# Foundations of Computing Lecture 26 – Final Exam Review

Arkady Yerukhimovich

April 25, 2024

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 25, 2024

∃ >

# Outline

## Lecture 25 Review

## Complexity Theory

- P
- $\mathcal{NP}$
- Poly-time Reductions and  $\mathcal{NP}\text{-}\mathsf{Completeness}$
- Interactive Proofs
- Zero-Knowledge Proofs

## 3 Computability

- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction

## Automata and Languages

- Zero-Knowledge Proofs
- Where's Waldo
- Puppy and Panda
- Graph Isomorphism
- 3-Coloring

3. 3

### Welcome to the last lecture of CS 3313!!!

• Complete course evaluation form for 5 points on final exam



# Outline

#### 1 Lecture 25 Review

## Complexity Theory

- P
- $\mathcal{NP}$
- $\bullet$  Poly-time Reductions and  $\mathcal{NP}\text{-}\mathsf{Completeness}$
- Interactive Proofs
- Zero-Knowledge Proofs

## Computability

- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction

## Automata and Languages

# Complexity Classes

Arkady Yerukhimovich CS 33

イロト イヨト イヨト イヨト

# Complexity Classes

•  $\mathcal{P}$ 

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

April 25, 2024

イロト イヨト イヨト イヨト

*PNP* 

イロン イ理 とく ヨン イヨン

- $\mathcal{P}$
- *NP*co-*NP*

イロト イヨト イヨト イヨト

- $\mathcal{P}$
- $\mathcal{NP}$
- co-*NP*
- $\mathcal{IP}$

イロン イ理 とく ヨン イヨン

- P
- $\mathcal{NP}$
- co- $\mathcal{NP}$
- $\mathcal{IP}$

#### Important

Make sure you know the definitions and relationships between these complexity classes.

< ∃⇒

э

## Definition

Let  $f,g:\mathbb{N}\to\mathbb{R}$ , we say that f(n)=O(g(n)) if

• There exist positive integers  $c, n_0$  s.t. for all  $n \ge n_0$ 

 $f(n) \leq cg(n)$ 

## Definition

Let  $f,g:\mathbb{N} \to \mathbb{R}$ , we say that f(n) = O(g(n)) if

• There exist positive integers  $c, n_0$  s.t. for all  $n \ge n_0$ 

 $f(n) \leq cg(n)$ 

## Example

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

< 17 > <

## Definition

Let  $f,g:\mathbb{N} \to \mathbb{R}$ , we say that f(n) = O(g(n)) if

• There exist positive integers  $c, n_0$  s.t. for all  $n \ge n_0$ 

 $f(n) \leq cg(n)$ 

## Example

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

•  $f(n) = O(n^3)$ 

## Definition

Let  $f,g:\mathbb{N} \to \mathbb{R}$ , we say that f(n) = O(g(n)) if

• There exist positive integers  $c, n_0$  s.t. for all  $n \ge n_0$ 

 $f(n) \leq cg(n)$ 

## Example

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

• 
$$f(n) = O(n^3)$$

• For every 
$$n \ge 6$$
,  $f(n) \le 6n^3$ 

• I.e., 
$$n_0 = 6, c = 6$$

## Definition

Let  $f,g:\mathbb{N} \to \mathbb{R}$ , we say that f(n) = O(g(n)) if

• There exist positive integers  $c, n_0$  s.t. for all  $n \ge n_0$ 

 $f(n) \leq cg(n)$ 

## Example

$$f(n) = 5n^3 + 3n^2 + 10n + 8$$

• 
$$f(n) = O(n^3)$$

- For every  $n \ge 6$ ,  $f(n) \le 6n^3$
- I.e., *n*<sub>0</sub> = 6, *c* = 6
- Note that  $f(n) = O(n^4)$

Image: A matrix and a matrix

< ∃⇒

# Outline

## 1 Lecture 25 Review

# Complexity Theory

- P
- $\mathcal{NP}$
- $\bullet$  Poly-time Reductions and  $\mathcal{NP}\text{-}\mathsf{Completeness}$
- Interactive Proofs
- Zero-Knowledge Proofs

## 3 Computability

- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction

## Automata and Languages

 ${\cal P}$  is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

 ${\cal P}$  is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

$$\mathcal{P} = \bigcup_k TIME(n^k)$$

 ${\cal P}$  is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

$$\mathcal{P} = \bigcup_k TIME(n^k)$$

 $\bullet \ \mathcal{P}$  corresponds to the class of "efficiently-solvable" problems

 ${\cal P}$  is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

$$\mathcal{P} = \bigcup_k TIME(n^k)$$

- $\bullet \ \mathcal{P}$  corresponds to the class of "efficiently-solvable" problems
- ${\mathcal P}$  is invariant for all models of computation polynomially-equivalent to 1-tape TM

 ${\cal P}$  is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

$$\mathcal{P} = \bigcup_k TIME(n^k)$$

- $\bullet \ \mathcal{P}$  corresponds to the class of "efficiently-solvable" problems
- ${\mathcal P}$  is invariant for all models of computation polynomially-equivalent to 1-tape TM
- $\mathcal{P}$  has nice closure properties

- PATH
- RELPRIME
- Anything you saw in algorithms class

→ ∃ →

æ

# Outline

## 1 Lecture 25 Review

## Complexity Theory

- P
- $\mathcal{NP}$
- $\bullet$  Poly-time Reductions and  $\mathcal{NP}\text{-}\mathsf{Completeness}$
- Interactive Proofs
- Zero-Knowledge Proofs

## 3 Computability

- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction

## Automata and Languages

 $\mathcal{N}\mathcal{P}$  is the class of languages that have polynomial time verifiers.

< ∃⇒

э

 $\mathcal{NP}$  is the class of languages that have polynomial time verifiers.

- $\bullet$  We already saw that HAMPATH and SAT are in  $\mathcal{NP}$
- Every  $L \in \mathcal{P}$  is also in  $\mathcal{NP}$ :  $\mathcal{P} \subseteq \mathcal{NP}$

- 3 ▶

 $\mathcal{NP}$  is the class of languages that have polynomial time verifiers.

- $\bullet$  We already saw that HAMPATH and SAT are in  $\mathcal{NP}$
- Every  $L \in \mathcal{P}$  is also in  $\mathcal{NP}$ :  $\mathcal{P} \subseteq \mathcal{NP}$

#### Intuition

•  $\mathcal{P}$  is the class of problems where you can find a solution in poly-time

 $\mathcal{NP}$  is the class of languages that have polynomial time verifiers.

- $\bullet$  We already saw that HAMPATH and SAT are in  $\mathcal{NP}$
- Every  $L \in \mathcal{P}$  is also in  $\mathcal{NP}$ :  $\mathcal{P} \subseteq \mathcal{NP}$

### Intuition

- $\mathcal{P}$  is the class of problems where you can find a solution in poly-time
- NP is the class of problems where you can verify a solution in poly-time

 $\mathcal{NP}$  is the class of languages that have polynomial time verifiers.

- $\bullet$  We already saw that HAMPATH and SAT are in  $\mathcal{NP}$
- Every  $L \in \mathcal{P}$  is also in  $\mathcal{NP}$ :  $\mathcal{P} \subseteq \mathcal{NP}$

### Intuition

- $\mathcal{P}$  is the class of problems where you can find a solution in poly-time
- NP is the class of problems where you can verify a solution in poly-time

• Question: 
$$\mathcal{P} \stackrel{?}{=} \mathcal{NP}$$

<日<br />
<</p>

- $\bullet \ \mathcal{NP}$  stands for non-deterministic polynomial time
- $\bullet \ \mathcal{NP}$  is the set of languages decided by poly-time NTMs

- $\bullet \ \mathcal{NP}$  stands for non-deterministic polynomial time
- $\bullet \ \mathcal{NP}$  is the set of languages decided by poly-time NTMs

#### Theorem

The two definitions of  $\mathcal{NP}$  are equivalent – A language *L* is poly-time verifiable if and only if it is decided by a poly-time NTM.

- $\bullet \ \mathcal{NP}$  stands for non-deterministic polynomial time
- $\bullet \ \mathcal{NP}$  is the set of languages decided by poly-time NTMs

#### Theorem

The two definitions of  $\mathcal{NP}$  are equivalent – A language *L* is poly-time verifiable if and only if it is decided by a poly-time NTM.

Proof Idea:

- Need to prove both directions
- An NTM simulates the verifier by guessing the witness w

- $\bullet \ \mathcal{NP}$  stands for non-deterministic polynomial time
- $\bullet \ \mathcal{NP}$  is the set of languages decided by poly-time NTMs

#### Theorem

The two definitions of  $\mathcal{NP}$  are equivalent – A language *L* is poly-time verifiable if and only if it is decided by a poly-time NTM.

Proof Idea:

- Need to prove both directions
- An NTM simulates the verifier by guessing the witness w
- A verifier simulates the NTM by using the accepting branch as the witness

# $\mathcal P$ , $\mathcal{NP}$ and co- $\mathcal{NP}$



## $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

< 1 k

I ∃ ►

æ

# $\mathcal P$ , $\mathcal{NP}$ and co- $\mathcal{NP}$



# $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$



 $L \in \mathcal{NP}$  if there exists poly-time DTM V s.t.

- for  $x \in L$ , there exists a witness w s.t. V(x, w) = 1
- for  $x \notin L$ , for all w, V(x, w) = 0

# $\mathcal P$ , $\mathcal{NP}$ and co- $\mathcal{NP}$



# $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

# $\mathcal{NP}$

 $L \in \mathcal{NP}$  if there exists poly-time DTM V s.t.

• for  $x \in L$ , there exists a witness w s.t. V(x, w) = 1

for 
$$x \notin L$$
, for all  $w$ ,  $V(x, w) = 0$ 

## co- $\mathcal{NP}$

- $L \in \text{co-}\mathcal{NP}$  if there exists poly-time DTM V s.t.
  - for  $x \notin L$ , there exists a witness w s.t. V(x, w) = 1
  - for  $x \in L$ , for all w, V(x, w) = 0
# $\mathcal P$ , $\mathcal N\mathcal P$ and co- $\mathcal N\mathcal P$



 $L \in \mathcal{P}$  if there exists poly-time DTM M s.t  $M(x) = [x \in L]$ 

## $\mathcal{NP}$

 $L \in \mathcal{NP}$  if there exists poly-time DTM V s.t.

• for  $x \in L$ , there exists a witness w s.t. V(x, w) = 1

• for 
$$x \notin L$$
, for all  $w$ ,  $V(x, w) = 0$ 

### co- $\mathcal{NP}$

- $L \in \text{co-}\mathcal{NP}$  if there exists poly-time DTM V s.t.
  - for  $x \notin L$ , there exists a witness w s.t. V(x, w) = 1

• for 
$$x \in L$$
, for all  $w$ ,  $V(x,w) = 0$ 

Question:

$$\mathsf{Is} \ \mathcal{P} = \mathcal{N}\mathcal{P} = \mathsf{co}\mathcal{N}\mathcal{P}?$$

Arkady Yerukhimovich

### CLIQUE

<ロト <問ト < 目と < 目と

3

- CLIQUE
- Subset Sum

Arkady Yerukhimovich

• • • • • • • •

3

- CLIQUE
- Subset Sum

Arkady Yerukhimovich

• Graph isomorphism

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity

< 47 ▶

< ∃⇒

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity
- Satisfiability

Arkady Yerukhimovich

< 1 k

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity
- Satisfiability
- 3-SAT

< 1 k

< ∃⇒

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity
- Satisfiability
- 3-SAT
- Vertex cover

Arkady Yerukhimovich

æ

< ∃⇒

< 円

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity
- Satisfiability
- 3-SAT
- Vertex cover
- Independent set

돈에 돈

April 25, 2024

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity
- Satisfiability
- 3-SAT
- Vertex cover
- Independent set
- and many more

#### Important

Make sure you know how to prove  $L \in \mathcal{NP}$ 

## Outline

### 1 Lecture 25 Review

## Complexity Theory

- P
- $\mathcal{NP}$

## $\bullet$ Poly-time Reductions and $\mathcal{NP}\text{-}\mathsf{Completeness}$

- Interactive Proofs
- Zero-Knowledge Proofs

## 3 Computability

- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction

## Automata and Languages

# Mapping Reductions

## Mapping Reduction

Language A is mapping reducible to language B  $(A \leq_m B)$  if there is a computable function  $f : \Sigma^* \to \Sigma^*$ , where for every x,

 $x \in A \iff f(x) \in B$ 

글 에 에 글 에 다

э

# Mapping Reductions

### Mapping Reduction

Language A is mapping reducible to language B  $(A \leq_m B)$  if there is a computable function  $f : \Sigma^* \to \Sigma^*$ , where for every x,

$$x \in A \iff f(x) \in B$$

### Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B  $(A \leq_P B)$  if there is a poly-time computable function  $f : \Sigma^* \to \Sigma^*$ , where for every x,

$$x \in A \iff f(x) \in B$$

# Mapping Reductions

## Mapping Reduction

Language A is mapping reducible to language B  $(A \leq_m B)$  if there is a computable function  $f : \Sigma^* \to \Sigma^*$ , where for every x,

$$x \in A \iff f(x) \in B$$

### Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B  $(A \leq_P B)$  if there is a poly-time computable function  $f : \Sigma^* \to \Sigma^*$ , where for every x,

$$x \in A \iff f(x) \in B$$

- Poly-time reductions give an efficient way to convert membership testing in *A* to membership testing in *B*
- If B has a poly-time solution so does A

イロト イヨト イヨト イヨト

## Poly-time Mapping Reductions



f runs in time poly(|x|) on all inputs x

#### Theorem

If  $A \leq_P B$  and  $B \in \mathcal{P}$ , then  $A \in \mathcal{P}$ 

Proof:

- Let *M* be the poly-time TM deciding *B*
- Let f be the poly-time reduction from A to B
- Can construct *M*' deciding *A*: *M*' = On input *x*:
  - Compute f(x)
  - 2 Run M(f(x)) and output whatever M outputs

#### Theorem

If  $A \leq_P B$  and  $B \in \mathcal{P}$ , then  $A \in \mathcal{P}$ 

Proof:

- Let *M* be the poly-time TM deciding *B*
- Let f be the poly-time reduction from A to B
- Can construct *M*' deciding *A*: *M*' = On input *x*:
  - Compute f(x)
  - 2 Run M(f(x)) and output whatever M outputs
    - If  $x \in A$ ,  $f(x) \in B$  so M accepts
    - If  $x \notin A$ ,  $f(x) \notin B$ , so M rejects
    - Since both f and M are poly-time, M(f(x)) is also poly-time

### • Need to show reduction f from 3SAT formula $\phi$ to $\langle G, k \rangle$ where

Arkady Yerukhimovich

Image: A matrix and a matrix

3 × < 3 ×

- Need to show reduction f from 3SAT formula  $\phi$  to  $\langle G, k \rangle$  where
  - If  $\phi$  is satisfiable, G has a clique of size k

▶ < ∃ >

- Need to show reduction f from 3SAT formula  $\phi$  to  $\langle G, k \rangle$  where
  - If  $\phi$  is satisfiable, G has a clique of size k
  - If  $\phi$  is not satisfiable, G has no clique of size k

-∢ ∃ ▶

- < - 🖓 ▶ - <

- Need to show reduction f from 3SAT formula  $\phi$  to  $\langle G, k \rangle$  where
  - If  $\phi$  is satisfiable, G has a clique of size k
  - If  $\phi$  is not satisfiable, G has no clique of size k
- Consider  $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

- ∢ ∃ →

< 17 > <

• Need to show reduction f from 3SAT formula  $\phi$  to  $\langle G, k \rangle$  where

- If  $\phi$  is satisfiable, G has a clique of size k
- If  $\phi$  is not satisfiable, G has no clique of size k

• Consider  $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$ 



< A > <

• Need to show reduction f from 3SAT formula  $\phi$  to  $\langle G, k \rangle$  where

- If  $\phi$  is satisfiable, G has a clique of size k
- If  $\phi$  is not satisfiable, G has no clique of size k
- Consider  $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$



• If  $\phi$  is satisfiable then G has a k-clique

< 17 > <

• Need to show reduction f from 3SAT formula  $\phi$  to  $\langle G, k \rangle$  where

- If  $\phi$  is satisfiable, G has a clique of size k
- If  $\phi$  is not satisfiable, G has no clique of size k
- Consider  $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$



- If  $\phi$  is satisfiable then G has a k-clique
- If G has a k-clique then  $\phi$  is satisfiable

Arkady Yerukhimovich

April 25, 2024

# $\mathcal{NP}\text{-}\mathsf{Completeness}$

## Definition

### A language B is $\mathcal{NP}$ -complete if

- $B \in \mathcal{NP}$
- For every language  $A \in \mathcal{NP}$ ,  $A \leq_P B$

< 1 k

< ∃⇒

э

# $\mathcal{NP}$ -Completeness

## Definition

### A language B is $\mathcal{NP}$ -complete if

- $B \in \mathcal{NP}$
- For every language  $A \in \mathcal{NP}$ ,  $A \leq_P B$

• B is "as hard" as any language in  $\mathcal{NP}$ 

# $\mathcal{NP} ext{-}\mathsf{Completeness}$

## Definition

## A language B is $\mathcal{NP}$ -complete if

- $B \in \mathcal{NP}$
- For every language  $A \in \mathcal{NP}$ ,  $A \leq_P B$
- B is "as hard" as any language in  $\mathcal{NP}$
- To study hardness of  $\mathcal{NP},$  enough to study hardness of some  $\mathcal{NP}\text{-complete problem}$

# $\mathcal{NP}$ -Completeness

## Definition

### A language B is $\mathcal{NP}$ -complete if

- $B \in \mathcal{NP}$
- For every language  $A \in \mathcal{NP}$ ,  $A \leq_P B$
- B is "as hard" as any language in  $\mathcal{NP}$
- To study hardness of  $\mathcal{NP},$  enough to study hardness of some  $\mathcal{NP}\text{-complete problem}$

#### Theorem

If B is  $\mathcal{NP}$ -complete and  $B \in \mathcal{P}$ , then  $\mathcal{P} = \mathcal{NP}$ 

# $\mathcal{NP}$ -Completeness

## Definition

## A language B is $\mathcal{NP}$ -complete if

- $B \in \mathcal{NP}$
- For every language  $A \in \mathcal{NP}$ ,  $A \leq_P B$
- B is "as hard" as any language in  $\mathcal{NP}$
- To study hardness of  $\mathcal{NP},$  enough to study hardness of some  $\mathcal{NP}\text{-complete problem}$

#### Theorem

If B is  $\mathcal{NP}$ -complete and  $B \in \mathcal{P}$ , then  $\mathcal{P} = \mathcal{NP}$ 

#### Theorem

If B is  $\mathcal{NP}$ -complete and  $B \leq_P C$  for  $C \in \mathcal{NP}$ , then C is  $\mathcal{NP}$ -complete

21/37

< □ > < □ > < □ > < □ > < □ > < □ >

## $\textcircled{O} SAT is \mathcal{NP}\text{-complete}$

Arkady Yerukhimovich

< 47 ▶

# $\mathcal{NP}\text{-}\mathsf{Complete}$ Languages

- $\textcircled{O} SAT is \mathcal{NP}-complete$
- **2** 3-SAT is  $\mathcal{NP}$ -complete

< 円

< ∃⇒

- $\textcircled{O} SAT is \mathcal{NP}-complete$
- **2** 3-SAT is  $\mathcal{NP}$ -complete
- 3-SAT  $\leq_P$  CLIQUE So CLIQUE in  $\mathcal{NP}$ -complete

< ∃⇒

- **2** 3-SAT is  $\mathcal{NP}$ -complete
- **③** 3-SAT  $\leq_P$  CLIQUE So CLIQUE in  $\mathcal{NP}$ -complete
- 3-SAT  $\leq_P$  Vertex Cover

< 1 k

< ∃⇒

э

- **2** 3-SAT is  $\mathcal{NP}$ -complete
- **③** 3-SAT  $\leq_P$  CLIQUE So CLIQUE in  $\mathcal{NP}$ -complete
- $3-SAT \leq_P Vertex Cover$
- **(**) Vertex Cover  $\leq_P$  Independent Set

∢ ∃ ▶

- **2** 3-SAT is  $\mathcal{NP}$ -complete
- **③** 3-SAT  $\leq_P$  CLIQUE So CLIQUE in  $\mathcal{NP}$ -complete
- $3-SAT \leq_P Vertex Cover$
- **(**) Vertex Cover  $\leq_P$  Independent Set
- **o** 3-SAT  $\leq_P$  3-Color

- 3 ▶

э

- **2** 3-SAT is  $\mathcal{NP}$ -complete
- **③** 3-SAT  $\leq_P$  CLIQUE So CLIQUE in  $\mathcal{NP}$ -complete
- $3-SAT \leq_P Vertex Cover$
- Solution Vertex Cover  $\leq_P$  Independent Set
- **3-SAT**  $\leq_P$  3-Color
- Ø More on the HW

∢ ∃ ▶

April 25, 2024
- **2** 3-SAT is  $\mathcal{NP}$ -complete
- **3**-SAT  $\leq_P$  CLIQUE So CLIQUE in  $\mathcal{NP}$ -complete
- 3-SAT  $\leq_P$  Vertex Cover
- Solution Vertex Cover  $\leq_P$  Independent Set
- **3**-SAT  $\leq_P$  3-Color
- Ø More on the HW

#### Important

Make sure you remember what direction the reduction should go.

## Outline

#### Lecture 25 Review

### Complexity Theory

- P
- $\mathcal{NP}$
- $\bullet$  Poly-time Reductions and  $\mathcal{NP}\text{-}\mathsf{Completeness}$
- Interactive Proofs
- Zero-Knowledge Proofs

### Computability

- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction

#### Automata and Languages

 $L \in \mathcal{IP}$  if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

.∋...>

 $L \in \mathcal{IP}$  if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

(Completeness) If  $x \in L$ , then  $\Pr[\langle P, V \rangle(x) = 1] = 1$ 

 $L \in \mathcal{IP}$  if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If  $x \in L$ , then  $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If  $x \notin L$ , then for any (possibly unbounded)  $P^*$ , we have  $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

 $L \in \mathcal{IP}$  if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If  $x \in L$ , then  $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If  $x \notin L$ , then for any (possibly unbounded)  $P^*$ , we have  $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

GNI E ..-NP 1. V X & GNI , 3 w s.1. V(x,-)=1 w= the isomorphism 2. Yr & GNT , 7 - c! V(r, +)=1

э.

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

< 1 k

э

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

• V chooses  $b \leftarrow \{0,1\}$ , and applies a random permutation  $\pi$  to the vertices of  $G_b$  and sends this graph  $G^*$  to P input : (G, G)

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses  $b \leftarrow \{0,1\}$ , and applies a random permutation  $\pi$  to the vertices of  $G_b$  and sends this graph  $G^*$  to P
- 2 P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses  $b \leftarrow \{0, 1\}$ , and applies a random permutation  $\pi$  to the vertices of  $G_b$  and sends this graph  $G^*$  to P
- 2 P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- 3 V accepts if b' = b

Arkady Yerukhimovich

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **3** *V* accepts if b' = b

Why This Works:

April 25, 2024

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **③** *V* accepts if b' = b

Why This Works:

**(**Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses  $b \leftarrow \{0,1\}$ , and applies a random permutation  $\pi$  to the vertices of  $G_b$  and sends this graph  $G^*$  to P
- 2 *P* determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to *V*
- **③** *V* accepts if b' = b

- (Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.
  - Then  $G^*$  can only be isomorphic to one of the two graphs

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **③** *V* accepts if b' = b

- (Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.
  - Then  $G^*$  can only be isomorphic to one of the two graphs
  - P can perfectly determine which one this is

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **③** *V* accepts if b' = b

- (Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.
  - Then  $G^*$  can only be isomorphic to one of the two graphs
  - P can perfectly determine which one this is

• So 
$$\Pr[b' = b] = 1$$

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **3** V accepts if b' = b

- **(**Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.
  - Then  $G^*$  can only be isomorphic to one of the two graphs
  - P can perfectly determine which one this is
  - So  $\Pr[b' = b] = 1$
- **2** (Soundness) Suppose that  $G_0$  and  $G_1$  are isomorphic

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **3** *V* accepts if b' = b

- **(**Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.
  - Then  $G^*$  can only be isomorphic to one of the two graphs
  - P can perfectly determine which one this is
  - So  $\Pr[b' = b] = 1$
- **2** (Soundness) Suppose that  $G_0$  and  $G_1$  are isomorphic
  - $\bullet\,$  Then  $G^*$  is isomorphic to both  $G_0$  and  $G_1$

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **3** V accepts if b' = b

- (Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.
  - Then  $G^*$  can only be isomorphic to one of the two graphs
  - P can perfectly determine which one this is
  - So  $\Pr[b' = b] = 1$
- **2** (Soundness) Suppose that  $G_0$  and  $G_1$  are isomorphic
  - Then  $G^*$  is isomorphic to both  $G_0$  and  $G_1$
  - P has no way to tell which one V started from

#### Question

How can we prove that two graphs  $G_0$  and  $G_1$  are NOT isomorphic?

The Protocol:

- V chooses b ← {0,1}, and applies a random permutation π to the vertices of G<sub>b</sub> and sends this graph G\* to P
- P determines if  $G^*$  is isomorphic to  $G_0$  and sends b' = 0 if so, or b' = 1 otherwise back to V
- **3** V accepts if b' = b

- (Completeness) Suppose that  $G_0$  and  $G_1$  are not isomorphic.
  - Then  $G^*$  can only be isomorphic to one of the two graphs
  - P can perfectly determine which one this is
  - So  $\Pr[b' = b] = 1$
- **2** (Soundness) Suppose that  $G_0$  and  $G_1$  are isomorphic
  - Then  $G^*$  is isomorphic to both  $G_0$  and  $G_1$
  - P has no way to tell which one V started from

• Thus, 
$$\Pr[b' = b] = 1/2$$

#### **PIT** Problem

Arkady Yerukhimovich

CS 3313 – Foundations of Computing

3 N 3

#### **PIT** Problem

• Prover P has a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

#### **PIT** Problem

• Prover P has a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

 V is allowed to query f(x) at points x of its choice – but, P knows V's strategy

#### **PIT** Problem

• Prover P has a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

 V is allowed to query f(x) at points x of its choice – but, P knows V's strategy

Question: What should V do?

#### **PIT** Problem

• Prover P has a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

 V is allowed to query f(x) at points x of its choice – but, P knows V's strategy

Question: What should V do?

• Suppose that V is deterministic:

#### **PIT** Problem

• Prover P has a degree d polynomial f and wants to prove that

$$\forall x, f(x) = 0$$

V is allowed to query f(x) at points x of its choice – but, P knows
V's strategy

Question: What should V do?

- Suppose that V is deterministic:
- What if you allow V to be randomized:

- $\mathcal{P} \subseteq \mathcal{IP}$
- $\mathcal{NP} \subseteq \mathcal{IP}$
- $\bullet \ \ \mathsf{Graph} \ \ \mathsf{Non-Isomorphism} \in \mathcal{IP}$

3 × 4 3 ×

• • • • • • • •

æ

## Outline

#### 1 Lecture 25 Review

### Complexity Theory

- P
- $\mathcal{NP}$
- $\bullet$  Poly-time Reductions and  $\mathcal{NP}\text{-}\mathsf{Completeness}$
- Interactive Proofs
- Zero-Knowledge Proofs

#### Computability

- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction

#### Automata and Languages

Arkady Yerukhimovich

## Consider an interactive proof between Prover (P) and Verifier (V): $\langle P, V \rangle(x)$

CS 3313 - Foundations of Computing

< 47 ▶

∃ ⇒

æ

Consider an interactive proof between Prover (P) and Verifier (V):  $\langle P, V \rangle (x)$ 

Define V's view of this interaction by:

 $VIEW_V(\langle P, V \rangle(x))$ 

→ ∃ →

э

Consider an interactive proof between Prover (P) and Verifier (V):  $\langle P, V \rangle(x)$ 

Define V's view of this interaction by:

 $VIEW_V(\langle P, V \rangle(x))$ 

This includes:

- V's randomness
- Any messages that V receives

Consider an interactive proof between Prover (P) and Verifier (V):

 $\langle P, V \rangle(x)$ 

Define V's view of this interaction by:

 $VIEW_V(\langle P, V \rangle(x))$ 

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proof

A proof  $\langle P, V \rangle(x)$  for a language L is zero-knowledge if

Consider an interactive proof between Prover (P) and Verifier (V):

 $\langle P, V \rangle(x)$ 

Define V's view of this interaction by:

 $VIEW_V(\langle P, V \rangle(x))$ 

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proof

A proof  $\langle P, V \rangle(x)$  for a language L is zero-knowledge if

• For any (possibly malicious) poly-time verifier  $V^*$ 

Consider an interactive proof between Prover (P) and Verifier (V):

 $\langle P, V \rangle(x)$ 

Define V's view of this interaction by:

 $VIEW_V(\langle P, V \rangle(x))$ 

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proof

A proof  $\langle P, V \rangle(x)$  for a language L is zero-knowledge if

- For any (possibly malicious) poly-time verifier  $V^*$
- There exists a poly-time *Simulator S* s.t.

$$\forall x \in L, \qquad VIEW_{V^*}(\langle P, V^* \rangle(x)) = S(x)$$

## Graph Isomorphism

Input:  $x = (G_0, G_1)$ 

Prover's goal: Prove that he knows permutation  $\pi$  s.t.  $\pi(G_0) = G_1$ 

Image: A matrix

< ∃⇒

э

## Graph Isomorphism

Input:  $x = (G_0, G_1)$ 

Arkady Yerukhimovich

Prover's goal: Prove that he knows permutation  $\pi$  s.t.  $\pi(G_0) = G_1$ 

#### The Proof

< 1 k

э
Input:  $x = (G_0, G_1)$ 

Prover's goal: Prove that he knows permutation  $\pi$  s.t.  $\pi(G_0) = G_1$ 

#### The Proof

• P chooses  $b \leftarrow \{0,1\}$  and a random permutation  $\sigma$  and sends  $H = \sigma(G_b)$  to V

Input:  $x = (G_0, G_1)$ 

Prover's goal: Prove that he knows permutation  $\pi$  s.t.  $\pi(G_0) = G_1$ 

#### The Proof

- P chooses  $b \leftarrow \{0, 1\}$  and a random permutation  $\sigma$  and sends  $H = \sigma(G_b)$  to V
- 2 V chooses  $b' \leftarrow \{0,1\}$  and sends it to P

Input:  $x = (G_0, G_1)$ 

Prover's goal: Prove that he knows permutation  $\pi$  s.t.  $\pi(G_0) = G_1$ 

#### The Proof

- P chooses b ← {0,1} and a random permutation σ and sends H = σ(G<sub>b</sub>) to V
- 2 V chooses  $b' \leftarrow \{0,1\}$  and sends it to P
- P sends V the permutation  $\pi'$  mapping  $G_{b'}$  to H

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

Input:  $x = (G_0, G_1)$ 

Prover's goal: Prove that he knows permutation  $\pi$  s.t.  $\pi(G_0) = G_1$ 

#### The Proof

- P chooses  $b \leftarrow \{0, 1\}$  and a random permutation  $\sigma$  and sends  $H = \sigma(G_b)$  to V
- 2 V chooses  $b' \leftarrow \{0,1\}$  and sends it to P
- **③** *P* sends *V* the permutation  $\pi'$  mapping  $G_{b'}$  to *H*

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

• V accepts iff  $H = \pi'(G_{b'})$ 

### Lecture 25 Review

## 2 Complexity Theory

- P
- $\mathcal{NP}$
- Poly-time Reductions and  $\mathcal{NP}\text{-}\mathsf{Completeness}$
- Interactive Proofs
- Zero-Knowledge Proofs

## Computability

- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction

### 1 Lecture 25 Review

## 2 Complexity Theory

- P
- $\mathcal{NP}$
- Poly-time Reductions and  $\mathcal{NP}\text{-}\mathsf{Completeness}$
- Interactive Proofs
- Zero-Knowledge Proofs

### Computability

#### Turing Machines and Decidable Languages

- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction

### 1 Lecture 25 Review

## 2 Complexity Theory

- P
- $\mathcal{NP}$
- $\bullet$  Poly-time Reductions and  $\mathcal{NP}\text{-}\mathsf{Completeness}$
- Interactive Proofs
- Zero-Knowledge Proofs

## Computability

- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction

### 1 Lecture 25 Review

## 2 Complexity Theory

- P
- $\mathcal{NP}$
- $\bullet$  Poly-time Reductions and  $\mathcal{NP}\text{-}\mathsf{Completeness}$
- Interactive Proofs
- Zero-Knowledge Proofs

## Computability

- Turing Machines and Decidable Languages
- Languages Recognized by TMs

#### Undecidable Languages

Proofs by Reduction

### 1 Lecture 25 Review

## 2 Complexity Theory

- P
- $\mathcal{NP}$
- $\bullet$  Poly-time Reductions and  $\mathcal{NP}\text{-}\mathsf{Completeness}$
- Interactive Proofs
- Zero-Knowledge Proofs

## Computability

- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction

### 1 Lecture 25 Review

## 2 Complexity Theory

- $\mathcal{P}$
- $\mathcal{NP}$
- $\bullet$  Poly-time Reductions and  $\mathcal{NP}\text{-}\mathsf{Completeness}$
- Interactive Proofs
- Zero-Knowledge Proofs

## 3 Computability

- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction

### Exam Details:

- Tuesday, May 7, 10:20-12:20
- In the classroom
- 2 sheets (back-and-front) of notes are allowed

See you all there!

< ∃⇒

э