Foundations of Computing Lecture 3

Arkady Yerukhimovich

January 23, 2024

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

January 23, 2024

Lecture 2 Review

- 2 Regular Languages
- 3 Non-deterministic Finite Automata (NFA)
- 4 Example NFAs

< 4 ► >

- ∢ ⊒ →

э

- Language accepted by DFA M
- Building DFAs
- Proving Correctness of DFAs

3 N 3

3 Non-deterministic Finite Automata (NFA)

4 Example NFAs

Arkady Yerukhimovich

< 円

3. 3

- Last lecture we saw how to build DFA M to recognize a language L
- Learned to reason about machine M
- Recall that each machine M recognizes one language L(M)

- Last lecture we saw how to build DFA M to recognize a language L
- Learned to reason about machine M
- Recall that each machine M recognizes one language L(M)

Let's switch our perspective

Instead of reasoning about machines, let's focus on languages recognized by those machines.

Definition

A language L is regular if it is accepted (recognized) by a DFA.

< 円

3 N 3

Definition

A language L is regular if it is accepted (recognized) by a DFA.

Observations:

- All languages we have seen thus far are regular
- To prove that a language is regular just need to show DFA that recognizes it
- We will prove that regular languages correspond to regular expressions

Definition

A language L is regular if it is accepted (recognized) by a DFA.

Observations:

- All languages we have seen thus far are regular
- To prove that a language is regular just need to show DFA that recognizes it
- We will prove that regular languages correspond to regular expressions

Something to think about

Are all languages regular?

If L is a regular language, then \overline{L} is also regular

 \overline{L} is the language that consists of all strings not in L.

If L is a regular language, then \overline{L} is also regular

 \overline{L} is the language that consists of all strings not in L.

Intuition: Swap the accept and not accept states

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ recognize L

Construct $M' = (Q', \Sigma', \delta', q', F')$ that recognizes \overline{L}

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ recognize LConstruct $M' = (Q', \Sigma', \delta', q', F')$ that recognizes \overline{L} Q' = Q

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ recognize L

Construct $M' = (Q', \Sigma', \delta', q', F')$ that recognizes \overline{L}

Q' = Q

$$\mathbf{2} \ \Sigma' = \Sigma$$

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ recognize L

Construct $M' = (Q', \Sigma', \delta', q', F')$ that recognizes \overline{L}

- **1** Q' = Q
- ${\color{black} 2} \Sigma' = \Sigma$
- $\ \, {\bf 3} \ \, \delta' = \delta$

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ recognize L

Construct $M' = (Q', \Sigma', \delta', q', F')$ that recognizes \overline{L}

- Q' = Q
- $\mathbf{2} \ \Sigma' = \Sigma$
- ${\small \bigcirc } \ \delta' = \delta$
- 4 q' = q

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ recognize L

Construct $M' = (Q', \Sigma', \delta', q', F')$ that recognizes \overline{L}

- **1** Q' = Q
- **2** $\Sigma' = \Sigma$
- $\delta' = \delta$
- $\begin{array}{l} \bullet \quad q' = q \\ \bullet \quad F' = Q \setminus F \end{array}$

Arkady Yerukhimovich

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ recognize L

Construct $M' = (Q', \Sigma', \delta', q', F')$ that recognizes \overline{L}

- Q' = Q
- ${\color{black} 2} {\color{black} \Sigma'} = {\color{black} \Sigma}$
- ${\small \bigcirc } \ \delta' = \delta$
- ④ q' = q

Observe:

• If $w \in L \iff w \notin \overline{L}$, then M(w) stops in some $q \in F$, so $q \notin (Q \setminus F)$

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ recognize L

Construct $M' = (Q', \Sigma', \delta', q', F')$ that recognizes \overline{L}

- Q' = Q
- ${\color{black} 2} {\color{black} \Sigma'} = {\color{black} \Sigma}$
- ${\small \bigcirc } \ \delta' = \delta$
- q' = q

Observe:

- If $w \in L \iff w \notin \overline{L}$, then M(w) stops in some $q \in F$, so $q \notin (Q \setminus F)$ ______
- If $w \notin L \iff w \in \overline{L}$, then M(w) stops in some $q \notin F$, so $q \in (Q \setminus F)$

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

S(u. 13) E. (1. 13)

 $L_1 \cup L_2$ is the language consisting of all strings either in L_1 or L_2

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

 $L_1 \cup L_2$ is the language consisting of all strings either in L_1 or L_2

Intuition: Run both machines in parallel and accept if either of them stops in an accept state

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize L_1 , and $M_2 = ((Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize L_2

Construct $M = (Q, \Sigma, \delta, q, F)$ that recognizes $L_1 \cup L_2$

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize L_1 , and $M_2 = ((Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize L_2

Construct $M = (Q, \Sigma, \delta, q, F)$ that recognizes $L_1 \cup L_2$

1
$$Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$$

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

Proof: Let
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize L_1 , and
 $M_2 = ((Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize L_2

Construct $M = (Q, \Sigma, \delta, q, F)$ that recognizes $L_1 \cup L_2$

1
$$Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$$

2 $\Sigma - \Sigma$

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

Proof: Let
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize L_1 , and $M_2 = ((Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize L_2

Construct $M = (Q, \Sigma, \delta, q, F)$ that recognizes $L_1 \cup L_2$

1
$$Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$$

$$2 \Sigma = \Sigma$$

 \bullet is as follows. For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$

$$\delta((r_1, r_2), \mathbf{a}) = (\delta_1(r_1, \mathbf{a}), \delta_2(r_2, \mathbf{a}))$$

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

Proof: Let
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize L_1 , and
 $M_2 = ((Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize L_2

Construct $M = (Q, \Sigma, \delta, q, F)$ that recognizes $L_1 \cup L_2$

•
$$Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$$

$$\mathbf{2} \ \Sigma = \Sigma$$

 δ is as follows. For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

Proof: Let
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize L_1 , and
 $M_2 = ((Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize L_2

Construct $M = (Q, \Sigma, \delta, q, F)$ that recognizes $L_1 \cup L_2$

•
$$Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$$

$$\mathbf{2} \ \Sigma = \Sigma$$

 \bullet is as follows. For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$

•
$$q_0 = (q_1, q_2)$$

• $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Closure Under Intersection

If L_1 and L_2 are both regular languages then $L_1 \cap L_2$ is also regular

 $L_1 \cap L_2$ is the language consisting of all strings in both L_1 and L_2

Closure Under Intersection

If L_1 and L_2 are both regular languages then $L_1 \cap L_2$ is also regular

 $L_1 \cap L_2$ is the language consisting of all strings in both L_1 and L_2

Intuition: Run both machines in parallel (same as for union) and accept if BOTH of them stop in an accept state

Closure Under Concatenation

If L_1 and L_2 are both regular languages then $L_1 \circ L_2$ is also regular

 $L_1 \circ L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$

3 Non-deterministic Finite Automata (NFA)

4 Example NFAs

Arkady Yerukhimovich

- (日)

< ∃⇒

э

Deterministic Finite Automaton

- For every state q and every symbol x, exactly one value δ(q, x) is defined
- State transitions only on an input symbol
- Execution of DFA is fully determined

Deterministic Finite Automaton

- For every state q and every symbol x, exactly one value δ(q, x) is defined
- State transitions only on an input symbol
- Execution of DFA is fully determined

Nondeterministic Finite Automaton

- Allow multiple transitions for same state and symbol (e.g., $\delta(q1,1) = \{q2,q3\})$
- Allow empty (ϵ) transitions transitions not requiring an input

Deterministic Finite Automaton

- For every state q and every symbol x, exactly one value δ(q, x) is defined
- State transitions only on an input symbol
- Execution of DFA is fully determined

Nondeterministic Finite Automaton

- Allow multiple transitions for same state and symbol (e.g., $\delta(q1,1) = \{q2,q3\})$
- Allow empty (ϵ) transitions transitions not requiring an input

What is going on here?!?

What does non-determinism mean?

э January 23, 2024

▶ < ∃ >

3

< 47 ▶

▶ < ∃ >

æ

Input: 010 Input: 010110

Arkady Yerukhimovich

< 日

< ∃ →

æ

Input: 010 Input: 010110 Question: What language does this recognize?

Understanding Nondeterminism

Interpretation 1: Try all paths in parallel

If any path leads to accept then accept

Arkady Yerukhimovich

Interpretation 2: Guess and verify

э

Interpretation 2: Guess and verify

• M stays in q_1 until it "guesses" next input is 11 or 101

Interpretation 2: Guess and verify

- *M* stays in *q*₁ until it "guesses" next input is 11 or 101
- Verifies that this guess was correct on path to q₄

Interpretation 3: Verifying a proof vs. finding a solution Consider the execution of a finite automaton

- **•** DFA execution on input *x*:
 - A DFA must follow an exact path to an accept state
 - Input x must specify path to an accept state if $x \in L(M)$

- **•** DFA execution on input *x*:
 - A DFA must follow an exact path to an accept state
 - Input x must specify path to an accept state if $x \in L(M)$
- INFA execution on input x

- **•** DFA execution on input *x*:
 - A DFA must follow an exact path to an accept state
 - Input x must specify path to an accept state if $x \in L(M)$
- **2** NFA execution on input x
 - Input x alone does not necessarily take you to an accept state

- **OFA** execution on input *x*:
 - A DFA must follow an exact path to an accept state
 - Input x must specify path to an accept state if $x \in L(M)$
- In NFA execution on input x
 - Input x alone does not necessarily take you to an accept state
 - Need to somehow choose which edge to take whenever there is a choice

Consider the execution of a finite automaton

- **•** DFA execution on input *x*:
 - A DFA must follow an exact path to an accept state
 - Input x must specify path to an accept state if $x \in L(M)$
- In NFA execution on input x
 - Input x alone does not necessarily take you to an accept state
 - Need to somehow choose which edge to take whenever there is a choice
 - Can view this sequence of nondeterministic choices as a "witness" w that allows you to verify that $x \in L(M)$

Important

For any $x \notin L$, there must be no path to an accepting state – no possible "witness" works

Nondeterministic Finite Automaton - Formal Definition

Nondeterministic Finite Automaton (NFA)

An NFA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where:

- Q is a finite set of states
- Σ is a finite input alphabet
- $\delta: Q imes (\Sigma \cup \{\epsilon\}) o P(Q)$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Recall:

P(Q) is the power set of Q, i.e., the set of all subsets of Q

Nondeterministic Finite Automaton - Formal Definition

Nondeterministic Finite Automaton (NFA)

An NFA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where:

- Q is a finite set of states
- Σ is a finite input alphabet
- $\delta: Q imes (\Sigma \cup \{\epsilon\}) o P(Q)$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Recall:

P(Q) is the power set of Q, i.e., the set of all subsets of Q

Changes:

- **1** Transition function allows empty symbol (ϵ)
- Output of transition function is a set of states ∈ P(Q), not a single state in Q

Lecture 2 Review

- 2 Regular Languages
- 3 Non-deterministic Finite Automata (NFA)

Arkady Yerukhimovich

< 円

3. 3

NFA Example 1

Question: What is L(M)?

Arkady Yerukhimovich

æ

How does it work?

• M waits in q_1 until it "guesses" that it is 3 symbols from the end

How does it work?

- M waits in q_1 until it "guesses" that it is 3 symbols from the end
- Uses the rest of the states to verify that 1 is third from the end

How does it work?

- M waits in q_1 until it "guesses" that it is 3 symbols from the end
- Uses the rest of the states to verify that 1 is third from the end
- DFA doing the same thing would have to track the last three bits seen – requires 8 states

- $L = \{x | x \in \{0,1\}^* \text{ and } x \text{ contains}$
 - the substring 101, or
 - the substring 010

Arkady Yerukhimovich

3 N 3

- $L = \{x | x \in \{0,1\}^* \text{ and } x \text{ contains}$
 - the substring 101, or
 - the substring 010

Arkady Yerukhimovich

- $L = \{x | x \in \{0, 1\}^* \text{ and } x \text{ contains}$
 - the substring 101, or
 - the substring 010

- $L = \{x | x \in \{0, 1\}^* \text{ and } x \text{ contains}$
 - the substring 101, or
 - the substring 010

