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Lecture 25 Review

Zero-Knowledge Proofs

Where’s Waldo

Puppy and Panda

Graph Isomorphism

3-Coloring
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We Are Done!

Welcome to the last lecture of CS 3313!!!

Complete course evaluation form for 5 points on final exam
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Complexity Classes

P
NP
co-NP
IP

Important

Make sure you know the definitions and relationships between these
complexity classes.
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Asymptotic Notation – Big-O

Definition

Let f , g : N! R, we say that f (n) = O(g(n)) if

There exist positive integers c , n0 s.t. for all n � n0

f (n)  cg(n)

Example

f (n) = 5n3 + 3n2 + 10n + 8

f (n) = O(n3)

For every n � 6, f (n)  6n3

I.e., n0 = 6, c = 6

Note that f (n) = O(n4)
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Complexity Class P

Definition

P is the class of languages decidable in polynomial time on a 1-tape
deterministic TM.

P =
[

k

TIME (nk)

P corresponds to the class of “e�ciently-solvable” problems

P is invariant for all models of computation polynomially-equivalent
to 1-tape TM

P has nice closure properties
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Problems in P

PATH

RELPRIME

Anything you saw in algorithms class
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The Class NP

Definition

NP is the class of languages that have polynomial time verifiers.

We already saw that HAMPATH and SAT are in NP
Every L 2 P is also in NP : P ✓ NP

Intuition

P is the class of problems where you can find a solution in poly-time

NP is the class of problems where you can verify a solution in
poly-time

Question: P ?
= NP
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The Class NP – Another Formulation

NP stands for non-deterministic polynomial time

NP is the set of languages decided by poly-time NTMs

Theorem

The two definitions of NP are equivalent – A language L is poly-time
verifiable if and only if it is decided by a poly-time NTM.

Proof Idea:

Need to prove both directions

An NTM simulates the verifier by guessing the witness w

A verifier simulates the NTM by using the accepting branch as the
witness
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P , NP and co-NP

P
L 2 P if there exists poly-time DTM M s.t M(x) = [x 2 L]

NP
L 2 NP if there exists poly-time DTM V s.t.

for x 2 L, there exists a witness w s.t. V (x ,w) = 1

for x /2 L, for all w , V (x ,w) = 0

co-NP
L 2 co-NP if there exists poly-time DTM V s.t.

for x /2 L, there exists a witness w s.t. V (x ,w) = 1

for x 2 L, for all w , V (x ,w) = 0

Question:

Is P= NP = co-NP?
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Problems in NP

CLIQUE

Subset Sum

Graph isomorphism

Graph Hamiltonicity

Satisfiability

3-SAT

Vertex cover

Independent set

and many more

Important

Make sure you know how to prove L 2 NP
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Mapping Reductions

Mapping Reduction

Language A is mapping reducible to language B (A m B) if there is a
computable function f : ⌃⇤ ! ⌃⇤, where for every x ,

x 2 A () f (x) 2 B

Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language B (A P B) if
there is a poly-time computable function f : ⌃⇤ ! ⌃⇤, where for every x ,

x 2 A () f (x) 2 B

Poly-time reductions give an e�cient way to convert membership
testing in A to membership testing in B

If B has a poly-time solution so does A
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Poly-time Mapping Reductions

f runs in time poly(|x |) on all inputs x

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 25, 2024 18 / 37



Why Poly-Time Reductions

Theorem

If A P B and B 2 P, then A 2 P

Proof:

Let M be the poly-time TM deciding B

Let f be the poly-time reduction from A to B

Can construct M 0 deciding A:
M 0 = On input x :

1 Compute f (x)
2 Run M(f (x)) and output whatever M outputs

If x 2 A, f (x) 2 B so M accepts
If x /2 A, f (x) /2 B , so M rejects
Since both f and M are poly-time, M(f (x)) is also poly-time
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3SAT P CLIQUE

Need to show reduction f from 3SAT formula � to hG , ki where

If � is satisfiable, G has a clique of size k
If � is not satisfiable, G has no clique of size k

Consider � = (x1 _ x1 _ x2) ^ (x1 _ x2 _ x2) ^ (x1 _ x2 _ x2)

x1

x1

x2

x1 x2 x2

x1

x2

x2

If � is satisfiable then G has a k-clique

If G has a k-clique then � is satisfiable
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NP-Completeness

Definition

A language B is NP-complete if

B 2 NP
For every language A 2 NP, A P B

B is “as hard” as any language in NP
To study hardness of NP , enough to study hardness of some
NP-complete problem

Theorem

If B is NP-complete and B 2 P, then P = NP

Theorem

If B is NP-complete and B P C for C 2 NP, then C is NP-complete
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NP-Complete Languages

1 SAT is NP-complete

2 3-SAT is NP-complete

3 3-SAT P CLIQUE – So CLIQUE in NP-complete

4 3-SAT P Vertex Cover

5 Vertex Cover P Independent Set

6 3-SAT P 3-Color

7 More on the HW

Important

Make sure you remember what direction the reduction should go.
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Outline

1 Lecture 25 Review

2 Complexity Theory
P
NP
Poly-time Reductions and NP-Completeness
Interactive Proofs
Zero-Knowledge Proofs

3 Computability
Turing Machines and Decidable Languages
Languages Recognized by TMs
Undecidable Languages
Proofs by Reduction

4 Automata and Languages
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The Class IP

Definition

L 2 IP if there exist a pair of interactive algorithms (P ,V ) with V being
poly-time (in |x |) s.t.

1 (Completeness) If x 2 L, then Pr[hP ,V i(x) = 1] = 1

2 (Soundness) If x /2 L, then for any (possibly unbounded) P⇤, we have
Pr[hP⇤,V i(x) = 1]  1/2
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Graph Non-Isomorphism

Question

How can we prove that two graphs G0 and G1 are NOT isomorphic?

The Protocol:
1 V chooses b  {0, 1}, and applies a random permutation ⇡ to the

vertices of Gb and sends this graph G ⇤ to P
2 P determines if G ⇤ is isomorphic to G0 and sends b0 = 0 if so, or

b0 = 1 otherwise back to V
3 V accepts if b0 = b

Why This Works:
1 (Completeness) Suppose that G0 and G1 are not isomorphic.

Then G⇤ can only be isomorphic to one of the two graphs
P can perfectly determine which one this is
So Pr[b0 = b] = 1

2 (Soundness) Suppose that G0 and G1 are isomorphic
Then G⇤ is isomorphic to both G0 and G1

P has no way to tell which one V started from
Thus, Pr[b0 = b] = 1/2
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Another Example – Polynomial Identity Testing

PIT Problem

Prover P has a degree d polynomial f and wants to prove that

8x , f (x) = 0

V is allowed to query f (x) at points x of its choice – but, P knows
V ’s strategy

Question: What should V do?

Suppose that V is deterministic:

What if you allow V to be randomized:
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Languages in IP

P ✓ IP
NP ✓ IP
Graph Non-Isomorphism 2 IP
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Zero-Knowledge Proofs

Consider an interactive proof between Prover (P) and Verifier (V ):

hP ,V i(x)

Define V ’s view of this interaction by:

VIEWV (hP ,V i(x))

This includes:

V ’s randomness
Any messages that V receives

Zero-Knowledge Proof

A proof hP ,V i(x) for a language L is zero-knowledge if

For any (possibly malicious) poly-time verifier V ⇤

There exists a poly-time Simulator S s.t.

8x 2 L, VIEWV ⇤(hP ,V ⇤i(x)) = S(x)
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Define V ’s view of this interaction by:

VIEWV (hP ,V i(x))

This includes:

V ’s randomness
Any messages that V receives

Zero-Knowledge Proof

A proof hP ,V i(x) for a language L is zero-knowledge if

For any (possibly malicious) poly-time verifier V ⇤

There exists a poly-time Simulator S s.t.
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Graph Isomorphism

Input: x = (G0,G1)
Prover’s goal: Prove that he knows permutation ⇡ s.t. ⇡(G0) = G1

The Proof

1 P chooses b  {0, 1} and a random permutation � and sends
H = �(Gb) to V

2 V chooses b0  {0, 1} and sends it to P

3 P sends V the permutation ⇡0 mapping Gb0 to H

⇡0 =

8
<

:

� if b = b0

�⇡�1 if b = 0, b0 = 1
�⇡ if b = 1, b0 = 0

4 V accepts i↵ H = ⇡0(Gb0)
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Outline

1 Lecture 25 Review

2 Complexity Theory
P
NP
Poly-time Reductions and NP-Completeness
Interactive Proofs
Zero-Knowledge Proofs

3 Computability
Turing Machines and Decidable Languages
Languages Recognized by TMs
Undecidable Languages
Proofs by Reduction

4 Automata and Languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 25, 2024 31 / 37



Outline

1 Lecture 25 Review

2 Complexity Theory
P
NP
Poly-time Reductions and NP-Completeness
Interactive Proofs
Zero-Knowledge Proofs

3 Computability
Turing Machines and Decidable Languages
Languages Recognized by TMs
Undecidable Languages
Proofs by Reduction

4 Automata and Languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 25, 2024 32 / 37



Outline

1 Lecture 25 Review

2 Complexity Theory
P
NP
Poly-time Reductions and NP-Completeness
Interactive Proofs
Zero-Knowledge Proofs

3 Computability
Turing Machines and Decidable Languages
Languages Recognized by TMs
Undecidable Languages
Proofs by Reduction

4 Automata and Languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 25, 2024 33 / 37



Outline

1 Lecture 25 Review

2 Complexity Theory
P
NP
Poly-time Reductions and NP-Completeness
Interactive Proofs
Zero-Knowledge Proofs

3 Computability
Turing Machines and Decidable Languages
Languages Recognized by TMs
Undecidable Languages
Proofs by Reduction

4 Automata and Languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 25, 2024 34 / 37



Outline

1 Lecture 25 Review

2 Complexity Theory
P
NP
Poly-time Reductions and NP-Completeness
Interactive Proofs
Zero-Knowledge Proofs

3 Computability
Turing Machines and Decidable Languages
Languages Recognized by TMs
Undecidable Languages
Proofs by Reduction

4 Automata and Languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 25, 2024 35 / 37



Outline

1 Lecture 25 Review

2 Complexity Theory
P
NP
Poly-time Reductions and NP-Completeness
Interactive Proofs
Zero-Knowledge Proofs

3 Computability
Turing Machines and Decidable Languages
Languages Recognized by TMs
Undecidable Languages
Proofs by Reduction

4 Automata and Languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing April 25, 2024 36 / 37



Exam

Exam Details:

Tuesday, May 7, 10:20-12:20

In the classroom

2 sheets (back-and-front) of notes are allowed

See you all there!
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