Foundations of Computing

Lecture 3

Arkady Yerukhimovich

January 23, 2024

Outline

(1) Lecture 2 Review

(2) Regular Languages

3 Non-deterministic Finite Automata (NFA)

(4) Example NFAs

Lecture 2 Review

- Language accepted by DFA M
- Building DFAs
- Proving Correctness of DFAs

Outline

(1) Lecture 2 Review

(2) Regular Languages

3 Non-deterministic Finite Automata (NFA)

(4) Example NFAs

From Machines to Languages

- Last lecture we saw how to build DFA M to recognize a language L
- Learned to reason about machine M
- Recall that each machine M recognizes one language $L(M)$

From Machines to Languages

- Last lecture we saw how to build DFA M to recognize a language L
- Learned to reason about machine M
- Recall that each machine M recognizes one language $L(M)$

Let's switch our perspective

Instead of reasoning about machines, let's focus on languages recognized by those machines.

Regular Language

Definition

A language L is regular if it is accepted (recognized) by a DFA.

Regular Language

Definition

A language L is regular if it is accepted (recognized) by a DFA.
Observations:

- All languages we have seen thus far are regular
- To prove that a language is regular just need to show DFA that recognizes it
- We will prove that regular languages correspond to regular expressions

Regular Language

Definition

A language L is regular if it is accepted (recognized) by a DFA.
Observations:

- All languages we have seen thus far are regular
- To prove that a language is regular just need to show DFA that recognizes it
- We will prove that regular languages correspond to regular expressions

Something to think about

Are all languages regular?

Properties of Regular Languages

Closure under Complement

If L is a regular language, then \bar{L} is also regular
\bar{L} is the language that consists of all strings not in L.

Properties of Regular Languages

Closure under Complement
 If L is a regular language, then \bar{L} is also regular

\bar{L} is the language that consists of all strings not in L.
Intuition: Swap the accept and not accept states

Properties of Regular Languages

Closure under Complement

If L is a regular language, then \bar{L} is also regular
Proof: Let $M=\left(\mathbb{Q}, \Sigma, \delta^{\nu}, q^{v}, F\right)$ recognize L
Construct $M^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q^{\prime}, F^{\prime}\right)$ that recognizes \bar{L}

Properties of Regular Languages

Closure under Complement

If L is a regular language, then \bar{L} is also regular
Proof: Let $M=(Q, \Sigma, \delta, q, F)$ recognize L
Construct $M^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q^{\prime}, F^{\prime}\right)$ that recognizes \bar{L}
(1) $Q^{\prime}=Q$

Properties of Regular Languages

Closure under Complement

If L is a regular language, then \bar{L} is also regular
Proof: Let $M=(Q, \Sigma, \delta, q, F)$ recognize L
Construct $M^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q^{\prime}, F^{\prime}\right)$ that recognizes \bar{L}
(1) $Q^{\prime}=Q$
(2) $\Sigma^{\prime}=\Sigma$

Properties of Regular Languages

Closure under Complement

If L is a regular language, then \bar{L} is also regular
Proof: Let $M=(Q, \Sigma, \delta, q, F)$ recognize L
Construct $M^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q^{\prime}, F^{\prime}\right)$ that recognizes \bar{L}
(1) $Q^{\prime}=Q$
(2) $\Sigma^{\prime}=\Sigma$
(3) $\delta^{\prime}=\delta$

Properties of Regular Languages

Closure under Complement

If L is a regular language, then \bar{L} is also regular
Proof: Let $M=(Q, \Sigma, \delta, q, F)$ recognize L
Construct $M^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q^{\prime}, F^{\prime}\right)$ that recognizes \bar{L}
(1) $Q^{\prime}=Q$
(2) $\Sigma^{\prime}=\Sigma$
(3) $\delta^{\prime}=\delta$
(9) $q^{\prime}=q$

Properties of Regular Languages

Closure under Complement

If L is a regular language, then \bar{L} is also regular
Proof: Let $M=(Q, \Sigma, \delta, q, F)$ recognize L
Construct $M^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q^{\prime}, F^{\prime}\right)$ that recognizes \bar{L}
(1) $Q^{\prime}=Q$
(2) $\Sigma^{\prime}=\Sigma$
(0) $\delta^{\prime}=\delta$
(1) $q^{\prime}=q$

- $F^{\prime}=Q \backslash \mathbb{E}$

Properties of Regular Languages

Closure under Complement

If L is a regular language, then \bar{L} is also regular
Proof: Let $M=(Q, \Sigma, \delta, q, F)$ recognize L
Construct $M^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q^{\prime}, F^{\prime}\right)$ that recognizes \bar{L}
(1) $Q^{\prime}=Q$
(2) $\Sigma^{\prime}=\Sigma$
(3) $\delta^{\prime}=\delta$
(1) $q^{\prime}=q$
(0) $F^{\prime}=Q \backslash F$

Observe:

- If $w \in L \Longleftrightarrow w \notin \bar{L}$, then $M(w)$ stops in some $q \in F$, so $q \notin(Q \backslash F)$

Properties of Regular Languages

Closure under Complement

If L is a regular language, then \bar{L} is also regular
Proof: Let $M=(Q, \Sigma, \delta, q, F)$ recognize L
Construct $M^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q^{\prime}, F^{\prime}\right)$ that recognizes \bar{L}
(1) $Q^{\prime}=Q$
(2) $\Sigma^{\prime}=\Sigma$
(3) $\delta^{\prime}=\delta$
(1) $q^{\prime}=q$
(0) $F^{\prime}=Q \backslash F$

Observe:

- If $w \in L \Longleftrightarrow w \notin \bar{L}$, then $M(w)$ stops in some $q \in F$, so $q \notin(Q \backslash F)$
- If $w \notin L \Longleftrightarrow w \in \bar{L}$, then $M(w)$ stops in some $q \notin F$, so $q \in(Q \backslash F)$

Properties of Regular Languages

Closure Under Union

If L_{1} and L_{2} are both regular languages then $L_{1} \cup L_{2}$ is also regular
$L_{1} \cup L_{2}$ is the language consisting of all strings either in L_{1} or L_{2}

Properties of Regular Languages

Closure Under Union

If L_{1} and L_{2} are both regular languages then $L_{1} \cup L_{2}$ is also regular
$L_{1} \cup L_{2}$ is the language consisting of all strings either in L_{1} or L_{2}
Intuition: Run both machines in parallel and accept if either of them stops in an accept state

Properties of Regular Languages

Closure Under Union

If L_{1} and L_{2} are both regular languages then $L_{1} \cup L_{2}$ is also regular
Proof: Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize L_{1}, and $M_{2}=\left(\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)\right.$ recognize L_{2}

Construct $M=(Q, \Sigma, \delta, q, F)$ that recognizes $L_{1} \cup L_{2}$

Properties of Regular Languages

Closure Under Union

If L_{1} and L_{2} are both regular languages then $L_{1} \cup L_{2}$ is also regular
Proof: Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize L_{1}, and $M_{2}=\left(\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)\right.$ recognize L_{2}

Construct $M=(Q, \Sigma, \delta, q, F)$ that recognizes $L_{1} \cup L_{2}$
(1) $Q=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in Q_{1}\right.$ and $\left.r_{2} \in Q_{2}\right\}$

Properties of Regular Languages

Closure Under Union

If L_{1} and L_{2} are both regular languages then $L_{1} \cup L_{2}$ is also regular
Proof: Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize L_{1}, and $M_{2}=\left(\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)\right.$ recognize L_{2}

Construct $M=(Q, \Sigma, \delta, q, F)$ that recognizes $L_{1} \cup L_{2}$
(1) $Q=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in Q_{1}\right.$ and $\left.r_{2} \in Q_{2}\right\}$
(2) $\Sigma=\Sigma$

Properties of Regular Languages

Closure Under Union

If L_{1} and L_{2} are both regular languages then $L_{1} \cup L_{2}$ is also regular
Proof: Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize L_{1}, and $M_{2}=\left(\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)\right.$ recognize L_{2}

Construct $M=(Q, \Sigma, \delta, q, F)$ that recognizes $L_{1} \cup L_{2}$
(1) $Q=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in Q_{1}\right.$ and $\left.r_{2} \in Q_{2}\right\}$
(2) $\Sigma=\Sigma$
(3) δ is as follows. For each $\left(r_{1}, r_{2}\right) \in Q$ and each $a \in \Sigma$

$$
\underline{\delta\left(\left(r_{1}, r_{2}\right), a\right)=\left(\delta_{1}\left(r_{1}, a\right), \delta_{2}\left(r_{2}, a\right)\right)}
$$

Properties of Regular Languages

Closure Under Union

If L_{1} and L_{2} are both regular languages then $L_{1} \cup L_{2}$ is also regular
Proof: Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize L_{1}, and $M_{2}=\left(\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)\right.$ recognize L_{2}

Construct $M=(Q, \Sigma, \delta, q, F)$ that recognizes $L_{1} \cup L_{2}$
(1) $Q=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in Q_{1}\right.$ and $\left.r_{2} \in Q_{2}\right\}$
(2) $\Sigma=\Sigma$
(3) δ is as follows. For each $\left(r_{1}, r_{2}\right) \in Q$ and each $a \in \Sigma$

$$
\delta\left(\left(r_{1}, r_{2}\right), a\right)=\left(\delta_{1}\left(r_{1}, a\right), \delta_{2}\left(r_{2}, a\right)\right)
$$

(3) $q_{0}=\left(q_{1}, q_{2}\right)$

Properties of Regular Languages

Closure Under Union

If L_{1} and L_{2} are both regular languages then $L_{1} \cup L_{2}$ is also regular
Proof: Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize L_{1}, and $M_{2}=\left(\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)\right.$ recognize L_{2}

Construct $M=(Q, \Sigma, \delta, q, F)$ that recognizes $L_{1} \cup L_{2}$
(1) $Q=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in Q_{1}\right.$ and $\left.r_{2} \in Q_{2}\right\}$
(2) $\Sigma=\Sigma$
(3) δ is as follows. For each $\left(r_{1}, r_{2}\right) \in Q$ and each $a \in \Sigma$

$$
\delta\left(\left(r_{1}, r_{2}\right), a\right)=\left(\delta_{1}\left(r_{1}, a\right), \delta_{2}\left(r_{2}, a\right)\right)
$$

(9) $q_{0}=\left(q_{1}, q_{2}\right)$
(6) $F=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in F_{1}\right.$ or $\left.r_{2} \in F_{2}\right\}$

Properties of Regular Languages

Closure Under Intersection

If L_{1} and L_{2} are both regular languages then $L_{1} \cap L_{2}$ is also regular
$L_{1} \cap L_{2}$ is the language consisting of all strings in both L_{1} and L_{2}

Properties of Regular Languages

Closure Under Intersection

If L_{1} and L_{2} are both regular languages then $L_{1} \cap L_{2}$ is also regular
$L_{1} \cap L_{2}$ is the language consisting of all strings in both L_{1} and L_{2}
Intuition: Run both machines in parallel (same as for union) and accept if BOTH of them stop in an accept state

Properties of Regular Languages

Closure Under Concatenation

If L_{1} and L_{2} are both regular languages then $L_{1} \circ L_{2}$ is also regular

$$
L_{1} \circ L_{2}=\left\{x y \mid x \in L_{1} \text { and } y \in L_{2}\right\}
$$

Outline

(1) Lecture 2 Review

(2) Regular Languages
(3) Non-deterministic Finite Automata (NFA)

4 Example NFAs

Nondeterminism

Deterministic Finite Automaton

- For every state q and every symbol x, exactly one value $\delta(q, x)$ is defined
- State transitions only on an input symbol
- Execution of DFA is fully determined

Nondeterminism

Deterministic Finite Automaton

- For every state q and every symbol x, exactly one value $\delta(q, x)$ is defined
- State transitions only on an input symbol
- Execution of DFA is fully determined

Nondeterministic Finite Automaton

- Allow multiple transitions for same state and symbol (e.g., $\delta(q 1,1)=\{q 2, q 3\})$
- Allow empty (ϵ) transitions - transitions not requiring an input

Nondeterminism

Deterministic Finite Automaton

- For every state q and every symbol x, exactly one value $\delta(q, x)$ is defined
- State transitions only on an input symbol
- Execution of DFA is fully determined

Nondeterministic Finite Automaton

- Allow multiple transitions for same state and symbol (e.g., $\delta(q 1,1)=\{q 2, q 3\})$
- Allow empty (ϵ) transitions - transitions not requiring an input

What is going on here?!?

What does non-determinism mean?

An Example NFA

An Example NFA

Input: 010

An Example NFA

Input: 010
Input: 010110

An Example NFA

Input: 010
Input: 010110
Question: What language does this recognize?

Understanding Nondeterminism

Interpretation 1: Try all paths in parallel

If any path leads to accept then accept

Understanding Nondeterminism

Interpretation 2: Guess and verify

Understanding Nondeterminism

Interpretation 2: Guess and verify

- M stays in q_{1} until it "guesses" next input is 11 or 101

Understanding Nondeterminism

Interpretation 2: Guess and verify

- M stays in q_{1} until it "guesses" next input is 11 or 101
- Verifies that this guess was correct on path to q_{4}

Understanding Nondeterminism

Interpretation 3: Verifying a proof vs. finding a solution
Consider the execution of a finite automaton

Understanding Nondeterminism

Interpretation 3: Verifying a proof vs. finding a solution
Consider the execution of a finite automaton
(1) DFA execution on input x :

- A DFA must follow an exact path to an accept state
- Input x must specify path to an accept state if $x \in L(M)$

Understanding Nondeterminism

Interpretation 3: Verifying a proof vs. finding a solution
Consider the execution of a finite automaton
(1) DFA execution on input x :

- A DFA must follow an exact path to an accept state
- Input x must specify path to an accept state if $x \in L(M)$
(2) NFA execution on input x

Understanding Nondeterminism

Interpretation 3: Verifying a proof vs. finding a solution
Consider the execution of a finite automaton
(1) DFA execution on input x :

- A DFA must follow an exact path to an accept state
- Input x must specify path to an accept state if $x \in L(M)$
(2) NFA execution on input x
- Input x alone does not necessarily take you to an accept state

Understanding Nondeterminism

Interpretation 3: Verifying a proof vs. finding a solution
Consider the execution of a finite automaton
(1) DFA execution on input x :

- A DFA must follow an exact path to an accept state
- Input x must specify path to an accept state if $x \in L(M)$
(2) NFA execution on input x
- Input x alone does not necessarily take you to an accept state
- Need to somehow choose which edge to take whenever there is a choice

Understanding Nondeterminism

Interpretation 3: Verifying a proof vs. finding a solution
Consider the execution of a finite automaton
(1) DFA execution on input x :

- A DFA must follow an exact path to an accept state
- Input x must specify path to an accept state if $x \in L(M)$
(2) NFA execution on input x
- Input x alone does not necessarily take you to an accept state
- Need to somehow choose which edge to take whenever there is a choice
- Can view this sequence of nondeterministic choices as a "witness" w that allows you to verify that $x \in L(M)$

Important

For any $x \notin L$, there must be no path to an accepting state - no possible "witness" works

Nondeterministic Finite Automaton - Formal Definition

Nondeterministic Finite Automaton (NFA)

An NFA is a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where:

- Q is a finite set of states
- Σ is a finite input alphabet
- $\delta: Q \times(\Sigma \cup\{\epsilon\}) \rightarrow P(Q)$ is the transition function
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Recall:
$P(Q)$ is the power set of Q, i.e., the set of all subsets of Q

Nondeterministic Finite Automaton - Formal Definition

Nondeterministic Finite Automaton (NFA)

An NFA is a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where:

- Q is a finite set of states
- Σ is a finite input alphabet
- $\delta: Q \times(\Sigma \cup\{\epsilon\}) \rightarrow P(Q)$ is the transition function
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Recall:
$P(Q)$ is the power set of Q, i.e., the set of all subsets of Q
Changes:
(1) Transition function allows empty symbol (ϵ)
(2) Output of transition function is a set of states $\in P(Q)$, not a single state in Q

Outline

(1) Lecture 2 Review

(2) Regular Languages

(3) Non-deterministic Finite Automata (NFA)

4 Example NFAs

NFA Example 1

Question: What is $L(M)$?

NFA Example 1

Question: What is $L(M)$?
Answer: Strings in $\{0,1\}^{*}$ with a 1 as third from the end

NFA Example 1

Question: What is $L(M)$?
Answer: Strings in $\{0,1\}^{*}$ with a 1 as third from the end
How does it work?

- M waits in q_{1} until it "guesses" that it is 3 symbols from the end

NFA Example 1

Question: What is $L(M)$?
Answer: Strings in $\{0,1\}^{*}$ with a 1 as third from the end How does it work?

- M waits in q_{1} until it "guesses" that it is 3 symbols from the end
- Uses the rest of the states to verify that 1 is third from the end

NFA Example 1

Question: What is $L(M)$?
Answer: Strings in $\{0,1\}^{*}$ with a 1 as third from the end How does it work?

- M waits in q_{1} until it "guesses" that it is 3 symbols from the end
- Uses the rest of the states to verify that 1 is third from the end
- DFA doing the same thing would have to track the last three bits seen - requires 8 states

Example 2 - OR statement

$L=\left\{x \mid x \in\{0,1\}^{*}\right.$ and x contains
(1) the substring 101 , or
(2) the substring 010\}

Example 2 - OR statement

$L=\left\{x \mid x \in\{0,1\}^{*}\right.$ and x contains
(1) the substring 101 , or
(2) the substring 010\}

Example 2 - OR statement

$L=\left\{x \mid x \in\{0,1\}^{*}\right.$ and x contains
(1) the substring 101 , or
(O the substring 010\}

Example 2 - OR statement

$L=\left\{x \mid x \in\{0,1\}^{*}\right.$ and x contains
(1) the substring 101 , or
© the substring 010$\}$

DFA for prop. (1)

DFA for prop. (2)

NFA for L

