Foundations of Computing

Lecture 26 - Final Exam Review

Arkady Yerukhimovich

April 25, 2024

Outline

(1) Lecture 25 Review

(2) Complexity Theory

- \mathcal{P}
- NP
- Poly-time Reductions and \mathcal{N} P-Completeness
- Interactive Proofs
- Zero-Knowledge Proofs
(3) Computability
- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction
(4) Automata and Languages

Lecture 25 Review

- Zero-Knowledge Proofs
- Where's Waldo
- Puppy and Panda
- Graph Isomorphism
- 3-Coloring

We Are Done!

Welcome to the last lecture of CS 3313!!!

- Complete course evaluation form for 5 points on final exam

Outline

(1) Lecture 25 Review

(2) Complexity Theory

- \mathcal{P}
- $\mathcal{N P}$
- Poly-time Reductions and $\mathcal{N} \mathcal{P}$-Completeness
- Interactive Proofs
- Zero-Knowledge Proofs
(3) Computability
- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction
(4) Automata and Languages

Complexity Classes

Complexity Classes

- \mathcal{P}

Complexity Classes

- \mathcal{P}
- $\mathcal{N P}$

Complexity Classes

- \mathcal{P}
- $\mathcal{N P}$
- co- $\mathcal{N} \mathcal{P}$

Complexity Classes

- \mathcal{P}
- $\mathcal{N P}$
- co- $\mathcal{N P}$
- IP

Complexity Classes

- \mathcal{P}
- $\mathcal{N P}$
- co- $\mathcal{N P}$
- IP

Important

Make sure you know the definitions and relationships between these complexity classes.

Asymptotic Notation - Big-O

Definition

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}$, we say that $f(n)=O(g(n))$ if

- There exist positive integers c, n_{0} s.t. for all $n \geq n_{0}$

$$
f(n) \leq c g(n)
$$

Asymptotic Notation - Big-O

Definition

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}$, we say that $f(n)=O(g(n))$ if

- There exist positive integers c, n_{0} s.t. for all $n \geq n_{0}$

$$
f(n) \leq c g(n)
$$

Example

$$
f(n)=5 n^{3}+3 n^{2}+10 n+8
$$

Asymptotic Notation - Big-O

Definition

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}$, we say that $f(n)=O(g(n))$ if

- There exist positive integers c, n_{0} s.t. for all $n \geq n_{0}$

$$
f(n) \leq c g(n)
$$

Example

$$
f(n)=5 n^{3}+3 n^{2}+10 n+8
$$

- $f(n)=O\left(n^{3}\right)$

Asymptotic Notation - Big-O

Definition

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}$, we say that $f(n)=O(g(n))$ if

- There exist positive integers c, n_{0} s.t. for all $n \geq n_{0}$

$$
f(n) \leq c g(n)
$$

Example

$$
f(n)=5 n^{3}+3 n^{2}+10 n+8
$$

- $f(n)=O\left(n^{3}\right)$
- For every $n \geq 6, f(n) \leq 6 n^{3}$
- l.e., $n_{0}=6, c=6$

Asymptotic Notation - Big-O

Definition

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}$, we say that $f(n)=O(g(n))$ if

- There exist positive integers c, n_{0} s.t. for all $n \geq n_{0}$

$$
f(n) \leq c g(n)
$$

Example

$$
f(n)=5 n^{3}+3 n^{2}+10 n+8
$$

- $f(n)=O\left(n^{3}\right)$
- For every $n \geq 6, f(n) \leq 6 n^{3}$
- l.e., $n_{0}=6, c=6$
- Note that $f(n)=O\left(n^{4}\right)$

Outline

(1) Lecture 25 Review

(2) Complexity Theory

- \mathcal{P}
- NP
- Poly-time Reductions and $\mathcal{N} \mathcal{P}$-Completeness
- Interactive Proofs
- Zero-Knowledge Proofs
(3) Computability
- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction
(4) Automata and Languages

Complexity Class \mathcal{P}

Definition

\mathcal{P} is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

Complexity Class \mathcal{P}

Definition

\mathcal{P} is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

$$
\mathcal{P}=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

Complexity Class \mathcal{P}

Definition

\mathcal{P} is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

$$
\mathcal{P}=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

- \mathcal{P} corresponds to the class of "efficiently-solvable" problems

Complexity Class \mathcal{P}

Definition

\mathcal{P} is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

$$
\mathcal{P}=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

- \mathcal{P} corresponds to the class of "efficiently-solvable" problems
- \mathcal{P} is invariant for all models of computation polynomially-equivalent to 1-tape TM

Complexity Class \mathcal{P}

Definition

\mathcal{P} is the class of languages decidable in polynomial time on a 1-tape deterministic TM.

$$
\mathcal{P}=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

- \mathcal{P} corresponds to the class of "efficiently-solvable" problems
- \mathcal{P} is invariant for all models of computation polynomially-equivalent to 1-tape TM
- \mathcal{P} has nice closure properties

Problems in \mathcal{P}

- PATH
- RELPRIME
- Anything you saw in algorithms class

Outline

(1) Lecture 25 Review
(2) Complexity Theory

- P
- $\mathcal{N P}$
- Poly-time Reductions and $\mathcal{N} \mathcal{P}$-Completeness
- Interactive Proofs
- Zero-Knowledge Proofs
(3) Computability
- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction
(4) Automata and Languages

The Class $\mathcal{N P}$

Definition

$\mathcal{N P}$ is the class of languages that have polynomial time verifiers.

The Class $\mathcal{N P}$

Definition

$\mathcal{N P}$ is the class of languages that have polynomial time verifiers.

- We already saw that HAMPATH and SAT are in $\mathcal{N} \mathcal{P}$
- Every $L \in \mathcal{P}$ is also in $\mathcal{N} \mathcal{P}: \quad \mathcal{P} \subseteq \mathcal{N} \mathcal{P}$

The Class $\mathcal{N P}$

Definition

$\mathcal{N P}$ is the class of languages that have polynomial time verifiers.

- We already saw that HAMPATH and SAT are in $\mathcal{N} \mathcal{P}$
- Every $L \in \mathcal{P}$ is also in $\mathcal{N P}: \quad \mathcal{P} \subseteq \mathcal{N} \mathcal{P}$

Intuition

- \mathcal{P} is the class of problems where you can find a solution in poly-time

The Class $\mathcal{N P}$

Definition

$\mathcal{N P}$ is the class of languages that have polynomial time verifiers.

- We already saw that HAMPATH and SAT are in $\mathcal{N} \mathcal{P}$
- Every $L \in \mathcal{P}$ is also in $\mathcal{N P}: \quad \mathcal{P} \subseteq \mathcal{N} \mathcal{P}$

Intuition

- \mathcal{P} is the class of problems where you can find a solution in poly-time
- $\mathcal{N} \mathcal{P}$ is the class of problems where you can verify a solution in poly-time

The Class $\mathcal{N P}$

Definition

$\mathcal{N P}$ is the class of languages that have polynomial time verifiers.

- We already saw that HAMPATH and SAT are in $\mathcal{N} \mathcal{P}$
- Every $L \in \mathcal{P}$ is also in $\mathcal{N P}: \quad \mathcal{P} \subseteq \mathcal{N} \mathcal{P}$

Intuition

- \mathcal{P} is the class of problems where you can find a solution in poly-time
- $\mathcal{N P}$ is the class of problems where you can verify a solution in poly-time
- Question: $\mathcal{P} \stackrel{?}{=} \mathcal{N} \mathcal{P}$

The Class $\mathcal{N P}$ - Another Formulation

- $\mathcal{N P}$ stands for non-deterministic polynomial time
- $\mathcal{N P}$ is the set of languages decided by poly-time NTMs

The Class $\mathcal{N P}$ - Another Formulation

- $\mathcal{N P}$ stands for non-deterministic polynomial time
- $\mathcal{N P}$ is the set of languages decided by poly-time NTMs

Theorem

The two definitions of $\mathcal{N P}$ are equivalent - A language L is poly-time verifiable if and only if it is decided by a poly-time NTM.

The Class $\mathcal{N P}$ - Another Formulation

- $\mathcal{N P}$ stands for non-deterministic polynomial time
- $\mathcal{N P}$ is the set of languages decided by poly-time NTMs

Theorem

The two definitions of $\mathcal{N P}$ are equivalent - A language L is poly-time verifiable if and only if it is decided by a poly-time NTM.

Proof Idea:

- Need to prove both directions
- An NTM simulates the verifier by guessing the witness w

The Class $\mathcal{N P}$ - Another Formulation

- $\mathcal{N P}$ stands for non-deterministic polynomial time
- $\mathcal{N P}$ is the set of languages decided by poly-time NTMs

Theorem

The two definitions of $\mathcal{N P}$ are equivalent - A language L is poly-time verifiable if and only if it is decided by a poly-time NTM.

Proof Idea:

- Need to prove both directions
- An NTM simulates the verifier by guessing the witness w
- A verifier simulates the NTM by using the accepting branch as the witness

$\mathcal{P}, \mathcal{N P}$ and co- $\mathcal{N P}$

\mathcal{P}
 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x)=[x \in L]$

$\mathcal{P}, \mathcal{N P}$ and co- $\mathcal{N} \mathcal{P}$

\mathcal{P}

$L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x)=[x \in L]$

NP

$L \in \mathcal{N P}$ if there exists poly-time DTM V s.t.

- for $x \in L$, there exists a witness w s.t. $V(x, w)=1$
- for $x \notin L$, for all $w, V(x, w)=0$

$\mathcal{P}, \mathcal{N P}$ and co- $\mathcal{N P}$

\mathcal{P}

$L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x)=[x \in L]$

NP

$L \in \mathcal{N} \mathcal{P}$ if there exists poly-time DTM V s.t.

- for $x \in L$, there exists a witness w s.t. $V(x, w)=1$
- for $x \notin L$, for all $w, V(x, w)=0$

co- $\mathcal{N} \mathcal{P}$

$L \in \operatorname{co}-\mathcal{N P}$ if there exists poly-time DTM V s.t.

- for $x \notin L$, there exists a witness w s.t. $V(x, w)=1$
- for $x \in L$, for all $w, V(x, w)=0$

$\mathcal{P}, \mathcal{N P}$ and co- $\mathcal{N P}$

\mathcal{P}

$L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x)=[x \in L]$

$\mathcal{N P}$

$L \in \mathcal{N P}$ if there exists poly-time DTM V sit.

- for $x \in L$, there exists a witness w s.t. $V(x, w)=1$
- for $x \notin L$, for all $w, V(x, w)=0$

co- $\mathcal{N} \mathcal{P}$

$L \in \operatorname{co}-\mathcal{N} \mathcal{P}$ if there exists poly-time DTM V st.

- for $x \notin L$, there exists a witness w s.t. $V(x, w)=1$
- for $x \in L$, for all $w, V(x, w)=0$

Question:

NP cortaity all L

$$
\text { Is } \mathcal{P}=\mathcal{N} \mathcal{P}=\operatorname{co}-\mathcal{N} \mathcal{P} ?
$$

Problems in $\mathcal{N P}$

- CLIQUE

Problems in $\mathcal{N P}$

- CLIQUE
- Subset Sum

Problems in $\mathcal{N P}$

- CLIQUE
- Subset Sum
- Graph isomorphism

Problems in $\mathcal{N P}$

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity

Problems in $\mathcal{N P}$

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity
- Satisfiability

Problems in $\mathcal{N P}$

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity
- Satisfiability
- 3-SAT

Problems in $\mathcal{N P}$

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity
- Satisfiability
- 3-SAT
- Vertex cover

Problems in $\mathcal{N P}$

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity
- Satisfiability
- 3-SAT
- Vertex cover
- Independent set

Problems in $\mathcal{N P}$

- CLIQUE
- Subset Sum
- Graph isomorphism
- Graph Hamiltonicity
- Satisfiability
- 3-SAT
- Vertex cover
- Independent set
- and many more

Important

Make sure you know how to prove $L \in \mathcal{N} \mathcal{P}$

Outline

(1) Lecture 25 Review

(2) Complexity Theory

- \mathcal{P}
- NP
- Poly-time Reductions and $\mathcal{N} \mathcal{P}$-Completeness
- Interactive Proofs
- Zero-Knowledge Proofs
(2) Computability
- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction

4 Automata and Languages

Mapping Reductions

Mapping Reduction

Language A is mapping reducible to language $B\left(A \leq_{m} B\right)$ if there is a computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where for every x,

$$
x \in A \Longleftrightarrow f(x) \in B
$$

Mapping Reductions

Mapping Reduction

Language A is mapping reducible to language $B\left(A \leq_{m} B\right)$ if there is a computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where for every x,

$$
x \in A \Longleftrightarrow f(x) \in B
$$

Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language $B\left(A \leq_{P} B\right)$ if there is a poly-time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where for every x,

$$
x \in A \Longleftrightarrow f(x) \in B
$$

Mapping Reductions

Mapping Reduction

Language A is mapping reducible to language $B\left(A \leq_{m} B\right)$ if there is a computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where for every x,

$$
x \in A \Longleftrightarrow f(x) \in B
$$

Poly-time Mapping Reduction

Language A is poly-time mapping reducible to language $B\left(A \leq_{p} B\right)$ if there is a poly-time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where for every x,

$$
x \in A \Longleftrightarrow f(x) \in B
$$

- Poly-time reductions give an efficient way to convert membership testing in A to membership testing in B
- If B has a poly-time solution so does A

Poly-time Mapping Reductions

f runs in time poly $(|x|)$ on all inputs x

Why Poly-Time Reductions

Theorem

If $A \leq_{P} B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$
Proof:

- Let M be the poly-time TM deciding B
- Let f be the poly-time reduction from A to B
- Can construct M^{\prime} deciding A : $M^{\prime}=$ On input x :
(1) Compute $f(x)$
(2) Run $M(f(x))$ and output whatever M outputs

Why Poly-Time Reductions

Theorem

If $A \leq_{P} B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$
Proof:

- Let M be the poly-time TM deciding B
- Let f be the poly-time reduction from A to B
- Can construct M^{\prime} deciding A :
$M^{\prime}=$ On input x :
(1) Compute $f(x)$
(2) Run $M(f(x))$ and output whatever M outputs
- If $x \in A, f(x) \in B$ so M accepts
- If $x \notin A, f(x) \notin B$, so M rejects
- Since both f and M are poly-time, $M(f(x))$ is also poly-time

3 SAT \leq_{p} CLIQUE

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k\rangle$ where

$3 S A T \leq_{p}$ CLIQUE

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k\rangle$ where - If ϕ is satisfiable, G has a clique of size k

3 SAT \leq_{p} CLIQUE

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k\rangle$ where
- If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k

3 SAT \leq_{p} CLIQUE

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k\rangle$ where
- If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$

3 SAT \leq_{p} CLIQUE

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k\rangle$ where - If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$

3 SAT \leq_{p} CLIQUE

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k\rangle$ where
- If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$

- If ϕ is satisfiable then G has a k-clique

3 SAT \leq_{p} CLIQUE

- Need to show reduction f from 3SAT formula ϕ to $\langle G, k\rangle$ where
- If ϕ is satisfiable, G has a clique of size k
- If ϕ is not satisfiable, G has no clique of size k
- Consider $\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$

- If ϕ is satisfiable then G has a k-clique
- If G has a k-clique then ϕ is satisfiable

$\mathcal{N P}$-Completeness

Definition

A language B is $\mathcal{N} \mathcal{P}$-complete if

- $B \in \mathcal{N P}$
- For every language $A \in \mathcal{N} \mathcal{P}, A \leq_{P} B$

\mathcal{N}-Completeness

Definition

A language B is $\mathcal{N} \mathcal{P}$-complete if

- $B \in \mathcal{N P}$
- For every language $A \in \mathcal{N} \mathcal{P}, A \leq_{P} B$
- B is "as hard" as any language in $\mathcal{N P}$

\mathcal{N}-Completeness

Definition

A language B is $\mathcal{N} \mathcal{P}$-complete if

- $B \in \mathcal{N P}$
- For every language $A \in \mathcal{N} \mathcal{P}, A \leq_{P} B$
- B is "as hard" as any language in $\mathcal{N P}$
- To study hardness of $\mathcal{N P}$, enough to study hardness of some $\mathcal{N} \mathcal{P}$-complete problem

$\mathcal{N P}$-Completeness

Definition

A language B is $\mathcal{N} \mathcal{P}$-complete if

- $B \in \mathcal{N P}$
- For every language $A \in \mathcal{N} \mathcal{P}, A \leq_{P} B$
- B is "as hard" as any language in $\mathcal{N} \mathcal{P}$
- To study hardness of $\mathcal{N P}$, enough to study hardness of some $\mathcal{N} \mathcal{P}$-complete problem

Theorem

If B is $\mathcal{N} \mathcal{P}$-complete and $B \in \mathcal{P}$, then $\mathcal{P}=\mathcal{N} \mathcal{P}$

$\mathcal{N P}$-Completeness

Definition

A language B is $\mathcal{N P}$-complete if

- $B \in \mathcal{N P}$
- For every language $A \in \mathcal{N} \mathcal{P}, A \leq_{P} B$
- B is "as hard" as any language in $\mathcal{N P}$
- To study hardness of $\mathcal{N P}$, enough to study hardness of some $\mathcal{N} \mathcal{P}$-complete problem

Theorem

If B is $\mathcal{N} \mathcal{P}$-complete and $B \in \mathcal{P}$, then $\mathcal{P}=\mathcal{N} \mathcal{P}$

Theorem

If B is $\mathcal{N} \mathcal{P}$-complete and $B \leq_{P} C$ for $C \in \mathcal{N} \mathcal{P}$, then C is $\mathcal{N} \mathcal{P}$-complete

$\mathcal{N P}$-Complete Languages

(1) SAT is $\mathcal{N} \mathcal{P}$-complete

$\mathcal{N P}$-Complete Languages

(1) SAT is $\mathcal{N P}$-complete
(2) 3-SAT is $\mathcal{N} \mathcal{P}$-complete

$\mathcal{N P}$-Complete Languages

(1) SAT is $\mathcal{N} \mathcal{P}$-complete
(2) 3-SAT is $\mathcal{N} \mathcal{P}$-complete
(3) 3-SAT \leq_{P} CLIQUE - So CLIQUE in $\mathcal{N} \mathcal{P}$-complete

$\mathcal{N P}$-Complete Languages

(1) SAT is $\mathcal{N} \mathcal{P}$-complete
(2) 3-SAT is $\mathcal{N P}$-complete
(3) 3-SAT \leq_{P} CLIQUE - So CLIQUE in $\mathcal{N} \mathcal{P}$-complete
(9) 3-SAT \leq_{P} Vertex Cover

$\mathcal{N P}$-Complete Languages

(1) SAT is $\mathcal{N} \mathcal{P}$-complete
(2) 3-SAT is $\mathcal{N} \mathcal{P}$-complete
(3) 3-SAT \leq_{P} CLIQUE - So CLIQUE in $\mathcal{N} \mathcal{P}$-complete
(9) 3-SAT \leq_{P} Vertex Cover
(6) Vertex Cover \leq_{P} Independent Set

$\mathcal{N P}$-Complete Languages

(1) SAT is $\mathcal{N} \mathcal{P}$-complete
(2) 3-SAT is $\mathcal{N P}$-complete
(3) 3-SAT \leq_{P} CLIQUE - So CLIQUE in $\mathcal{N} \mathcal{P}$-complete
(9) 3-SAT \leq_{P} Vertex Cover
(5) Vertex Cover \leq_{p} Independent Set
(0) 3-SAT \leq_{P} 3-Color

$\mathcal{N P}$-Complete Languages

(1) SAT is $\mathcal{N} \mathcal{P}$-complete
(2) 3-SAT is $\mathcal{N} \mathcal{P}$-complete
(3) 3-SAT \leq_{P} CLIQUE - So CLIQUE in $\mathcal{N} \mathcal{P}$-complete
(9) 3-SAT \leq_{p} Vertex Cover
(5) Vertex Cover \leq_{p} Independent Set
(3-SAT \leq_{P} 3-Color
(- More on the HW

$\mathcal{N P}$-Complete Languages

(1) SAT is $\mathcal{N} \mathcal{P}$-complete
(2) 3-SAT is $\mathcal{N} \mathcal{P}$-complete
(3) 3-SAT \leq_{P} CLIQUE - So CLIQUE in $\mathcal{N} \mathcal{P}$-complete
(9) 3-SAT \leq_{p} Vertex Cover
(5) Vertex Cover \leq_{p} Independent Set
(3-SAT \leq_{P} 3-Color
(- More on the HW

Important

Make sure you remember what direction the reduction should go.

Outline

(1) Lecture 25 Review

(2) Complexity Theory

- \mathcal{P}
- $\mathcal{N P}$
- Poly-time Reductions and NP-Completeness
- Interactive Proofs
- Zero-Knowledge Proofs
(3) Computability
- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction
(4) Automata and Languages

The Class $\mathcal{I P}$

Definition

$L \in \mathcal{I P}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in $|x|$) s.t.

The Class $\mathcal{I P}$

Definition

$L \in \mathcal{I P}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in $|x|$) s.t.
(1) (Completeness) If $x \in L$, then $\operatorname{Pr}[\langle P, V\rangle(x)=1]=1$

The Class IP

Definition

$L \in \mathcal{I P}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in $|x|$) s.t.
(1) (Completeness) If $x \in L$, then $\operatorname{Pr}[\langle P, V\rangle(x)=1]=1$
(2) (Soundness) If $x \notin L$, then for any (possibly unbounded) P^{*}, we have $\operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle(x)=1\right] \leq 1 / 2$

NP

The Class $\mathcal{I P}$

Definition

$L \in \mathcal{I P}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in $|x|$) s.t.
(1) (Completeness) If $x \in L$, then $\operatorname{Pr}[\langle P, V\rangle(x)=1]=1$
(2) (Soundness) If $x \notin L$, then for any (possibly unbounded) P^{*}, we have $\operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle(x)=1\right] \leq 1 / 2$

Graph Non-Isomorphism
Question
How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
GNI $\epsilon \operatorname{co-NP}$

1. $\forall x \notin G N I, ~ \exists w$ set. $V(x,-)=1$
$\omega=$ the isomorphism
2. $F x \in$ GNT, 各 \sim.. $V(x, v)=1$

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P input: $\left(G_{0}, G_{1}\right)$

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic.

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic. - Then G^{*} can only be isomorphic to one of the two graphs

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic.

- Then G^{*} can only be isomorphic to one of the two graphs
- P can perfectly determine which one this is

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic.

- Then G^{*} can only be isomorphic to one of the two graphs
- P can perfectly determine which one this is
- So $\operatorname{Pr}\left[b^{\prime}=b\right]=1$

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic.

- Then G^{*} can only be isomorphic to one of the two graphs
- P can perfectly determine which one this is
- So $\operatorname{Pr}\left[b^{\prime}=b\right]=1$
(2) (Soundness) Suppose that G_{0} and G_{1} are isomorphic

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic.

- Then G^{*} can only be isomorphic to one of the two graphs
- P can perfectly determine which one this is
- So $\operatorname{Pr}\left[b^{\prime}=b\right]=1$
(2) (Soundness) Suppose that G_{0} and G_{1} are isomorphic
- Then G^{*} is isomorphic to both G_{0} and G_{1}

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic.

- Then G^{*} can only be isomorphic to one of the two graphs
- P can perfectly determine which one this is
- So $\operatorname{Pr}\left[b^{\prime}=b\right]=1$
(2) (Soundness) Suppose that G_{0} and G_{1} are isomorphic
- Then G^{*} is isomorphic to both G_{0} and G_{1}
- P has no way to tell which one V started from

Graph Non-Isomorphism

Question

How can we prove that two graphs G_{0} and G_{1} are NOT isomorphic?
The Protocol:
(1) V chooses $b \leftarrow\{0,1\}$, and applies a random permutation π to the vertices of G_{b} and sends this graph G^{*} to P
(2) P determines if G^{*} is isomorphic to G_{0} and sends $b^{\prime}=0$ if so, or $b^{\prime}=1$ otherwise back to V
(3) V accepts if $b^{\prime}=b$

Why This Works:
(1) (Completeness) Suppose that G_{0} and G_{1} are not isomorphic.

- Then G^{*} can only be isomorphic to one of the two graphs
- P can perfectly determine which one this is
- So $\operatorname{Pr}\left[b^{\prime}=b\right]=1$
(2) (Soundness) Suppose that G_{0} and G_{1} are isomorphic
- Then G^{*} is isomorphic to both G_{0} and G_{1}
- P has no way to tell which one V started from
- Thus, $\operatorname{Pr}\left[b^{\prime}=b\right]=1 / 2$

Another Example - Polynomial Identity Testing

PIT Problem

Another Example - Polynomial Identity Testing

PIT Problem

- Prover P has a degree d polynomial f and wants to prove that

$$
\forall x, f(x)=0
$$

Another Example - Polynomial Identity Testing

PIT Problem

- Prover P has a degree d polynomial f and wants to prove that

$$
\forall x, f(x)=0
$$

- V is allowed to query $f(x)$ at points x of its choice - but, P knows V 's strategy

Another Example - Polynomial Identity Testing

PIT Problem

- Prover P has a degree d polynomial f and wants to prove that

$$
\forall x, f(x)=0
$$

- V is allowed to query $f(x)$ at points x of its choice - but, P knows V's strategy

Question: What should V do?

Another Example - Polynomial Identity Testing

PIT Problem

- Prover P has a degree d polynomial f and wants to prove that

$$
\forall x, f(x)=0
$$

- V is allowed to query $f(x)$ at points x of its choice - but, P knows V's strategy

Question: What should V do?

- Suppose that V is deterministic:

Another Example - Polynomial Identity Testing

PIT Problem

- Prover P has a degree d polynomial f and wants to prove that

$$
\forall x, f(x)=0
$$

- V is allowed to query $f(x)$ at points x of its choice - but, P knows V's strategy

Question: What should V do?

- Suppose that V is deterministic:
- What if you allow V to be randomized:

Languages in $\mathcal{I P}$

- $\mathcal{P} \subseteq \mathcal{I P}$
- $\mathcal{N P} \subseteq \mathcal{I P}$
- Graph Non-Isomorphism $\in \mathcal{I P}$

Outline

(1) Lecture 25 Review

(2) Complexity Theory

- \mathcal{P}
- NP
- Poly-time Reductions and NP-Completeness
- Interactive Proofs
- Zero-Knowledge Proofs
(3) Computability
- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction
(4) Automata and Languages

Zero-Knowledge Proofs

Consider an interactive proof between Prover (P) and Verifier (V) :

$$
\langle P, V\rangle(x)
$$

Zero-Knowledge Proofs

Consider an interactive proof between Prover (P) and Verifier (V) :

$$
\langle P, V\rangle(x)
$$

Define V 's view of this interaction by:

$$
\operatorname{VIEW}_{V}(\langle P, V\rangle(x))
$$

Zero-Knowledge Proofs

Consider an interactive proof between Prover (P) and Verifier (V) :

$$
\langle P, V\rangle(x)
$$

Define V's view of this interaction by:

$$
\operatorname{VIEW}_{V}(\langle P, V\rangle(x))
$$

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proofs

Consider an interactive proof between Prover (P) and Verifier (V) :

$$
\langle P, V\rangle(x)
$$

Define V's view of this interaction by:

$$
\operatorname{VIEW}_{V}(\langle P, V\rangle(x))
$$

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proof

A proof $\langle P, V\rangle(x)$ for a language L is zero-knowledge if

Zero-Knowledge Proofs

Consider an interactive proof between Prover (P) and Verifier (V) :

$$
\langle P, V\rangle(x)
$$

Define V's view of this interaction by:

$$
\operatorname{VIEW}_{V}(\langle P, V\rangle(x))
$$

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proof

A proof $\langle P, V\rangle(x)$ for a language L is zero-knowledge if

- For any (possibly malicious) poly-time verifier V^{*}

Zero-Knowledge Proofs

Consider an interactive proof between Prover (P) and Verifier (V) :

$$
\langle P, V\rangle(x)
$$

Define V 's view of this interaction by:

$$
\operatorname{VIEW}_{V}(\langle P, V\rangle(x))
$$

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proof

A proof $\langle P, V\rangle(x)$ for a language L is zero-knowledge if

- For any (possibly malicious) poly-time verifier V^{*}
- There exists a poly-time Simulator S s.t.

$$
\forall x \in L, \quad \operatorname{VIE}_{V^{*}}\left(\left\langle P, V^{*}\right\rangle(x)\right)=S(x)
$$

Graph Isomorphism

Input: $x=\left(G_{0}, G_{1}\right)$
Prover's goal: Prove that he knows permutation π s.t. $\pi\left(G_{0}\right)=G_{1}$

Graph Isomorphism

Input: $x=\left(G_{0}, G_{1}\right)$
Prover's goal: Prove that he knows permutation π s.t. $\pi\left(G_{0}\right)=G_{1}$

The Proof

Graph Isomorphism

Input: $x=\left(G_{0}, G_{1}\right)$
Prover's goal: Prove that he knows permutation π s.t. $\pi\left(G_{0}\right)=G_{1}$

The Proof

(1) P chooses $b \leftarrow\{0,1\}$ and a random permutation σ and sends $H=\sigma\left(G_{b}\right)$ to V

Graph Isomorphism

Input: $x=\left(G_{0}, G_{1}\right)$
Prover's goal: Prove that he knows permutation π s.t. $\pi\left(G_{0}\right)=G_{1}$

The Proof

(1) P chooses $b \leftarrow\{0,1\}$ and a random permutation σ and sends $H=\sigma\left(G_{b}\right)$ to V
(2) V chooses $b^{\prime} \leftarrow\{0,1\}$ and sends it to P

Graph Isomorphism

Input: $x=\left(G_{0}, G_{1}\right)$
Prover's goal: Prove that he knows permutation π s.t. $\pi\left(G_{0}\right)=G_{1}$

The Proof

(1) P chooses $b \leftarrow\{0,1\}$ and a random permutation σ and sends $H=\sigma\left(G_{b}\right)$ to V
(2) V chooses $b^{\prime} \leftarrow\{0,1\}$ and sends it to P
(3) P sends V the permutation π^{\prime} mapping $G_{b^{\prime}}$ to H

$$
\pi^{\prime}= \begin{cases}\sigma & \text { if } b=b^{\prime} \\ \sigma \pi^{-1} & \text { if } b=0, b^{\prime}=1 \\ \sigma \pi & \text { if } b=1, b^{\prime}=0\end{cases}
$$

Graph Isomorphism

Input: $x=\left(G_{0}, G_{1}\right)$
Prover's goal: Prove that he knows permutation π s.t. $\pi\left(G_{0}\right)=G_{1}$

The Proof

(1) P chooses $b \leftarrow\{0,1\}$ and a random permutation σ and sends $H=\sigma\left(G_{b}\right)$ to V
(2) V chooses $b^{\prime} \leftarrow\{0,1\}$ and sends it to P
(3) P sends V the permutation π^{\prime} mapping $G_{b^{\prime}}$ to H

$$
\pi^{\prime}= \begin{cases}\sigma & \text { if } b=b^{\prime} \\ \sigma \pi^{-1} & \text { if } b=0, b^{\prime}=1 \\ \sigma \pi & \text { if } b=1, b^{\prime}=0\end{cases}
$$

(c) V accepts iff $H=\pi^{\prime}\left(G_{b^{\prime}}\right)$

Outline

(1) Lecture 25 Review

a Complexity Theory

- \mathcal{P}
- NP
- Poly-time Reductions and NP-Completeness
- Interactive Proofs
- Zero-Knowledge Proofs
(3) Computability
- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction
(4) Automata and Languages

Outline

(1) Lecture 25 Review

(2) Complexity Theory

- \mathcal{P}
- NP
- Poly-time Reductions and NP-Completeness
- Interactive Proofs
- Zero-Knowledge Proofs
(3) Computability
- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction
(4) Automata and Languages

Outline

(1) Lecture 25 Review

(a) Complexity Theory

- \mathcal{P}
- $\mathcal{N P}$
- Poly-time Reductions and NP-Completeness
- Interactive Proofs
- Zero-Knowledge Proofs
(3) Computability
- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction
(a) Automata and Languages

Outline

(1) Lecture 25 Review

(a) Complexity Theory

- \mathcal{P}
- $\mathcal{N P}$
- Poly-time Reductions and NP-Completeness
- Interactive Proofs
- Zero-Knowledge Proofs
(3) Computability
- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction

4 Automata and Languages

Outline

(1) Lecture 25 Review

(a) Complexity Theory

- \mathcal{P}
- NP
- Poly-time Reductions and NP-Completeness
- Interactive Proofs
- Zero-Knowledge Proofs
(3) Computability
- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction
(4) Automata and Languages

Outline

(1) Lecture 25 Review
(a) Complexity Theory

- \mathcal{P}
- NP
- Poly-time Reductions and NP-Completeness
- Interactive Proofs
- Zero-Knowledge Proofs
(3) Computability
- Turing Machines and Decidable Languages
- Languages Recognized by TMs
- Undecidable Languages
- Proofs by Reduction
(4) Automata and Languages

Exam

Exam Details:

- Tuesday, May 7, 10:20-12:20
- In the classroom
- 2 sheets (back-and-front) of notes are allowed

See you all there!

