Foundations of Computing Lecture 26 – Final Exam Review

Arkady Yerukhimovich

April 25, 2024

Outline

- Lecture 25 Review
- 2 Complexity Theory
 - · P
 - NP
 - ullet Poly-time Reductions and $\mathcal{NP} ext{-}\mathsf{Completeness}$
 - Interactive Proofs
 - Zero-Knowledge Proofs
- Computability
 - Turing Machines and Decidable Languages
 - Languages Recognized by TMs
 - Undecidable Languages
 - Proofs by Reduction
- 4 Automata and Languages

Lecture 25 Review

- Zero-Knowledge Proofs
- Where's Waldo
- Puppy and Panda
- Graph Isomorphism
- 3-Coloring

We Are Done!

Welcome to the last lecture of CS 3313!!!

• Complete course evaluation form for 5 points on final exam

Outline

- Lecture 25 Review
- Complexity Theory
 - P
 - \bullet \mathcal{NP}
 - ullet Poly-time Reductions and $\mathcal{NP} ext{-Completeness}$
 - Interactive Proofs
 - Zero-Knowledge Proofs
- 3 Computability
 - Turing Machines and Decidable Languages
 - Languages Recognized by TMs
 - Undecidable Languages
 - Proofs by Reduction
- 4 Automata and Languages

P

- PNP

- P
- \mathcal{NP} $\operatorname{co-}\mathcal{NP}$

- P
- \bullet \mathcal{NP}
- ullet co- $\mathcal{N}\mathcal{P}$
- IP

- P
- \bullet \mathcal{NP}
- \bullet co- \mathcal{NP}
- \bullet \mathcal{IP}

Important

Make sure you know the definitions and relationships between these complexity classes.

Definition

Let $f,g:\mathbb{N} \to \mathbb{R}$, we say that f(n)=O(g(n)) if

• There exist positive integers c, n_0 s.t. for all $n \ge n_0$

$$f(n) \leq cg(n)$$

Definition

Let $f,g:\mathbb{N} \to \mathbb{R}$, we say that f(n)=O(g(n)) if

• There exist positive integers c, n_0 s.t. for all $n \ge n_0$

$$f(n) \leq cg(n)$$

Example

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

Definition

Let $f,g:\mathbb{N} \to \mathbb{R}$, we say that f(n)=O(g(n)) if

• There exist positive integers c, n_0 s.t. for all $n \ge n_0$

$$f(n) \leq cg(n)$$

Example

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

• $f(n) = O(n^3)$

Definition

Let $f,g:\mathbb{N}\to\mathbb{R}$, we say that f(n)=O(g(n)) if

• There exist positive integers c, n_0 s.t. for all $n \ge n_0$

$$f(n) \leq cg(n)$$

Example

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

- $f(n) = O(n^3)$
- For every $n \ge 6$, $f(n) \le 6n^3$
- I.e., $n_0 = 6, c = 6$

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$, we say that f(n) = O(g(n)) if

• There exist positive integers c, n_0 s.t. for all $n \ge n_0$

$$f(n) \leq cg(n)$$

Example

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

- $f(n) = O(n^3)$
- For every $n \ge 6$, $f(n) \le 6n^3$
- I.e., $n_0 = 6, c = 6$
- Note that $f(n) = O(n^4)$

Outline

- Lecture 25 Review
- Complexity Theory
 - P
 - NP
 - ullet Poly-time Reductions and $\mathcal{NP} ext{-}\mathsf{Completeness}$
 - Interactive Proofs
 - Zero-Knowledge Proofs
- 3 Computability
 - Turing Machines and Decidable Languages
 - Languages Recognized by TMs
 - Undecidable Languages
 - Proofs by Reduction
- 4 Automata and Languages

Complexity Class ${\cal P}$

Definition

 ${\cal P}$ is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

Complexity Class \mathcal{P}

Definition

 ${\cal P}$ is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

$$\mathcal{P} = \bigcup_{k} TIME(n^{k})$$

Complexity Class ${\mathcal P}$

Definition

 ${\cal P}$ is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

$$\mathcal{P} = \bigcup_{k} TIME(n^{k})$$

ullet ${\cal P}$ corresponds to the class of "efficiently-solvable" problems

Complexity Class $\mathcal P$

Definition

 ${\cal P}$ is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

$$\mathcal{P} = \bigcup_{k} TIME(n^{k})$$

- ullet ${\cal P}$ corresponds to the class of "efficiently-solvable" problems
- $m{ ilde{\mathcal{P}}}$ is invariant for all models of computation polynomially-equivalent to 1-tape TM

Complexity Class ${\mathcal P}$

Definition

 ${\cal P}$ is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

$$\mathcal{P} = \bigcup_{k} TIME(n^{k})$$

- ullet ${\cal P}$ corresponds to the class of "efficiently-solvable" problems
- $m{\cdot}$ \mathcal{P} is invariant for all models of computation polynomially-equivalent to 1-tape TM
- ullet ${\cal P}$ has nice closure properties

Problems in \mathcal{P}

- PATH
- RELPRIME
- Anything you saw in algorithms class

Outline

- Lecture 25 Review
- Complexity Theory
 - · P
 - \bullet \mathcal{NP}
 - ullet Poly-time Reductions and $\mathcal{NP} ext{-}\mathsf{Completeness}$
 - Interactive Proofs
 - Zero-Knowledge Proofs
- Computability
 - Turing Machines and Decidable Languages
 - Languages Recognized by TMs
 - Undecidable Languages
 - Proofs by Reduction
- 4 Automata and Languages

Definition

 $\mathcal{N}\mathcal{P}$ is the class of languages that have polynomial time verifiers.

Definition

 \mathcal{NP} is the class of languages that have polynomial time verifiers.

- ullet We already saw that HAMPATH and SAT are in \mathcal{NP}
- Every $L \in \mathcal{P}$ is also in \mathcal{NP} : $\mathcal{P} \subseteq \mathcal{NP}$

Definition

 \mathcal{NP} is the class of languages that have polynomial time verifiers.

- ullet We already saw that HAMPATH and SAT are in \mathcal{NP}
- Every $L \in \mathcal{P}$ is also in \mathcal{NP} : $\mathcal{P} \subseteq \mathcal{NP}$

Intuition

ullet ${\cal P}$ is the class of problems where you can find a solution in poly-time

Definition

 \mathcal{NP} is the class of languages that have polynomial time verifiers.

- ullet We already saw that HAMPATH and SAT are in \mathcal{NP}
- Every $L \in \mathcal{P}$ is also in \mathcal{NP} : $\mathcal{P} \subseteq \mathcal{NP}$

Intuition

- $oldsymbol{ ilde{\mathcal{P}}}$ is the class of problems where you can find a solution in poly-time
- \bullet $\mathcal{N}\mathcal{P}$ is the class of problems where you can verify a solution in poly-time

Definition

 \mathcal{NP} is the class of languages that have polynomial time verifiers.

- ullet We already saw that HAMPATH and SAT are in \mathcal{NP}
- Every $L \in \mathcal{P}$ is also in \mathcal{NP} : $\mathcal{P} \subseteq \mathcal{NP}$

Intuition

- $oldsymbol{ ilde{\mathcal{P}}}$ is the class of problems where you can find a solution in poly-time
- \bullet $\mathcal{N}\mathcal{P}$ is the class of problems where you can verify a solution in poly-time
- Question: $\mathcal{P} \stackrel{?}{=} \mathcal{N} \mathcal{P}$

- ullet \mathcal{NP} stands for non-deterministic polynomial time
- ullet \mathcal{NP} is the set of languages decided by poly-time NTMs

- ullet \mathcal{NP} stands for non-deterministic polynomial time
- ullet \mathcal{NP} is the set of languages decided by poly-time NTMs

Theorem

The two definitions of \mathcal{NP} are equivalent – A language L is poly-time verifiable if and only if it is decided by a poly-time NTM.

- ullet \mathcal{NP} stands for non-deterministic polynomial time
- ullet \mathcal{NP} is the set of languages decided by poly-time NTMs

Theorem

The two definitions of \mathcal{NP} are equivalent – A language L is poly-time verifiable if and only if it is decided by a poly-time NTM.

Proof Idea:

- Need to prove both directions
- ullet An NTM simulates the verifier by guessing the witness w

- ullet \mathcal{NP} stands for non-deterministic polynomial time
- ullet \mathcal{NP} is the set of languages decided by poly-time NTMs

Theorem

The two definitions of \mathcal{NP} are equivalent – A language L is poly-time verifiable if and only if it is decided by a poly-time NTM.

Proof Idea:

- Need to prove both directions
- An NTM simulates the verifier by guessing the witness w
- A verifier simulates the NTM by using the accepting branch as the witness

\mathcal{P} , \mathcal{NP} and co- \mathcal{NP}

 $\overline{\mathcal{P}}$

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{P} , \mathcal{NP} and co- \mathcal{NP}

\mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t.

- for $x \in L$, there exists a witness w s.t. V(x, w) = 1
- for $x \notin L$, for all w, V(x, w) = 0

\mathcal{P} , \mathcal{NP} and co- \mathcal{NP}

\mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t.

- for $x \in L$, there exists a witness w s.t. V(x, w) = 1
- for $x \notin L$, for all w, V(x, w) = 0

co- \mathcal{NP}

 $L \in \text{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t.

- for $x \notin L$, there exists a witness w s.t. V(x, w) = 1
- for $x \in L$, for all w, V(x, w) = 0

$\overline{\mathcal{P}}$, $\overline{\mathcal{NP}}$ and $\overline{\text{co-}\mathcal{NP}}$

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t.

- for $x \in L$, there exists a witness w s.t. V(x, w) = 1
- for $x \notin L$, for all w, V(x, w) = 0

$co-\mathcal{NP}$

 $L \in \text{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t.

- for $x \notin L$, there exists a witness w s.t. V(x, w) = 1
- for $x \in L$, for all w, V(x, w) = 0

Question:

Is
$$\mathcal{P} = \mathcal{N}\mathcal{P} = \text{co-}\mathcal{N}\mathcal{P}$$
?

14 / 37

CLIQUE

- CLIQUE
- Subset Sum

- CLIQUE
- Subset Sum
- Graph isomorphism

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity
- Satisfiability

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity
- Satisfiability
- 3-SAT

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity
- Satisfiability
- 3-SAT
- Vertex cover

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity
- Satisfiability
- 3-SAT
- Vertex cover
- Independent set

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity
- Satisfiability
- 3-SAT
- Vertex cover
- Independent set
- and many more

Important

Make sure you know how to prove $L \in \mathcal{NP}$

Outline

- Lecture 25 Review
- Complexity Theory
 - P
 - NP
 - ullet Poly-time Reductions and $\mathcal{NP} ext{-Completeness}$
 - Interactive Proofs
 - Zero-Knowledge Proofs
- Computability
 - Turing Machines and Decidable Languages
 - Languages Recognized by TMs
 - Undecidable Languages
 - Proofs by Reduction
- 4 Automata and Languages

Mapping Reductions

Mapping Reduction

Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

Mapping Reductions

Mapping Reduction

Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B $(A \leq_P B)$ if there is a poly-time computable function $f: \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

Mapping Reductions

Mapping Reduction

Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

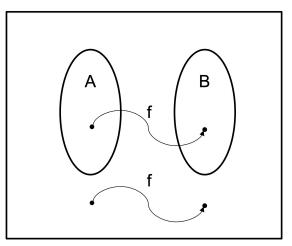
Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B $(A \leq_P B)$ if there is a poly-time computable function $f: \Sigma^* \to \Sigma^*$, where for every x,

$$x \in A \iff f(x) \in B$$

- Poly-time reductions give an efficient way to convert membership testing in A to membership testing in B
- If B has a poly-time solution so does A

Poly-time Mapping Reductions



f runs in time poly(|x|) on all inputs x

Why Poly-Time Reductions

Theorem

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

Proof:

- Let M be the poly-time TM deciding B
- Let f be the poly-time reduction from A to B
- Can construct M' deciding A:
 M' = On input x:
 - ① Compute f(x)
 - 2 Run M(f(x)) and output whatever M outputs

Why Poly-Time Reductions

Theorem

If $A \leq_P B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

Proof:

- Let M be the poly-time TM deciding B
- Let f be the poly-time reduction from A to B
- Can construct M' deciding A:
 M' = On input x:
 - **1** Compute f(x)
 - ② Run M(f(x)) and output whatever M outputs
 - If $x \in A$, $f(x) \in B$ so M accepts
 - If $x \notin A$, $f(x) \notin B$, so M rejects
 - Since both f and M are poly-time, M(f(x)) is also poly-time

$\overline{3SAT} \leq_P CLIQUE$

• Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where

- \bullet Need to show reduction f from 3SAT formula ϕ to $\langle {\it G}, {\it k} \rangle$ where
 - \bullet If ϕ is satisfiable, ${\it G}$ has a clique of size ${\it k}$

- ullet Need to show reduction f from 3SAT formula ϕ to $\langle G,k \rangle$ where
 - ullet If ϕ is satisfiable, G has a clique of size k
 - ullet If ϕ is not satisfiable, ${\it G}$ has no clique of size ${\it k}$

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where
 - If ϕ is satisfiable, G has a clique of size k
 - If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where
 - ullet If ϕ is satisfiable, G has a clique of size k
 - If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

 $\begin{pmatrix} x_1 \end{pmatrix}$

 (x_1)

 (x_2)

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where
 - If ϕ is satisfiable, G has a clique of size k
 - If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

 $\begin{pmatrix} x_1 \end{pmatrix}$

 (x_1)

 (x_2)

ullet If ϕ is satisfiable then ${\it G}$ has a ${\it k}$ -clique

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k \rangle$ where
 - If ϕ is satisfiable, G has a clique of size k
 - If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

 $\begin{pmatrix} x_1 \end{pmatrix}$

 (x_1)

 (x_2)

- If ϕ is satisfiable then G has a k-clique
- If G has a k-clique then ϕ is satisfiable

Definition

A language B is \mathcal{NP} -complete if

- $B \in \mathcal{NP}$
- For every language $A \in \mathcal{NP}$, $A \leq_P B$

Definition

A language B is \mathcal{NP} -complete if

- $B \in \mathcal{NP}$
- For every language $A \in \mathcal{NP}$, $A \leq_P B$
- ullet B is "as hard" as any language in \mathcal{NP}

Definition

A language B is \mathcal{NP} -complete if

- $B \in \mathcal{NP}$
- For every language $A \in \mathcal{NP}$, $A \leq_P B$
- ullet B is "as hard" as any language in \mathcal{NP}
- \bullet To study hardness of $\mathcal{NP},$ enough to study hardness of some $\mathcal{NP}\text{--complete}$ problem

$\mathcal{NP} ext{-}\mathsf{Completeness}$

Definition

A language B is \mathcal{NP} -complete if

- $B \in \mathcal{NP}$
- For every language $A \in \mathcal{NP}$, $A \leq_P B$
- ullet B is "as hard" as any language in \mathcal{NP}
- \bullet To study hardness of $\mathcal{NP},$ enough to study hardness of some $\mathcal{NP}\text{--complete}$ problem

Theorem

If B is \mathcal{NP} -complete and $B \in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$

Definition

A language B is \mathcal{NP} -complete if

- $B \in \mathcal{NP}$
- For every language $A \in \mathcal{NP}$, $A \leq_P B$
- ullet B is "as hard" as any language in \mathcal{NP}
- \bullet To study hardness of $\mathcal{NP},$ enough to study hardness of some $\mathcal{NP}\text{-complete}$ problem

Theorem

If B is \mathcal{NP} -complete and $B \in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$

Theorem

If B is \mathcal{NP} -complete and $B \leq_P C$ for $C \in \mathcal{NP}$, then C is \mathcal{NP} -complete

lacktriangle SAT is \mathcal{NP} -complete

- **①** SAT is \mathcal{NP} -complete
- 2 3-SAT is \mathcal{NP} -complete

- **①** SAT is \mathcal{NP} -complete
- **2** 3-SAT is \mathcal{NP} -complete
- **③** 3-SAT \leq_P CLIQUE So CLIQUE in \mathcal{NP} -complete

- **①** SAT is \mathcal{NP} -complete
- **2** 3-SAT is \mathcal{NP} -complete
- **③** 3-SAT \leq_P CLIQUE So CLIQUE in \mathcal{NP} -complete
- **4** 3-SAT \leq_P Vertex Cover

- **①** SAT is \mathcal{NP} -complete
- **2** 3-SAT is \mathcal{NP} -complete
- **③** 3-SAT \leq_P CLIQUE So CLIQUE in \mathcal{NP} -complete
- **③** 3-SAT \leq_P Vertex Cover
- **5** Vertex Cover \leq_P Independent Set

- **1** SAT is \mathcal{NP} -complete
- **2** 3-SAT is \mathcal{NP} -complete
- **③** 3-SAT \leq_P CLIQUE So CLIQUE in \mathcal{NP} -complete
- **③** 3-SAT \leq_P Vertex Cover
- **5** Vertex Cover \leq_P Independent Set
- **o** 3-SAT \leq_P 3-Color

- **①** SAT is \mathcal{NP} -complete
- **2** 3-SAT is \mathcal{NP} -complete
- **③** 3-SAT \leq_P CLIQUE So CLIQUE in \mathcal{NP} -complete
- **③** 3-SAT \leq_P Vertex Cover
- **5** Vertex Cover \leq_P Independent Set
- **o** 3-SAT \leq_P 3-Color
- More on the HW

\mathcal{NP} -Complete Languages

- f O SAT is \mathcal{NP} -complete
- **2** 3-SAT is \mathcal{NP} -complete
- **③** 3-SAT \leq_P CLIQUE So CLIQUE in \mathcal{NP} -complete
- **3** 3-SAT \leq_P Vertex Cover
- **5** Vertex Cover \leq_P Independent Set
- **o** 3-SAT \leq_P 3-Color
- More on the HW

Important

Make sure you remember what direction the reduction should go.

- Lecture 25 Review
- Complexity Theory
 - P
 - \bullet \mathcal{NP}
 - ullet Poly-time Reductions and $\mathcal{NP} ext{-}\mathsf{Completeness}$
 - Interactive Proofs
 - Zero-Knowledge Proofs
- Computability
 - Turing Machines and Decidable Languages
 - Languages Recognized by TMs
 - Undecidable Languages
 - Proofs by Reduction
- 4 Automata and Languages

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

 $\textbf{ (Completeness) If } x \in \textit{L}, \text{ then } \Pr[\langle P, V \rangle(x) = 1] = 1$

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Definition

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

• V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- **1** V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- **3** V accepts if b' = b

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- **3** V accepts if b' = b

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- **3** V accepts if b' = b

Why This Works:

1 (Completeness) Suppose that G_0 and G_1 are not isomorphic.

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G^* can only be isomorphic to one of the two graphs

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **①** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - ullet Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1
- ② (Soundness) Suppose that G_0 and G_1 are isomorphic

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1
- **②** (Soundness) Suppose that G_0 and G_1 are isomorphic
 - Then G^* is isomorphic to both G_0 and G_1

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- **1** V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1
- ② (Soundness) Suppose that G_0 and G_1 are isomorphic
 - Then G^* is isomorphic to both G_0 and G_1
 - P has no way to tell which one V started from

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

Why This Works:

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1

• Thus, Pr[b' = b] = 1/2

- ② (Soundness) Suppose that G_0 and G_1 are isomorphic
 - Then G^* is isomorphic to both G_0 and G_1
 - P has no way to tell which one V started from
 - ト (部) (注) (注) (注) (2)

PIT Problem

Prover P has a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

PIT Problem

Prover P has a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

V is allowed to query f(x) at points x of its choice – but, P knows
 V's strategy

PIT Problem

Prover P has a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

V is allowed to query f(x) at points x of its choice – but, P knows
 V's strategy

Question: What should *V* do?

PIT Problem

Prover P has a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

V is allowed to query f(x) at points x of its choice – but, P knows
 V's strategy

Question: What should V do?

Suppose that V is deterministic:

PIT Problem

Prover P has a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

V is allowed to query f(x) at points x of its choice – but, P knows
 V's strategy

Question: What should V do?

- Suppose that *V* is deterministic:
- What if you allow *V* to be randomized:

Languages in \mathcal{IP}

- $\bullet \ \mathcal{P} \subseteq \mathcal{IP}$
- $\bullet \ \mathcal{NP} \subseteq \mathcal{IP}$
- $\bullet \ \mathsf{Graph} \ \mathsf{Non\text{-}Isomorphism} \in \mathcal{IP}$

- Lecture 25 Review
- Complexity Theory
 - P
 - \bullet \mathcal{NP}
 - ullet Poly-time Reductions and $\mathcal{NP} ext{-}\mathsf{Completeness}$
 - Interactive Proofs
 - Zero-Knowledge Proofs
- Computability
 - Turing Machines and Decidable Languages
 - Languages Recognized by TMs
 - Undecidable Languages
 - Proofs by Reduction
- 4 Automata and Languages

Consider an interactive proof between Prover (P) and Verifier (V):

$$\langle P, V \rangle (x)$$

Consider an interactive proof between Prover (P) and Verifier (V):

$$\langle P, V \rangle (x)$$

Define V's view of this interaction by:

$$VIEW_V(\langle P, V \rangle(x))$$

Consider an interactive proof between Prover (P) and Verifier (V):

$$\langle P, V \rangle (x)$$

Define V's view of this interaction by:

$$VIEW_V(\langle P, V \rangle(x))$$

This includes:

- V's randomness
- Any messages that V receives

Consider an interactive proof between Prover (P) and Verifier (V):

$$\langle P, V \rangle (x)$$

Define V's view of this interaction by:

$$VIEW_V(\langle P, V \rangle(x))$$

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proof

A proof $\langle P, V \rangle(x)$ for a language L is zero-knowledge if

Consider an interactive proof between Prover (P) and Verifier (V):

$$\langle P, V \rangle (x)$$

Define V's view of this interaction by:

$$VIEW_V(\langle P, V \rangle(x))$$

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proof

A proof $\langle P, V \rangle(x)$ for a language L is zero-knowledge if

ullet For any (possibly malicious) poly-time verifier V^*

Consider an interactive proof between Prover (P) and Verifier (V):

$$\langle P, V \rangle (x)$$

Define V's view of this interaction by:

$$VIEW_V(\langle P, V \rangle(x))$$

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proof

A proof $\langle P, V \rangle(x)$ for a language L is zero-knowledge if

- ullet For any (possibly malicious) poly-time verifier V^*
- There exists a poly-time Simulator S s.t.

$$\forall x \in L$$
, $VIEW_{V^*}(\langle P, V^* \rangle(x)) = S(x)$

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

The Proof

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

The Proof

• P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

The Proof

- **①** P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- ② V chooses $b' \leftarrow \{0,1\}$ and sends it to P

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

The Proof

- **①** P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- ② V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **1** P sends V the permutation π' mapping $G_{b'}$ to H

$$\pi' = \left\{ \begin{array}{ll} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{array} \right.$$

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

The Proof

- **①** P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- ② V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **3** P sends V the permutation π' mapping $G_{b'}$ to H

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

• V accepts iff $H = \pi'(G_{b'})$

- Lecture 25 Review
- Complexity Theory
 - P
 - \bullet \mathcal{NP}
 - ullet Poly-time Reductions and $\mathcal{NP} ext{-}\mathsf{Completeness}$
 - Interactive Proofs
 - Zero-Knowledge Proofs
- 3 Computability
 - Turing Machines and Decidable Languages
 - Languages Recognized by TMs
 - Undecidable Languages
 - Proofs by Reduction
- 4 Automata and Languages

- Lecture 25 Review
- 2 Complexity Theory
 - P
 - \bullet \mathcal{NP}
 - ullet Poly-time Reductions and $\mathcal{NP} ext{-Completeness}$
 - Interactive Proofs
 - Zero-Knowledge Proofs
- Computability
 - Turing Machines and Decidable Languages
 - Languages Recognized by TMs
 - Undecidable Languages
 - Proofs by Reduction
- 4 Automata and Languages

- Lecture 25 Review
- Complexity Theory
 - P
 - \bullet \mathcal{NP}
 - ullet Poly-time Reductions and $\mathcal{NP} ext{-}\mathsf{Completeness}$
 - Interactive Proofs
 - Zero-Knowledge Proofs
- 3 Computability
 - Turing Machines and Decidable Languages
 - Languages Recognized by TMs
 - Undecidable Languages
 - Proofs by Reduction
- 4 Automata and Languages

- Lecture 25 Review
- Complexity Theory
 - P
 - \bullet \mathcal{NP}
 - ullet Poly-time Reductions and $\mathcal{NP} ext{-}\mathsf{Completeness}$
 - Interactive Proofs
 - Zero-Knowledge Proofs
- Computability
 - Turing Machines and Decidable Languages
 - Languages Recognized by TMs
 - Undecidable Languages
 - Proofs by Reduction
- 4 Automata and Languages

- Lecture 25 Review
- Complexity Theory
 - P
 - \bullet \mathcal{NP}
 - ullet Poly-time Reductions and $\mathcal{NP} ext{-}\mathsf{Completeness}$
 - Interactive Proofs
 - Zero-Knowledge Proofs
- 3 Computability
 - Turing Machines and Decidable Languages
 - Languages Recognized by TMs
 - Undecidable Languages
 - Proofs by Reduction
- 4 Automata and Languages

- Lecture 25 Review
- 2 Complexity Theory
 - P
 - \bullet \mathcal{NP}
 - ullet Poly-time Reductions and $\mathcal{NP} ext{-}\mathsf{Completeness}$
 - Interactive Proofs
 - Zero-Knowledge Proofs
- Computability
 - Turing Machines and Decidable Languages
 - Languages Recognized by TMs
 - Undecidable Languages
 - Proofs by Reduction
- 4 Automata and Languages

Exam

Exam Details:

- Tuesday, May 7, 10:20-12:20
- In the classroom
- 2 sheets (back-and-front) of notes are allowed

See you all there!