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Reviewing the Definition of IP

Definition of IP
L 2 IP if there exist a pair of interactive algorithms (P ,V ) with V being

poly-time (in |x |) s.t.
1 (Completeness) If x 2 L, then Pr[hP ,V i(x) = 1] = 1

2 (Soundness) If x /2 L, then for any (possibly unbounded) P
⇤
, we have

Pr[hP⇤,V i(x) = 1]  1/2

A New Property

We say that a proof is zero-knowledge if the verifier learns nothing (other

than the truth of the statement) from seeing the proof.
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An Example – Where’s Waldo

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 23, 2024 6 / 22



An Example
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A Second Example – Puppy and Panda
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Defining Knowledge

Question

What does it mean for a machine to know/learn something?

Answer: A poly-time TM M “knows” x , if it can output x after an

e�cient computation.

Question

What does it mean for a machine to learn nothing from a proof?

Answer: Whatever it can (e�ciently) compute after seeing the proof, it

could have e�ciently computed before seeing the proof.
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Formalizing the Definition

Consider an interactive proof between Prover (P) and Verifier (V ):

hP ,V i(x)

Define V ’s view of this interaction by:

VIEWV (hP ,V i(x))

This includes:

V ’s randomness

Any messages that V receives

Zero-Knowledge Proof

A proof hP ,V i(x) for a language L is zero-knowledge if

For any (possibly malicious) poly-time verifier V
⇤

There exists a poly-time Simulator S s.t.

8x 2 L, VIEWV ⇤(hP ,V ⇤i(x)) = S(x)
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Parsing the Definition

Zero-Knowledge Proof

A proof hP ,V i(x) for a language L is zero-knowledge if

For any (possibly malicious) poly-time verifier V
⇤

There exists a poly-time Simulator S s.t.

8x 2 L, VIEWV ⇤(hP ,V ⇤i(x)) = S(x)

S(x) captures what V knows about x

If S can produce V ’s view in the proof, then this everything in this

view is “known” to V before the proof.

Thus, the proof is zero-knowledge: V learns nothing more than that

x 2 L

IMPORTANT: VIEW
⇤
V and S(x) are both distributions, not values.

So, equality is of distributions
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Where’s Waldo
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Puppy and Panda
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Graph Isomorphism

Input: x = (G0,G1)

Prover’s goal: Prove that he knows permutation ⇡ s.t. ⇡(G0) = G1

The Proof

1 P chooses b  {0, 1} and a random permutation � and sends

H = �(Gb) to V

2 V chooses b
0  {0, 1} and sends it to P

3 P sends V the permutation ⇡0
mapping Gb0 to H

⇡0
=

8
<

:

� if b = b
0

�⇡�1
if b = 0, b0 = 1

�⇡ if b = 1, b0 = 0

4 V accepts i↵ H = ⇡0
(Gb0)
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Graph Isomorphism

The Proof

1 P chooses b  {0, 1} and a random permutation � and sends

H = �(Gb) to V

2 V chooses b
0  {0, 1} and sends it to P

3 P sends V the permutation ⇡0
mapping Gb0 to H

⇡0
=

8
<

:

� if b = b
0

�⇡�1
if b = 0, b0 = 1

�⇡ if b = 1, b0 = 0

4 V accepts i↵ H = ⇡0
(Gb0)

1 Completeness: If ⇡(G0) = G1, then ⇡0
correctly maps Gb0 to H

2 Soundness: Suppose G0 is not isomorphic to G1, so there is no such

⇡. Then, if b 6= b
0
, there is no permutation that P can give that V

will accept
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The Proof
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(Gb0)

Zero-Knowledge

We define simulator S(G0,G1) as follows:

1 S chooses b  {0, 1} and a random permutation �

2 Set H = �(Gb) and let b
0
= V

⇤
(G0,G1,H)

3 If b
0
= b, output (b

0,H,�). Otherwise, restart with new �, b.
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Zero-Knowledge

Zero-Knowledge

We define simulator S(G0,G1) as follows:

1 S chooses b  {0, 1} and a random permutation �

2 Set H = �(Gb) and let b
0
= V

⇤
(G0,G1,H)

3 If b
0
= b, output (b

0,H,�). Otherwise, restart with new �, b.

Observations:

If b
0
= b, then S ’s simulation is perfect.

If G0 and G1 are isomorphic, then b
0
cannot depend on b

So, b = b
0
with probability 1/2. Thus, S expected to stop after two

rounds

When S stops, he produces a perfect simulation
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Graph 3-Coloring
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Zero-Knowledge (ZK) Proofs on the Blockchain

ZK proofs have found practical importance in critical Blockchain

applications:

Blockchain Transactions in a Nutshell

Blockchain consists of a sequence of “valid” transactions (e.g., Send

5 Bitcoins from Alice to Bob)

Miners need to be able to verify that transactions are valid

Bitcoin does this by making the transactions public

But, what if we want to keep the details of our transaction secret?

ZK Proofs enable privacy-preserving transactions on a public Blockchain!
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