
Foundations of Computing
Lecture 4

Arkady Yerukhimovich

January 25, 2024

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 1 / 28

Outline

1 Lecture 3 Review

2 Example NFAs

3 Equivalence of NFAs and DFAs

4 Properties of Regular Languages Using NFAs

5 Regular Expressions

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 2 / 28

Lecture 3 Review

Regular Languages

Nondeterministic Finite Automata

Understanding Nondeterminism

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 3 / 28

Outline

1 Lecture 3 Review

2 Example NFAs

3 Equivalence of NFAs and DFAs

4 Properties of Regular Languages Using NFAs

5 Regular Expressions

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 4 / 28

NFA Example 1

q1 q2 q3 q4start
1 0, 1 0, 1

0, 1

Question: What is L(M)?

Answer: Strings in {0, 1}⇤ with a 1 as third from the end

How does it work?

M waits in q1 until it ”guesses” that it is 3 symbols from the end

Uses the rest of the states to verify that 1 is third from the end

DFA doing the same thing would have to track the last three bits
seen – requires 8 states

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 5 / 28

NFA Example 1

q1 q2 q3 q4start
1 0, 1 0, 1

0, 1

Question: What is L(M)?
Answer: Strings in {0, 1}⇤ with a 1 as third from the end

How does it work?

M waits in q1 until it ”guesses” that it is 3 symbols from the end

Uses the rest of the states to verify that 1 is third from the end

DFA doing the same thing would have to track the last three bits
seen – requires 8 states

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 5 / 28

NFA Example 1

q1 q2 q3 q4start
1 0, 1 0, 1

0, 1

Question: What is L(M)?
Answer: Strings in {0, 1}⇤ with a 1 as third from the end

How does it work?

M waits in q1 until it ”guesses” that it is 3 symbols from the end

Uses the rest of the states to verify that 1 is third from the end

DFA doing the same thing would have to track the last three bits
seen – requires 8 states

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 5 / 28

NFA Example 1

q1 q2 q3 q4start
1 0, 1 0, 1

0, 1

Question: What is L(M)?
Answer: Strings in {0, 1}⇤ with a 1 as third from the end

How does it work?

M waits in q1 until it ”guesses” that it is 3 symbols from the end

Uses the rest of the states to verify that 1 is third from the end

DFA doing the same thing would have to track the last three bits
seen – requires 8 states

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 5 / 28

NFA Example 1

q1 q2 q3 q4start
1 0, 1 0, 1

0, 1

Question: What is L(M)?
Answer: Strings in {0, 1}⇤ with a 1 as third from the end

How does it work?

M waits in q1 until it ”guesses” that it is 3 symbols from the end

Uses the rest of the states to verify that 1 is third from the end

DFA doing the same thing would have to track the last three bits
seen – requires 8 states

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 5 / 28

Example 2 – OR statement

L = {x |x 2 {0, 1}⇤ and x contains

1 the substring 101, or

2 the substring 010}

DFA for prop. (1) DFA for prop. (2)

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 6 / 28

Example 2 – OR statement

L = {x |x 2 {0, 1}⇤ and x contains

1 the substring 101, or

2 the substring 010}

DFA for prop. (1) DFA for prop. (2)

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 6 / 28

Example 2 – OR statement

L = {x |x 2 {0, 1}⇤ and x contains

1 the substring 101, or

2 the substring 010}

DFA for prop. (1) DFA for prop. (2)

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 6 / 28

Example 2 – OR statement

L = {x |x 2 {0, 1}⇤ and x contains

1 the substring 101, or

2 the substring 010}

NFA for L

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 7 / 28

NFA Summary

NFAs are much simpler to design

Only need to verify that inputs have correct form

Ability to “guess” when some checkable property occurs is very useful

Question
Are NFAs more powerful than DFAs?

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 8 / 28

NFA Summary

NFAs are much simpler to design

Only need to verify that inputs have correct form

Ability to “guess” when some checkable property occurs is very useful

Question
Are NFAs more powerful than DFAs?

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 8 / 28

Quiz

q1

q2 q3

start

b

a
a, b

✏

a

1 Does N accept w = ✏?

2 Does N accept w = aaa?

3 Does N accept w = babba?

4 Does N accept w = abaaba?

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 9 / 28

Quiz

q1

q2 q3

start

b

a
a, b

✏

a

1 Does N accept w = ✏?

2 Does N accept w = aaa?

3 Does N accept w = babba?

4 Does N accept w = abaaba?
Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 9 / 28

Outline

1 Lecture 3 Review

2 Example NFAs

3 Equivalence of NFAs and DFAs

4 Properties of Regular Languages Using NFAs

5 Regular Expressions

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 10 / 28

DFAs == NFAs

Theorem
For every NFA N there exists an equivalent DFA M

Intuition:

Recall how we simulated NFA N by highlighting a set of nodes

Each transition moved us to a new set of nodes

Accept if any of the highlighted nodes end in accept state

A little more detail:

Let node of DFA M represent set of “highlighted” nodes

Define � to move to new set of highlighted nodes

Accept states are ones in which at least one node is an accept node

Can deal with ✏ edges by “placing more fingers” on resulting nodes

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 11 / 28

DFAs == NFAs

Theorem
For every NFA N there exists an equivalent DFA M

Intuition:

Recall how we simulated NFA N by highlighting a set of nodes

Each transition moved us to a new set of nodes

Accept if any of the highlighted nodes end in accept state

A little more detail:

Let node of DFA M represent set of “highlighted” nodes

Define � to move to new set of highlighted nodes

Accept states are ones in which at least one node is an accept node

Can deal with ✏ edges by “placing more fingers” on resulting nodes

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 11 / 28

DFAs == NFAs

Theorem
For every NFA N there exists an equivalent DFA M

Intuition:

Recall how we simulated NFA N by highlighting a set of nodes

Each transition moved us to a new set of nodes

Accept if any of the highlighted nodes end in accept state

A little more detail:

Let node of DFA M represent set of “highlighted” nodes

Define � to move to new set of highlighted nodes

Accept states are ones in which at least one node is an accept node

Can deal with ✏ edges by “placing more fingers” on resulting nodes

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 11 / 28

DFAs == NFAs

Theorem
For every NFA N there exists an equivalent DFA M

Intuition:

Recall how we simulated NFA N by highlighting a set of nodes

Each transition moved us to a new set of nodes

Accept if any of the highlighted nodes end in accept state

A little more detail:

Let node of DFA M represent set of “highlighted” nodes

Define � to move to new set of highlighted nodes

Accept states are ones in which at least one node is an accept node

Can deal with ✏ edges by “placing more fingers” on resulting nodes

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 11 / 28

DFAs == NFAs

Theorem
For every NFA N there exists an equivalent DFA M

Intuition:

Recall how we simulated NFA N by highlighting a set of nodes

Each transition moved us to a new set of nodes

Accept if any of the highlighted nodes end in accept state

A little more detail:

Let node of DFA M represent set of “highlighted” nodes

Define � to move to new set of highlighted nodes

Accept states are ones in which at least one node is an accept node

Can deal with ✏ edges by “placing more fingers” on resulting nodes

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 11 / 28

DFAs == NFAs

Theorem
For every NFA N there exists an equivalent DFA M

Intuition:

Recall how we simulated NFA N by highlighting a set of nodes

Each transition moved us to a new set of nodes

Accept if any of the highlighted nodes end in accept state

A little more detail:

Let node of DFA M represent set of “highlighted” nodes

Define � to move to new set of highlighted nodes

Accept states are ones in which at least one node is an accept node

Can deal with ✏ edges by “placing more fingers” on resulting nodes

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 11 / 28

DFAs == NFAs

Theorem
For every NFA N there exists an equivalent DFA M

Intuition:

Recall how we simulated NFA N by highlighting a set of nodes

Each transition moved us to a new set of nodes

Accept if any of the highlighted nodes end in accept state

A little more detail:

Let node of DFA M represent set of “highlighted” nodes

Define � to move to new set of highlighted nodes

Accept states are ones in which at least one node is an accept node

Can deal with ✏ edges by “placing more fingers” on resulting nodes

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 11 / 28

DFAs == NFAs

Theorem
For every NFA N there exists an equivalent DFA M

Intuition:

Recall how we simulated NFA N by highlighting a set of nodes

Each transition moved us to a new set of nodes

Accept if any of the highlighted nodes end in accept state

A little more detail:

Let node of DFA M represent set of “highlighted” nodes

Define � to move to new set of highlighted nodes

Accept states are ones in which at least one node is an accept node

Can deal with ✏ edges by “placing more fingers” on resulting nodes

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 11 / 28

Making it Formal

Let N be an NFA recognizing L. Contruct DFA M recognizing L

1 Q 0 = P(Q) – power set of Q

2 For R 2 Q 0 and a 2 ⌃, let

�0(R , a) = [r2R�(r , a)

Look at transitions from all states in set R and map to set that gives
results of all these transitions

3 q00 = {q0}
4 F 0 = {R 2 Q 0|R contains an accept state of N}

Accept if any state in R is an accept state

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 12 / 28

Making it Formal

Let N be an NFA recognizing L. Contruct DFA M recognizing L

1 Q 0 = P(Q) – power set of Q

2 For R 2 Q 0 and a 2 ⌃, let

�0(R , a) = [r2R�(r , a)

Look at transitions from all states in set R and map to set that gives
results of all these transitions

3 q00 = {q0}
4 F 0 = {R 2 Q 0|R contains an accept state of N}

Accept if any state in R is an accept state

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 12 / 28

Making it Formal

Let N be an NFA recognizing L. Contruct DFA M recognizing L

1 Q 0 = P(Q) – power set of Q

2 For R 2 Q 0 and a 2 ⌃, let

�0(R , a) = [r2R�(r , a)

Look at transitions from all states in set R and map to set that gives
results of all these transitions

3 q00 = {q0}
4 F 0 = {R 2 Q 0|R contains an accept state of N}

Accept if any state in R is an accept state

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 12 / 28

Making it Formal

Let N be an NFA recognizing L. Contruct DFA M recognizing L

1 Q 0 = P(Q) – power set of Q

2 For R 2 Q 0 and a 2 ⌃, let

�0(R , a) = [r2R�(r , a)

Look at transitions from all states in set R and map to set that gives
results of all these transitions

3 q00 = {q0}

4 F 0 = {R 2 Q 0|R contains an accept state of N}
Accept if any state in R is an accept state

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 12 / 28

Making it Formal

Let N be an NFA recognizing L. Contruct DFA M recognizing L

1 Q 0 = P(Q) – power set of Q

2 For R 2 Q 0 and a 2 ⌃, let

�0(R , a) = [r2R�(r , a)

Look at transitions from all states in set R and map to set that gives
results of all these transitions

3 q00 = {q0}
4 F 0 = {R 2 Q 0|R contains an accept state of N}

Accept if any state in R is an accept state

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 12 / 28

Handling ✏ transitions

Problem: We need to also get rid of any ✏ edges

Intuition: For every ✏ edge, just place a new “finger” on the graph

Formally:

1 Let E (R) = {q|q can be reached from R along ✏ arrows}
2 Define extended transition function

�0(R , a) = [r2RE (�(r , a))

Map to set of states that can be reached on input a or a✏

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 13 / 28

Handling ✏ transitions

Problem: We need to also get rid of any ✏ edges

Intuition: For every ✏ edge, just place a new “finger” on the graph

Formally:

1 Let E (R) = {q|q can be reached from R along ✏ arrows}
2 Define extended transition function

�0(R , a) = [r2RE (�(r , a))

Map to set of states that can be reached on input a or a✏

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 13 / 28

Handling ✏ transitions

Problem: We need to also get rid of any ✏ edges

Intuition: For every ✏ edge, just place a new “finger” on the graph

Formally:

1 Let E (R) = {q|q can be reached from R along ✏ arrows}

2 Define extended transition function

�0(R , a) = [r2RE (�(r , a))

Map to set of states that can be reached on input a or a✏

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 13 / 28

Handling ✏ transitions

Problem: We need to also get rid of any ✏ edges

Intuition: For every ✏ edge, just place a new “finger” on the graph

Formally:

1 Let E (R) = {q|q can be reached from R along ✏ arrows}
2 Define extended transition function

�0(R , a) = [r2RE (�(r , a))

Map to set of states that can be reached on input a or a✏

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 13 / 28

An Example: NFA ! DFA

NFA N = (Q,⌃, �, q0,F)

1

2 3

start

b

a
a, b

✏

a

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 14 / 28

An Example: NFA ! DFA

NFA N = (Q,⌃, �, q,F)

1

2 3

start

b

a
a, b

✏
a

1 states: Q 0 =

P(Q) = {;, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
2 start state: q0 = E (1) = {1, 3}
3 accept states: F = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 15 / 28

An Example: NFA ! DFA

NFA N = (Q,⌃, �, q,F)

1

2 3

start

b

a
a, b

✏
a

1 states: Q 0 = P(Q) = {;, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
2 start state: q0 =

E (1) = {1, 3}
3 accept states: F = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 15 / 28

An Example: NFA ! DFA

NFA N = (Q,⌃, �, q,F)

1

2 3

start

b

a
a, b

✏
a

1 states: Q 0 = P(Q) = {;, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
2 start state: q0 = E (1) = {1, 3}
3 accept states: F =

{{1}, {1, 2}, {1, 3}, {1, 2, 3}}

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 15 / 28

An Example: NFA ! DFA

NFA N = (Q,⌃, �, q,F)

1

2 3

start

b

a
a, b

✏
a

1 states: Q 0 = P(Q) = {;, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
2 start state: q0 = E (1) = {1, 3}
3 accept states: F = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 15 / 28

An Example: NFA ! DFA

NFA N = (Q,⌃, �, q,F)

1

2 3

start

b

a
a, b

✏
a

4 Transition function �0:
�0(;, a) = �0(;, b) =
�0({1}, a) = �0({1}, b) =
�0({2}, a) = �0({2}, b) =
�0({1, 2}, a) = �0({1, 2}, b) =
�0({3}, a) = �0({3}, b) =
�0({1, 3}, a) = �0({1, 3}, b) =
�0({2, 3}, a) = �0({2, 3}, b) =
�0({1, 2, 3}, a) = �0({1, 2, 3}, b) =

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 16 / 28

An Example: NFA ! DFA

4 Transition function �0:
�0(;, a) = ; �0(;, b) = ;
�0({1}, a) = ; �0({1}, b) = {2}
�0({2}, a) = {2, 3} �0({2}, b) = {3}
�0({1, 2}, a) = {2, 3} �0({1, 2}, b) = {2, 3}
�0({3}, a) = {1, 3} �0({3}, b) = ;
�0({1, 3}, a) = {1, 3} �0({1, 3}, b) = {2}
�0({2, 3}, a) = {1, 2, 3} �0({2, 3}, b) = {3}
�0({1, 2, 3}, a) = {1, 2, 3} �0({1, 2, 3}, b) = {2, 3}

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 17 / 28

An Example: NFA ! DFA

; {1} {2} {1, 2}

{3} {1, 3} {2, 3} {1, 2, 3}

a, b
a b

ab

a

b
a, b

a

b a

b

a
b

start

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 18 / 28

Outline

1 Lecture 3 Review

2 Example NFAs

3 Equivalence of NFAs and DFAs

4 Properties of Regular Languages Using NFAs

5 Regular Expressions

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 19 / 28

A Useful Corollary

Recall that:

Definition
A language L is regular if and only if there is a DFA that recognizes it

Since we now know that NFAs and DFAs are equal:

Corollary

A language L is regular if and only if there is an NFA that recognizes it

We can now use NFAs to argue the properties of regular languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 20 / 28

A Useful Corollary

Recall that:

Definition
A language L is regular if and only if there is a DFA that recognizes it

Since we now know that NFAs and DFAs are equal:

Corollary

A language L is regular if and only if there is an NFA that recognizes it

We can now use NFAs to argue the properties of regular languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 20 / 28

A Useful Corollary

Recall that:

Definition
A language L is regular if and only if there is a DFA that recognizes it

Since we now know that NFAs and DFAs are equal:

Corollary

A language L is regular if and only if there is an NFA that recognizes it

We can now use NFAs to argue the properties of regular languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 20 / 28

Closure Under Union

Closure Under Union
If L1 and L2 are both regular languages then L1 [L2 is also regular

L1 [L2 is the language consisting of all strings either in L1 or L2

Proof:

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 21 / 28

Closure Under Concatenation

Closure Under Concatenation
If L1 and L2 are both regular languages then L1 � L2 is also regular

L1 � L2 = {xy |x 2 L1 and y 2 L2}

Proof:

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 22 / 28

Closure Under the Star Operation

Closure Under Star Operation

If L is a regular languages then L⇤ is also regular

L⇤ = {0 or more strings from L}

Proof:

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 25, 2024 23 / 28

