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Lecture 25 Review

Zero-Knowledge Proofs
Where's Waldo
Puppy and Panda

Graph Isomorphism

3-Coloring
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Welcome to the last lecture of CS 3313!!!

@ Complete course evaluation form for 5 points on final exam
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© Complexity Theory
o P
o NP
@ Poly-time Reductions and N/P-Completeness
@ Interactive Proofs
@ Zero-Knowledge Proofs
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Complexity Classes
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o NP
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Complexity Classes

o P

o NP

e co-NP
e IP
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Complexity Classes

o P

o NP

e co-NP
e IP

Make sure you know the definitions and relationships between these
complexity classes.
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Asymptotic Notation — Big-O

Definition
Let f,g: N — R, we say that f(n) = O(g(n)) if

@ There exist positive integers ¢, ng s.t. for all n > ng

f(n) < cg(n)
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Asymptotic Notation — Big-O

Definition
Let f,g: N — R, we say that f(n) = O(g(n)) if

@ There exist positive integers ¢, ng s.t. for all n > ng

f(n) < cg(n)

f(n) =5n>+3n%> +10n +8

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 25, 2024



Asymptotic Notation — Big-O
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Let f,g: N — R, we say that f(n) = O(g(n)) if
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Asymptotic Notation — Big-O

Definition
Let f,g: N — R, we say that f(n) = O(g(n)) if

@ There exist positive integers ¢, ng s.t. for all n > ng

f(n) < cg(n)

f(n) =5n>+3n%> +10n +8

e f(n) = O(n?)
e For every n > 6, f(n) < 6n3

o le,n=6c=06
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Asymptotic Notation — Big-O

Definition
Let f,g: N — R, we say that f(n) = O(g(n)) if

@ There exist positive integers ¢, ng s.t. for all n > ng

f(n) < cg(n)

f(n) =5n>+3n%> +10n +8

f(n) = O(n)

For every n > 6, f(n) < 6n3
l.e., ng=6,c =6

Note that f(n) = O(n*)
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© Complexity Theory
o P

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 25, 2024



Complexity Class P

Definition

‘P is the class of languages decidable in polynomial time on a 1-tape
deterministic TM.
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Complexity Class P

Definition

‘P is the class of languages decidable in polynomial time on a 1-tape
deterministic TM.
P = TIME(n*)
k

@ P corresponds to the class of “efficiently-solvable” problems
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Complexity Class P

Definition

‘P is the class of languages decidable in polynomial time on a 1-tape
deterministic TM.
P = TIME(n*)
k

@ P corresponds to the class of “efficiently-solvable” problems

@ P is invariant for all models of computation polynomially-equivalent
to 1-tape TM
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Complexity Class P

Definition

‘P is the class of languages decidable in polynomial time on a 1-tape
deterministic TM.
P = TIME(n*)
k

@ P corresponds to the class of “efficiently-solvable” problems

@ P is invariant for all models of computation polynomially-equivalent
to 1-tape TM

@ P has nice closure properties
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Problems in P

e PATH
e RELPRIME

@ Anything you saw in algorithms class
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© Complexity Theory

o NP
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The Class NP

Definition

NP is the class of languages that have polynomial time verifiers.
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The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

o We already saw that HAMPATH and SAT are in NP
@ Every L € Pis also in N'P: PCNP
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The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

o We already saw that HAMPATH and SAT are in NP
@ Every L € Pis also in N'P: PCNP

@ P is the class of problems where you can find a solution in poly-time
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The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

o We already saw that HAMPATH and SAT are in NP
@ Every L € Pis also in N'P: PCNP

@ P is the class of problems where you can find a solution in poly-time

@ NP is the class of problems where you can verify a solution in
poly-time
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The Class NP

Definition
NP is the class of languages that have polynomial time verifiers.

o We already saw that HAMPATH and SAT are in NP
@ Every L € Pis also in N'P: PCNP

@ P is the class of problems where you can find a solution in poly-time

@ NP is the class of problems where you can verify a solution in
poly-time

@ Question: P A NP
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The Class NP — Another Formulation

@ NP stands for non-deterministic polynomial time

@ NP is the set of languages decided by poly-time NTMs
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The Class NP — Another Formulation

@ NP stands for non-deterministic polynomial time

@ NP is the set of languages decided by poly-time NTMs

The two definitions of /P are equivalent — A language L is poly-time
verifiable if and only if it is decided by a poly-time NTM.
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The Class NP — Another Formulation

@ NP stands for non-deterministic polynomial time

@ NP is the set of languages decided by poly-time NTMs

The two definitions of /P are equivalent — A language L is poly-time
verifiable if and only if it is decided by a poly-time NTM.

Proof Idea:
@ Need to prove both directions

@ An NTM simulates the verifier by guessing the witness w
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The Class NP — Another Formulation

@ NP stands for non-deterministic polynomial time
@ NP is the set of languages decided by poly-time NTMs

The two definitions of /P are equivalent — A language L is poly-time
verifiable if and only if it is decided by a poly-time NTM.

Proof Idea:
@ Need to prove both directions
@ An NTM simulates the verifier by guessing the witness w
@ A verifier simulates the NTM by using the accepting branch as the
witness
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P, NP and co-NP

L € P if there exists poly-time DTM M s.t M(x) = [x € L]
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P, NP and co-NP

L € P if there exists poly-time DTM M s.t M(x) = [x € L]

L € NP if there exists poly-time DTM V s.t.
@ for x € L, there exists a witness w s.t. V(x,w) =1
e for x ¢ L, for all w, V(x,w) =0
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P, NP and co-NP

L € P if there exists poly-time DTM M s.t M(x) = [x € L]

L € NP if there exists poly-time DTM V s.t.
@ for x € L, there exists a witness w s.t. V(x,w) =1

e for x ¢ L, for all w, V(x,w) =0

L € co-NP if there exists poly-time DTM V s.t.
o for x ¢ L, there exists a witness w s.t. V(x,w) =1

e for x € L, for all w, V(x,w) =0
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P, NP and co-NP

L € P if there exists poly-time DTM M s.t M(x) = [x € L]

L € NP if there exists poly-time DTM V s.t.
@ for x € L, there exists a witness w s.t. V(x,w) =1

e for x ¢ L, for all w, V(x,w) =0

L € co-NP if there exists poly-time DTM V s.t.
o for x ¢ L, there exists a witness w s.t. V(x,w) =1

e for x € L, for all w, V(x,w) =0

NP ey ol [

Is P= NP = co-NP?

Question:
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Problems in N'P

o CLIQUE
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Problems in N'P

o CLIQUE

@ Subset Sum
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Problems in N'P

e CLIQUE
@ Subset Sum

@ Graph isomorphism

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 25, 2024



Problems in N'P

CLIQUE
Subset Sum

Graph isomorphism

Graph Hamiltonicity
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Problems in N'P

CLIQUE
Subset Sum

Graph isomorphism

Graph Hamiltonicity
o Satisfiability
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Problems in N'P

CLIQUE

Subset Sum

Graph isomorphism
Graph Hamiltonicity
Satisfiability

3-SAT
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Graph isomorphism
Graph Hamiltonicity
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Problems in N'P

CLIQUE

Subset Sum

Graph isomorphism
Graph Hamiltonicity
Satisfiability

3-SAT

Vertex cover

Independent set

and many more

Make sure you know how to prove L € N'P \
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© Complexity Theory

@ Poly-time Reductions and N/P-Completeness
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Mapping Reductions

Mapping Reduction

Language A is mapping reducible to language B (A <,, B) if there is a
computable function f : ¥* — ¥*, where for every x,

x€EA < f(x)eB
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Mapping Reductions

Mapping Reduction

Language A is mapping reducible to language B (A <,, B) if there is a
computable function f : ¥* — ¥*, where for every x,

x€EA < f(x)eB

Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B (A <p B) if
there is a poly-time computable function f : X* — ¥*, where for every x,

x€EA < f(x)eB
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Mapping Reductions

Mapping Reduction

Language A is mapping reducible to language B (A <,, B) if there is a
computable function f : ¥* — ¥*, where for every x,

x€EA < f(x)eB

Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B (A <p B) if
there is a poly-time computable function f : X* — ¥*, where for every x,

x€EA < f(x)eB

@ Poly-time reductions give an efficient way to convert membership
testing in A to membership testing in B

o If B has a poly-time solution so does A
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Poly-time Mapping Reductions
N
/\f_/

f runs in time poly(|x|) on all inputs x
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Why Poly-Time Reductions
If A<p B and B € P, then A € P \

Proof:
@ Let M be the poly-time TM deciding B
@ Let f be the poly-time reduction from A to B

@ Can construct M’ deciding A:
M’ = On input x:
@ Compute f(x)
@ Run M(f(x)) and output whatever M outputs
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Why Poly-Time Reductions
If A<p B and B € P, then A € P \

Proof:
@ Let M be the poly-time TM deciding B
@ Let f be the poly-time reduction from A to B

° Can construct M’ deciding A:
= On input x:
0 Compute f(x)
@ Run M(f(x)) and output whatever M outputs

o If x € A, f(x) € BsoM accepts
o If x¢ A, f(x) ¢ B, so M rejects
o Since both f and M are poly-time, M(f(x)) is also poly-time

/\/\
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3SAT <p CLIQUE

@ Need to show reduction f from 3SAT formula ¢ to (G, k) where
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3SAT <p CLIQUE

@ Need to show reduction f from 3SAT formula ¢ to (G, k) where
o If ¢ is satisfiable, G has a clique of size k
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3SAT <p CLIQUE

@ Need to show reduction f from 3SAT formula ¢ to (G, k) where
o If ¢ is satisfiable, G has a clique of size k
e If ¢ is not satisfiable, G has no clique of size k
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3SAT <p CLIQUE

@ Need to show reduction f from 3SAT formula ¢ to (G, k) where
o If ¢ is satisfiable, G has a clique of size k
e If ¢ is not satisfiable, G has no clique of size k

e Consider p = (x1 Vx1 Vxo) AT VX2 VX2) A (KT VX2V x2)
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3SAT <p CLIQUE

@ Need to show reduction f from 3SAT formula ¢ to (G, k) where
o If ¢ is satisfiable, G has a clique of size k
e If ¢ is not satisfiable, G has no clique of size k

e Consider p = (x1 Vx1 Vxo) AT VX2 VX2) A (KT VX2V x2)
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3SAT <p CLIQUE

@ Need to show reduction f from 3SAT formula ¢ to (G, k) where
o If ¢ is satisfiable, G has a clique of size k
e If ¢ is not satisfiable, G has no clique of size k

e Consider p = (x1 Vx1 Vxo) AT VX2 VX2) A (KT VX2V x2)

®» ® ®
()

()
(=)

o If ¢ is satisfiable then G has a k-clique

ORONO),
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3SAT <p CLIQUE

@ Need to show reduction f from 3SAT formula ¢ to (G, k) where
o If ¢ is satisfiable, G has a clique of size k
e If ¢ is not satisfiable, G has no clique of size k

e Consider p = (x1 Vx1 Vxo) AT VX2 VX2) A (KT VX2V x2)

®» ® ®
()

()
(=)

o If ¢ is satisfiable then G has a k-clique
@ If G has a k-clique then ¢ is satisfiable
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NP-Completeness

Definition

A language B is N'P-complete if
e BeNP
@ For every language Ac NP, A<p B
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NP-Completeness

Definition

A language B is N'P-complete if
e BeNP
@ For every language Ac NP, A<p B

@ B is “as hard” as any language in NP
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NP-Completeness

Definition
A language B is N'P-complete if
e BeNP

@ For every language Ac NP, A<p B

B is “as hard” as any language in NP

To study hardness of A'P, enough to study hardness of some
NP-complete problem
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NP-Completeness

Definition
A language B is N'P-complete if
e BeNP

@ For every language Ac NP, A<p B

@ B is “as hard” as any language in NP

@ To study hardness of A'P, enough to study hardness of some
NP-complete problem

If B is N"P-complete and B € P, then P = NP
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NP-Completeness

Definition
A language B is N'P-complete if
e BeNP

@ For every language Ac NP, A<p B

@ B is “as hard” as any language in NP

@ To study hardness of A'P, enough to study hardness of some
NP-complete problem

If B is N"P-complete and B € P, then P = NP

If B is N'P-complete and B <p C for C € NP, then C is N'P-complete
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NP-Complete Languages

@ SAT is N'P-complete
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NP-Complete Languages

@ SAT is N'P-complete
@ 3-SAT is N'P-complete
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NP-Complete Languages

@ SAT is N'P-complete
@ 3-SAT is N'P-complete
@ 3-SAT <p CLIQUE - So CLIQUE in N'"P-complete
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NP-Complete Languages

@ SAT is N'P-complete

@ 3-SAT is N'P-complete

@ 3-SAT <p CLIQUE - So CLIQUE in N'P-complete
©Q 3-SAT <p Vertex Cover
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NP-Complete Languages

@ SAT is N'P-complete

@ 3-SAT is N'P-complete

@ 3-SAT <p CLIQUE - So CLIQUE in N'P-complete
©Q 3-SAT <p Vertex Cover

@ Vertex Cover <p Independent Set
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NP-Complete Languages

@ SAT is N'P-complete

@ 3-SAT is N'P-complete

@ 3-SAT <p CLIQUE - So CLIQUE in N'P-complete
©Q 3-SAT <p Vertex Cover

@ Vertex Cover <p Independent Set

Q 3-SAT <p 3-Color
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NP-Complete Languages

@ SAT is N'P-complete

@ 3-SAT is N'P-complete

@ 3-SAT <p CLIQUE - So CLIQUE in N'P-complete
©Q 3-SAT <p Vertex Cover

@ Vertex Cover <p Independent Set

@ 3-SAT <p 3-Color

@ More on the HW
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NP-Complete Languages

@ SAT is N'P-complete

@ 3-SAT is N'P-complete

@ 3-SAT <p CLIQUE - So CLIQUE in N'P-complete
©Q 3-SAT <p Vertex Cover

@ Vertex Cover <p Independent Set

Q 3-SAT <p 3-Color

@ More on the HW

Make sure you remember what direction the reduction should go. \
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© Complexity Theory

@ Interactive Proofs
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The Class ZP

L € ZP if there exist a pair of interactive algorithms (P, V) with V being
poly-time (in |x]) s.t.
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The Class ZP

L € ZP if there exist a pair of interactive algorithms (P, V) with V being
poly-time (in |x]) s.t.

O (Completeness) If x € L, then Pr[(P,V)(x) =1] =1
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The Class ZP

L € ZP if there exist a pair of interactive algorithms (P, V) with V being
poly-time (in |x]) s.t.
O (Completeness) If x € L, then Pr[(P,V)(x) =1] =1

@ (Soundness) If x ¢ L, then for any (possibly unbounded) P*, we have
Pri(P*,V)(x) =1] < 1/2

NZ ¢ T /p
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The Class ZP

L € ZP if there exist a pair of interactive algorithms (P, V) with V being
poly-time (in |x]) s.t.
O (Completeness) If x € L, then Pr[(P,V)(x) =1] =1
@ (Soundness) If x ¢ L, then for any (possibly unbounded) P*, we have
Pri(P*,V)(x) =1] < 1/2
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Graph Non-lsomorphism
How can we prove that two graphs Gy and G; are NOT isomorphic? \

CLN‘L € c.—NP
l. V X % GNT I 3w s-A. V(x("):"

we Ho  Uorrphym

. ¥r oo P e ob Vv
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Graph Non-lsomorphism
How can we prove that two graphs Gy and G; are NOT isomorphic? \

The Protocol:
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Graph Non-lsomorphism
How can we prove that two graphs Gy and G; are NOT isomorphic? \

The Protocol:
@ V chooses b < {0,1}, and applies a random permutation 7 to the
vertices of G and sends this graph G* to P '“"“f - (C,‘ C‘ )
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Graph Non-lsomorphism
How can we prove that two graphs Gy and G; are NOT isomorphic? \

The Protocol:
@ V chooses b < {0,1}, and applies a random permutation 7 to the

vertices of G and sends this graph G* to P
@ P determines if G* is isomorphic to Gg and sends b’ = 0 if so, or

b’ =1 otherwise back to V
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Graph Non-lsomorphism
How can we prove that two graphs Gy and G; are NOT isomorphic? \

The Protocol:

@ V chooses b < {0,1}, and applies a random permutation 7 to the
vertices of G and sends this graph G* to P

@ P determines if G* is isomorphic to Gg and sends b’ = 0 if so, or
b’ =1 otherwise back to V

© V acceptsif ¥ =b
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Graph Non-lsomorphism
How can we prove that two graphs Gy and G; are NOT isomorphic? \

The Protocol:

@ V chooses b < {0,1}, and applies a random permutation 7 to the
vertices of G and sends this graph G* to P
@ P determines if G* is isomorphic to Gg and sends b’ = 0 if so, or
b’ =1 otherwise back to V
@ V accepts if b/ =
Why This Works:
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Graph Non-lsomorphism
How can we prove that two graphs Gy and G; are NOT isomorphic? \

The Protocol:

@ V chooses b < {0,1}, and applies a random permutation 7 to the
vertices of G and sends this graph G* to P
@ P determines if G* is isomorphic to Gg and sends b’ = 0 if so, or
b’ =1 otherwise back to V
@ V accepts if b/ =
Why This Works:
© (Completeness) Suppose that Gy and G; are not isomorphic.
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Graph Non-lsomorphism
How can we prove that two graphs Gy and G; are NOT isomorphic? \

The Protocol:

@ V chooses b < {0,1}, and applies a random permutation 7 to the
vertices of G and sends this graph G* to P

@ P determines if G* is isomorphic to Gg and sends b’ = 0 if so, or
b’ =1 otherwise back to V

© V acceptsif ¥ =b

Why This Works:
© (Completeness) Suppose that Gy and G; are not isomorphic.
e Then G* can only be isomorphic to one of the two graphs
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Graph Non-lsomorphism
How can we prove that two graphs Gy and G; are NOT isomorphic? \

The Protocol:

@ V chooses b < {0,1}, and applies a random permutation 7 to the
vertices of G and sends this graph G* to P
@ P determines if G* is isomorphic to Gg and sends b’ = 0 if so, or
b’ =1 otherwise back to V
© V acceptsif ¥ =b
Why This Works:
© (Completeness) Suppose that Gy and G; are not isomorphic.

e Then G* can only be isomorphic to one of the two graphs
e P can perfectly determine which one this is
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Graph Non-lsomorphism
How can we prove that two graphs Gy and G; are NOT isomorphic?

The Protocol:

@ V chooses b < {0,1}, and applies a random permutation 7 to the
vertices of G and sends this graph G* to P

@ P determines if G* is isomorphic to Gg and sends b’ = 0 if so, or
b’ =1 otherwise back to V

© V acceptsif ¥ =b

Why This Works:
© (Completeness) Suppose that Gy and G; are not isomorphic.
e Then G* can only be isomorphic to one of the two graphs

e P can perfectly determine which one this is
e SoPr[t/ =b]=1
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Graph Non-lsomorphism
How can we prove that two graphs Gy and G; are NOT isomorphic?

The Protocol:

@ V chooses b < {0,1}, and applies a random permutation 7 to the
vertices of G and sends this graph G* to P

@ P determines if G* is isomorphic to Gg and sends b’ = 0 if so, or
b’ =1 otherwise back to V

@ V accepts if b/ =

Why This Works:
© (Completeness) Suppose that Gy and G; are not isomorphic.
e Then G* can only be isomorphic to one of the two graphs

e P can perfectly determine which one this is
e SoPr[t/ =b]=1

@ (Soundness) Suppose that Gy and G; are isomorphic
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Graph Non-lsomorphism
How can we prove that two graphs Gy and G; are NOT isomorphic?

The Protocol:

@ V chooses b < {0,1}, and applies a random permutation 7 to the
vertices of G and sends this graph G* to P

@ P determines if G* is isomorphic to Gg and sends b’ = 0 if so, or
b’ =1 otherwise back to V

@ V accepts if b/ =

Why This Works:
© (Completeness) Suppose that Gy and G; are not isomorphic.
e Then G* can only be isomorphic to one of the two graphs

e P can perfectly determine which one this is
e SoPr[t/ =b]=1

@ (Soundness) Suppose that Gy and G; are isomorphic
e Then G* is isomorphic to both Gy and G;
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Graph Non-lsomorphism
How can we prove that two graphs Gy and G; are NOT isomorphic?

The Protocol:

@ V chooses b < {0,1}, and applies a random permutation 7 to the
vertices of G and sends this graph G* to P
@ P determines if G* is isomorphic to Gg and sends b’ = 0 if so, or
b’ =1 otherwise back to V
© V acceptsif ¥ =b
Why This Works:
© (Completeness) Suppose that Gy and G; are not isomorphic.
e Then G* can only be isomorphic to one of the two graphs
e P can perfectly determine which one this is
o SoPr[t/ =b] =1
@ (Soundness) Suppose that Gy and G; are isomorphic
e Then G* is isomorphic to both Gy and G;
e P has no way to tell which one V started from
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Graph Non-lsomorphism
How can we prove that two graphs Gy and G; are NOT isomorphic?

The Protocol:

@ V chooses b < {0,1}, and applies a random permutation 7 to the
vertices of G and sends this graph G* to P
@ P determines if G* is isomorphic to Gg and sends b’ = 0 if so, or
b’ =1 otherwise back to V
© V acceptsif ¥ =b
Why This Works:

© (Completeness) Suppose that Gy and G; are not isomorphic.
e Then G* can only be isomorphic to one of the two graphs
e P can perfectly determine which one this is
o SoPr[t/ =b] =1
@ (Soundness) Suppose that Gy and G; are isomorphic
e Then G* is isomorphic to both Gy and G;
e P has no way to tell which one V started from
o Thus, Pr[b = b] =1/2
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Another Example — Polynomial ldentity Testing

PIT Problem
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Another Example — Polynomial ldentity Testing

PIT Problem
@ Prover P has a degree d polynomial f and wants to prove that

Vx,f(x) =0
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Another Example — Polynomial ldentity Testing

PIT Problem
@ Prover P has a degree d polynomial f and wants to prove that

Vx,f(x) =0

@ V is allowed to query f(x) at points x of its choice — but, P knows
V's strategy
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PIT Problem
@ Prover P has a degree d polynomial f and wants to prove that

Vx,f(x) =0

@ V is allowed to query f(x) at points x of its choice — but, P knows
V's strategy

Question: What should V do?
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Another Example — Polynomial ldentity Testing

PIT Problem
@ Prover P has a degree d polynomial f and wants to prove that

Vx,f(x) =0

@ V is allowed to query f(x) at points x of its choice — but, P knows
V's strategy

Question: What should V do?

@ Suppose that V is deterministic:
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Another Example — Polynomial ldentity Testing

PIT Problem
@ Prover P has a degree d polynomial f and wants to prove that

Vx,f(x) =0

@ V is allowed to query f(x) at points x of its choice — but, P knows
V's strategy

Question: What should V do?
@ Suppose that V is deterministic:

@ What if you allow V to be randomized:
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Languages in ZP

e PCIP
e NPCIP
@ Graph Non-Isomorphism € ZP
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Outline

© Complexity Theory

@ Zero-Knowledge Proofs
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Zero-Knowledge Proofs

Consider an interactive proof between Prover (P) and Verifier (V):

(P, V)(x)
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Zero-Knowledge Proofs

Consider an interactive proof between Prover (P) and Verifier (V):
(P, V)(x)
Define V's view of this interaction by:

VIEWy ((P, V)(x))
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Zero-Knowledge Proofs

Consider an interactive proof between Prover (P) and Verifier (V):

(P,V)(x)
Define V's view of this interaction by:

VIEWy ((P, V)(x))
This includes:
@ V's randomness

@ Any messages that V' receives

Arkady Yerukhimovich CS 3313 — Foundations of Computing April 25, 2024 29 /37



Zero-Knowledge Proofs

Consider an interactive proof between Prover (P) and Verifier (V):

(P, V)(x)
Define V's view of this interaction by:
VIEWy ((P, V)(x))
This includes:

@ V's randomness
@ Any messages that V' receives

Zero-Knowledge Proof

A proof (P, V)(x) for a language L is zero-knowledge if

™7 mid = =
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Zero-Knowledge Proofs

Consider an interactive proof between Prover (P) and Verifier (V):

(P, V)(x)
Define V's view of this interaction by:
VIEWy ((P, V)(x))
This includes:

@ V's randomness
@ Any messages that V' receives

Zero-Knowledge Proof

A proof (P, V)(x) for a language L is zero-knowledge if

@ For any (possibly malicious) poly-time verifier V*

™7 mid = =
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Zero-Knowledge Proofs

Consider an interactive proof between Prover (P) and Verifier (V):

(P, V)(x)
Define V's view of this interaction by:
VIEWy ((P, V)(x))
This includes:

@ V's randomness
@ Any messages that V' receives

Zero-Knowledge Proof

A proof (P, V)(x) for a language L is zero-knowledge if
@ For any (possibly malicious) poly-time verifier V*

@ There exists a poly-time Simulator S s.t.

Vxel,  VIEWy({(P,V*)(x)) = S(x)

v

= — >yt
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Graph Isomorphism

Input: x = (Go, G1)
Prover's goal: Prove that he knows permutation 7 s.t. 7(Gp) = Gy
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Graph Isomorphism

Input: x = (Go, G1)
Prover's goal: Prove that he knows permutation 7 s.t. 7(Gp) = Gy

The Proof
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Graph Isomorphism

Input: x = (Go, G1)
Prover's goal: Prove that he knows permutation 7 s.t. 7(Gp) = Gy

The Proof

© P chooses b < {0,1} and a random permutation o and sends
H = U(Gb) to V
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Graph Isomorphism

Input: x = (Go, G1)
Prover's goal: Prove that he knows permutation 7 s.t. 7(Gp) = Gy

The Proof

© P chooses b < {0,1} and a random permutation o and sends
H = U(Gb) to V
@ V chooses b’ + {0,1} and sends it to P
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Graph Isomorphism

Input: x = (Go, G1)
Prover's goal: Prove that he knows permutation 7 s.t. 7(Gp) = Gy

The Proof

© P chooses b < {0,1} and a random permutation o and sends
H = U(Gb) to V

@ V chooses b’ + {0,1} and sends it to P

© P sends V the permutation 7’ mapping Gy to H

o if b=b
=< or 1 ifb=0b =
om ifb=1,b=0
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Graph Isomorphism

Input: x = (Go, G1)
Prover's goal: Prove that he knows permutation 7 s.t. 7(Gp) = Gy

The Proof

© P chooses b < {0,1} and a random permutation o and sends
H = U(Gb) to V

@ V chooses b’ + {0,1} and sends it to P

© P sends V the permutation 7’ mapping Gy to H

o if b=b
=< or 1 ifb=0b =
om ifb=1,b=0

Q V accepts iff H=7'(Gy)
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© Computability
@ Turing Machines and Decidable Languages
@ Languages Recognized by TMs
@ Undecidable Languages
@ Proofs by Reduction
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Outline

© Computability
@ Turing Machines and Decidable Languages
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Outline

© Computability

@ Languages Recognized by TMs
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Outline

© Computability

@ Undecidable Languages
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Outline

© Computability

@ Proofs by Reduction
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Outline

e Automata and Languages
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Exam Details:
o Tuesday, May 7, 10:20-12:20

@ In the classroom

@ 2 sheets (back-and-front) of notes are allowed

See you all there!
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