)(x)
Define V's view of this interaction by:
VIEWy ((P, V)(x))
This includes:

@ V'’s randomness

@ Any messages that V' receives
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Formalizing the Definition

Consider an interactive proof between Prover (P) and Verifier (V):
(P, V)(x)
Define V's view of this interaction by:
VIEWy ((P, V)(x))

This includes:
@ V's randomness
@ Any messages that V' receives

Zero-Knowledge Proof

A proof (P, V)(x) for a language L is zero-knowledge if

™7 mid = = PR
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Formalizing the Definition

Consider an interactive proof between Prover (P) and Verifier (V):
(P, V)(x)
Define V's view of this interaction by:
VIEWy ((P, V)(x))

This includes:
@ V's randomness
@ Any messages that V' receives

Zero-Knowledge Proof

A proof (P, V)(x) for a language L is zero-knowledge if
@ For any (possibly malicious) poly-time verifier V*

@ There exists a poly-time Simulator S s.t.

Vxel,  VIEWy({(P,V*)(x)) = S(x)

v

= — >yt
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Parsing the Definition

A proof (P, V)(x) for a language L is zero-knowledge if
@ For any (possibly malicious) poly-time verifier V*

@ There exists a poly-time Simulator S s.t.

Zero-Knowledge Proof

Vx €L, VIEWy«((P, V*)(x)) = S(x)
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Parsing the Definition

Zero-Knowledge Proof

A proof (P, V)(x) for a language L is zero-knowledge if

@ For any (possibly malicious) poly-time verifier V*

@ There exists a poly-time Simulator S s.t.

Vx €L, VIEWy«((P, V*)(x)) = S(x)

@ S(x) captures what V knows about x
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Parsing the Definition

Zero-Knowledge Proof

A proof (P, V)(x) for a language L is zero-knowledge if
@ For any (possibly malicious) poly-time verifier V*
@ There exists a poly-time Simulator S s.t.

Vx €L, VIEWy«((P, V*)(x)) = S(x) )

@ S(x) captures what V knows about x
@ If S can produce V's view in the proof, then this everything in this
view is “known" to V before the proof.
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Parsing the Definition

Zero-Knowledge Proof

A proof (P, V)(x) for a language L is zero-knowledge if
@ For any (possibly malicious) poly-time verifier V*

@ There exists a poly-time Simulator S s.t.

Vx €L, VIEWy«((P, V*)(x)) = S(x)

@ S(x) captures what V knows about x

@ If S can produce V's view in the proof, then this everything in this
view is “known" to V before the proof.

@ Thus, the proof is zero-knowledge: V' learns nothing more than that
xelL

o IMPORTANT: VIEW/, and S(x) are both distributions, not values.
So, equality is of distributions
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@ Examples of Zero-Knowledge Proofs
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Puppy and Panda
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Graph Isomorphism

Input: x = (Go, G1)
Prover's goal: Prove that he knows permutation 7 s.t. 7(Gp) = Gy
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Prover's goal: Prove that he knows permutation 7 s.t. 7(Gp) = Gy

The Proof
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Graph Isomorphism

Input: x = (Go, G1)
Prover's goal: Prove that he knows permutation 7 s.t. 7(Gp) = Gy

The Proof

© P chooses b < {0,1} and a random permutation o and sends
H = U(Gb) to V
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Graph Isomorphism

Input: x = (Go, G1)
Prover's goal: Prove that he knows permutation 7 s.t. 7(Gp) = Gy

The Proof

© P chooses b < {0,1} and a random permutation o and sends
H = U(Gb) to V

@ V chooses b’ + {0,1} and sends it to P

© P sends V the permutation 7’ mapping Gy to H

o if b=b
=< or 1 ifb=0b =
om ifb=1,b=0
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Graph Isomorphism

Input: x = (Go, G1)
Prover's goal: Prove that he knows permutation 7 s.t. 7(Gp) = Gy

The Proof
@ P chooses b < {0,1} and a random permutation ¢ and sends
H=0(Gp) to V . ¢
@ V chooses b’ + {0,1} and sends it to P ru !
© P sends V the permutation 7’ mapping Gy to H H
o if b="b

=< ol ifb=0b=1
om ifb=1,b=0

Q V accepts iff H=7'(Gy)
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Graph Isomorphism

@ P chooses b < {0,1} and a random permutation o and sends
H= (T(Gb) to V

@ V chooses b’ < {0,1} and sends it to P
© P sends V the permutation 7’ mapping G, to H

o if b=1»b
#={ ol ifb=0,b=1
om ifb=1,b/=0

Q V accepts iff H=7'(Gp)

The Proof
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Graph Isomorphism

@ P chooses b < {0,1} and a random permutation o and sends
H= (T(Gb) to V

@ V chooses b’ < {0,1} and sends it to P
© P sends V the permutation 7’ mapping G, to H
o if b=1»b
#={ ol ifb=0,b=1
om ifb=1,b/=0

Q V accepts iff H=7'(Gp)

The Proof

@ Completeness: If 7(Gy) = Gy, then 7’ correctly maps Gy to H
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Graph Isomorphism

The Proof

@ P chooses b < {0,1} and a random permutation o and sends
H = o(Gy) to V.

@ V chooses b’ < {0,1} and sends it to P

© P sends V the permutation 7’ mapping G, to H

o if b="b
=< ol ifb=0,b=1
om ifb=1,b/=0

Q V accepts iff H=7'(Gp)

@ Completeness: If 7(Gy) = Gy, then 7’ correctly maps Gy to H

@ Soundness: Suppose Gy is not isomorphic to Gi, so there is no such
7. Then, if b # b/, there is no permutation that P can give that V
will accept
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Graph Isomorphism

@ P chooses b < {0,1} and a random permutation ¢ and sends
H=0o(Gp) to V

@ V chooses b’ «+ {0,1} and sends it to P
@ P sends V the permutation ' mapping Gy to H

o if b=1b

7 ={ on ! ifb=0,b=1

om ifb=1,b=0

Q V accepts iff H = 7/(Gy)

The Proof
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Graph Isomorphism

The Proof

@ P chooses b < {0,1} and a random permutation ¢ and sends
H=0o(Gp) to V
@ V chooses b’ < {0,1} and sends it to P
@ P sends V the permutation ' mapping Gy to H
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7 ={ on ! ifb=0,b=1
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Zero-Knowledge
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The Proof

@ P chooses b < {0,1} and a random permutation ¢ and sends
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Zero-Knowledge
We define simulator S(Go, G1) as follows:
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Graph Isomorphism

The Proof

@ P chooses b < {0,1} and a random permutation ¢ and sends
H=0(Gp) to V

@ V chooses b’ < {0,1} and sends it to P

@ P sends V the permutation ' mapping Gy to H
o ifb=1"b
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om ifb=1,b =0
Q V accepts iff H = 7/(Gy)

Zero-Knowledge
We define simulator S(Go, G1) as follows:
© S chooses b+ {0,1} and a random permutation o
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Graph Isomorphism

The Proof

@ P chooses b < {0,1} and a random permutation ¢ and sends
H=0o(Gp) to V
@ V chooses b’ < {0,1} and sends it to P
@ P sends V the permutation ' mapping Gy to H
o if b=1b
7 ={ on ! ifb=0,b=1
om ifb=1,b =0

Q V accepts iff H = 7/(Gy)

Zero-Knowledge

We define simulator S(Go, G1) as follows:
© S chooses b+ {0,1} and a random permutation o
@ Set H=0(Gp) and let b’ = V*(Go, G1, H)
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Graph Isomorphism

The Proof

@ P chooses b < {0,1} and a random permutation ¢ and sends
H=0o(Gp) to V
@ V chooses b’ < {0,1} and sends it to P
@ P sends V the permutation ' mapping Gy to H
o if b=1b
7 ={ on ! ifb=0,b=1
om ifb=1,b =0

Q V accepts iff H = 7/(Gy)

Zero-Knowledge
We define simulator S(Go, G1) as follows:
© S chooses b+ {0,1} and a random permutation o
@ Set H=0(Gp) and let b’ = V*(Go, G1, H)
Q If b/ = b, output (b, H,o). Otherwise, restart with new o, b.
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Zero-Knowledge

Zero-Knowledge
We define simulator S(Go, G1) as follows:

© S chooses b <+ {0,1} and a random permutation o
@ Set H = 0(Gp) and let b/ = V*(Go, Gi, H)
© If b/ = b, output (b, H, o). Otherwise, restart with new o, b.
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Zero-Knowledge
We define simulator S(Go, G1) as follows:

© S chooses b <+ {0,1} and a random permutation o
@ Set H = 0(Gp) and let b/ = V*(Go, Gi, H)
© If b/ = b, output (b, H, o). Otherwise, restart with new o, b.

Observations:
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Zero-Knowledge

Zero-Knowledge
We define simulator S(Go, G1) as follows:

© S chooses b <+ {0,1} and a random permutation o
@ Set H = 0(Gp) and let b/ = V*(Go, Gi, H)
© If b/ = b, output (b, H, o). Otherwise, restart with new o, b.

Observations:

e If b/ = b, then S's simulation is perfect.
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Zero-Knowledge

Zero-Knowledge
We define simulator S(Go, G1) as follows:

© S chooses b <+ {0,1} and a random permutation o
@ Set H=0(Gp) and let b’ = V*(Go, G1, H)
© If b/ = b, output (b, H, o). Otherwise, restart with new o, b.

Observations:
e If b/ = b, then S's simulation is perfect.

e If Gy and G are isomorphic, then b’ cannot depend on b
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Zero-Knowledge

Zero-Knowledge
We define simulator S(Go, G1) as follows:

© S chooses b <+ {0,1} and a random permutation o
@ Set H=0(Gp) and let b’ = V*(Go, G1, H)
© If b/ = b, output (b, H, o). Otherwise, restart with new o, b.

Observations:
e If b/ = b, then S's simulation is perfect.
e If Gy and G are isomorphic, then b’ cannot depend on b

@ So, b = b’ with probability 1/2. Thus, S expected to stop after two
rounds
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Zero-Knowledge

Zero-Knowledge
We define simulator S(Go, G1) as follows:

© S chooses b <+ {0,1} and a random permutation o
@ Set H=0(Gp) and let b’ = V*(Go, G1, H)
© If b/ = b, output (b, H, o). Otherwise, restart with new o, b.

Observations:
e If b/ = b, then S's simulation is perfect.
e If Gy and G are isomorphic, then b’ cannot depend on b

@ So, b = b’ with probability 1/2. Thus, S expected to stop after two
rounds

@ When S stops, he produces a perfect simulation
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Graph 3-Coloring
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© Zero-Knowledge on the Blockchain
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Zero-Knowledge (ZK) Proofs on the Blockchain

ZK proofs have found practical importance in critical Blockchain
applications:
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ZK proofs have found practical importance in critical Blockchain
applications:

Blockchain Transactions in a Nutshell
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Zero-Knowledge (ZK) Proofs on the Blockchain

ZK proofs have found practical importance in critical Blockchain
applications:

Blockchain Transactions in a Nutshell

@ Blockchain consists of a sequence of “valid” transactions (e.g., Send
5 Bitcoins from Alice to Bob)
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ZK proofs have found practical importance in critical Blockchain
applications:

Blockchain Transactions in a Nutshell

@ Blockchain consists of a sequence of “valid” transactions (e.g., Send
5 Bitcoins from Alice to Bob)

@ Miners need to be able to verify that transactions are valid

@ Bitcoin does this by making the transactions public

@ But, what if we want to keep the details of our transaction secret?
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Zero-Knowledge (ZK) Proofs on the Blockchain

ZK proofs have found practical importance in critical Blockchain
applications:

Blockchain Transactions in a Nutshell

@ Blockchain consists of a sequence of “valid” transactions (e.g., Send
5 Bitcoins from Alice to Bob)

@ Miners need to be able to verify that transactions are valid

@ Bitcoin does this by making the transactions public

@ But, what if we want to keep the details of our transaction secret?

ZK Proofs enable privacy-preserving transactions on a public Blockchain!
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