Foundations of Computing

Lecture 4

Arkady Yerukhimovich

January 25, 2024

Outline

(1) Lecture 3 Review

(2) Example NFAs

(3) Equivalence of NFAs and DFAs

4 Properties of Regular Languages Using NFAs
(5) Regular Expressions

Lecture 3 Review

- Regular Languages
- Nondeterministic Finite Automata
- Understanding Nondeterminism

Outline

(1) Lecture 3 Review

(2) Example NFAs

(3) Equivalence of NFAs and DFAs

4 Properties of Regular Languages Using NFAs
(5) Regular Expressions

NFA Example 1

Question: What is $L(M)$?

NFA Example 1

Question: What is $L(M)$?
Answer: Strings in $\{0,1\}^{*}$ with a 1 as third from the end

NFA Example 1

Question: What is $L(M)$?
Answer: Strings in $\{0,1\}^{*}$ with a 1 as third from the end
How does it work?

- M waits in q_{1} until it "guesses" that it is 3 symbols from the end

NFA Example 1

Question: What is $L(M)$?
Answer: Strings in $\{0,1\}^{*}$ with a 1 as third from the end How does it work?

- M waits in q_{1} until it "guesses" that it is 3 symbols from the end
- Uses the rest of the states to verify that 1 is third from the end

NFA Example 1

Question: What is $L(M)$?
Answer: Strings in $\{0,1\}^{*}$ with a 1 as third from the end How does it work?

- M waits in q_{1} until it "guesses" that it is 3 symbols from the end
- Uses the rest of the states to verify that 1 is third from the end
- DFA doing the same thing would have to track the last three bits seen - requires 8 states

Example 2 - OR statement

$L=\left\{x \mid x \in\{0,1\}^{*}\right.$ and x contains
(1) the substring 101 , or
(2) the substring 010$\}$

0.1

Example 2 - OR statement

$L=\left\{x \mid x \in\{0,1\}^{*}\right.$ and x contains
(1) the substring 101 , or
(O the substring 010\}

Example 2 - OR statement

$L=\left\{x \mid x \in\{0,1\}^{*}\right.$ and x contains
(1) the substring 101 , or
(O the substring 010\}

DFA for prop. (1)

DFA for prop. (2)

Example 2 - OR statement

$L=\left\{x \mid x \in\{0,1\}^{*}\right.$ and x contains
(- the substring 101 , or
(O the substring 010\}

NFA Summary

- NFAs are much simpler to design
- Only need to verify that inputs have correct form
- Ability to "guess" when some checkable property occurs is very useful

NFA Summary

- NFAs are much simpler to design
- Only need to verify that inputs have correct form
- Ability to "guess" when some checkable property occurs is very useful

Question

Are NFAs more powerful than DFAs?

Quiz

Quiz

(1) Does N accept $w=\epsilon$?
(2) Does N accept $w=a a a$? Yes
(3) Does N accept $w=b a b b a$? N_{0}
(9) Does N accept $w=$ abaaba? $Y_{\text {es }}$

Outline

(1) Lecture 3 Review

(2) Example NFAs
(3) Equivalence of NFAs and DFAs
(4) Properties of Regular Languages Using NFAs
(5) Regular Expressions

DFAs $==$ NFAs

Theorem

For every NFA N there exists an equivalent DFA M

DFAs $==$ NFAs

Theorem

For every NFA N there exists an equivalent DFA M
Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes

DFAs $==$ NFAs

Theorem

For every NFA N there exists an equivalent DFA M
Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes

DFAs $==$ NFAs

Theorem

For every NFA N there exists an equivalent DFA M
Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

DFAs $==$ NFAs

Theorem

For every NFA N there exists an equivalent DFA M
Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

- Let node of DFA M represent set of "highlighted" nodes

DFAs $==$ NFAs

Theorem

For every NFA N there exists an equivalent DFA M
Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

- Let node of DFA M represent set of "highlighted" nodes
- Define δ to move to new set of highlighted nodes

DFAs $==$ NFAs

Theorem

For every NFA N there exists an equivalent DFA M
Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

- Let node of DFA M represent set of "highlighted" nodes
- Define δ to move to new set of highlighted nodes
- Accept states are ones in which at least one node is an accept node

DFAs $==$ NFAs

Theorem

For every NFA N there exists an equivalent DFA M
Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

- Let node of DFA M represent set of "highlighted" nodes
- Define δ to move to new set of highlighted nodes
- Accept states are ones in which at least one node is an accept node
- Can deal with ϵ edges by "placing more fingers" on resulting nodes

Making it Formal

Let N be an NFA recognizing L. Contruct DFA M recognizing L

Making it Formal

Let N be an NFA recognizing L. Contruct DFA M recognizing L
(1) $Q^{\prime}=P(Q)$ - power set of Q

Making it Formal

Let N be an NFA recognizing L. Contruct DFA M recognizing L
(1) $Q^{\prime}=P(Q)$ - power set of Q
(2) For $R \in Q^{\prime}$ and $a \in \Sigma$, let

$$
\delta^{\prime}(R, a)=\cup_{r \in R} \delta(r, a)
$$

Look at transitions from all states in set R and map to set that gives results of all these transitions

Making it Formal

Let N be an NFA recognizing L. Contruct DFA M recognizing L
(1) $Q^{\prime}=P(Q)$ - power set of Q
(2) For $R \in Q^{\prime}$ and $a \in \Sigma$, let

$$
\delta^{\prime}(R, a)=\cup_{r \in R} \delta(r, a)
$$

Look at transitions from all states in set R and map to set that gives results of all these transitions
(3) $q_{0}^{\prime}=\left\{q_{0}\right\}$

Making it Formal

Let N be an NFA recognizing L. Contruct DFA M recognizing L
(1) $Q^{\prime}=P(Q)$ - power set of Q
(2) For $R \in Q^{\prime}$ and $a \in \Sigma$, let

$$
\delta^{\prime}(R, a)=\cup_{r \in R} \delta(r, a)
$$

Look at transitions from all states in set R and map to set that gives results of all these transitions
(3) $q_{0}^{\prime}=\left\{q_{0}\right\}$
(9) $F^{\prime}=\left\{R \in Q^{\prime} \mid R\right.$ contains an accept state of $\left.N\right\}$

Accept if any state in R is an accept state

Handling ϵ transitions

Problem: We need to also get rid of any ϵ edges

Handling ϵ transitions

Problem: We need to also get rid of any ϵ edges
Intuition: For every ϵ edge, just place a new "finger" on the graph

Handling ϵ transitions

Problem: We need to also get rid of any ϵ edges
Intuition: For every ϵ edge, just place a new "finger" on the graph Formally:
(1) Let $E(R)=\{q \mid q$ can be reached from R along ϵ arrows $\}$

Handling ϵ transitions

Problem: We need to also get rid of any ϵ edges Intuition: For every ϵ edge, just place a new "finger" on the graph Formally:
(1) Let $E(R)=\{q \mid q$ can be reached from R along ϵ arrows $\}$
(2) Define extended transition function

$$
\delta^{\prime}(R, a)=\cup_{r \in R} E(\delta(r, a))
$$

Map to set of states that can be reached on input a or $a \epsilon$

An Example: NFA \rightarrow DFA

An Example: NFA \rightarrow DFA

(1) states: $Q^{\prime}=$

An Example: NFA \rightarrow DFA

NFA $N=(Q, \Sigma, \delta, q, F)$

(1) states: $Q^{\prime}=P(Q)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
(2) start state: $q^{\prime}=$

An Example: NFA \rightarrow DFA

NFA $N=(Q, \Sigma, \delta, q, F)$

(1) states: $Q^{\prime}=P(Q)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
(2) start state: $q^{\prime}=E(1)=\{1,3\}$
(3) accept states: $F=$

An Example: NFA \rightarrow DFA

NFA $N=(Q, \Sigma, \delta, q, F)$

(1) states: $Q^{\prime}=P(Q)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
(2) start state: $q^{\prime}=E(1)=\{1,3\}$
(3) accept states: $F=\{\{1\},\{1,2\},\{1,3\},\{1,2,3\}\}$

An Example: NFA \rightarrow DFA

NFA $N=(Q, \Sigma, \delta, \boldsymbol{q}, F)$

(9) Transition function δ^{\prime} :

$$
\begin{aligned}
& \delta^{\prime}(\emptyset, a)=\varnothing \\
& \delta^{\prime}(\{1\}, a)=\varnothing \\
& \delta^{\prime}(\{2\}, a)=\{2,3\} \\
& \delta^{\prime}(\{1,2\}, a)= \\
& \delta^{\prime}(\{3\}, a)= \\
& \delta^{\prime}(\{1,3\}, a)= \\
& \delta^{\prime}(\{2,3\}, a)= \\
& \delta^{\prime}(\{1,2,3\}, a)=
\end{aligned}
$$

$$
\begin{aligned}
& \delta^{\prime}(\emptyset, b)=\varnothing \\
& \delta^{\prime}(\{1\}, b)=\varepsilon 27 \\
& \delta^{\prime}(\{2\}, b)= \\
& \delta^{\prime}(\{1,2\}, b)= \\
& \delta^{\prime}(\{3\}, b)= \\
& \delta^{\prime}(\{1,3\}, b)= \\
& \delta^{\prime}(\{2,3\}, b)= \\
& \delta^{\prime}(\{1,2,3\}, b)=
\end{aligned}
$$

An Example: NFA \rightarrow DFA

(9) Transition function δ^{\prime} :

$$
\begin{array}{ll}
\delta^{\prime}(\emptyset, a)=\emptyset & \delta^{\prime}(\emptyset, b)=\emptyset \\
\delta^{\prime}(\{1\}, a)=\emptyset & \delta^{\prime}(\{1\}, b)=\{2\} \\
\delta^{\prime}(\{2\}, a)=\{2,3\} & \delta^{\prime}(\{2\}, b)=\{3\} \\
\delta^{\prime}(\{1,2\}, a)=\{2,3\} & \delta^{\prime}(\{1,2\}, b)=\{2,3\} \\
\delta^{\prime}(\{3\}, a)=\{1,3\} & \delta^{\prime}(\{3\}, b)=\emptyset \\
\delta^{\prime}(\{1,3\}, a)=\{1,3\} & \delta^{\prime}(\{1,3\}, b)=\{2\} \\
\delta^{\prime}(\{2,3\}, a)=\{1,2,3\} & \delta^{\prime}(\{2,3\}, b)=\{3\} \\
\delta^{\prime}(\{1,2,3\}, a)=\{1,2,3\} & \delta^{\prime}(\{1,2,3\}, b)=\{2,3\}
\end{array}
$$

An Example: NFA \rightarrow DFA

Outline

(1) Lecture 3 Review

(2) Example NFAs
(3) Equivalence of NFAs and DFAs
(4) Properties of Regular Languages Using NFAs
(5) Regular Expressions

A Useful Corollary

Recall that:

Definition

A language L is regular if and only if there is a DFA that recognizes it

A Useful Corollary

Recall that:

Definition

A language L is regular if and only if there is a DFA that recognizes it
Since we now know that NFAs and DFAs are equal:

Corollary

A language L is regular if and only if there is an NFA that recognizes it

A Useful Corollary

Recall that:

Definition

A language L is regular if and only if there is a DFA that recognizes it
Since we now know that NFAs and DFAs are equal:

Corollary

A language L is regular if and only if there is an NFA that recognizes it

We can now use NFAs to argue the properties of regular languages

Closure Under Union

Closure Under Union

If L_{1} and L_{2} are both regular languages then $L_{1} \cup L_{2}$ is also regular
$L_{1} \cup L_{2}$ is the language consisting of all strings either in L_{1} or L_{2} Proof:

Closure Under Concatenation

Closure Under Concatenation

If L_{1} and L_{2} are both regular languages then $L_{1} \circ L_{2}$ is also regular
$L_{1} \circ L_{2}=\left\{x y \mid x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$
Proof:

Closure Under the Star Operation

Closure Under Star Operation

If L is a regular languages then L^{*} is also regular
$L^{*}=\{0$ or more strings from $L\}$
Proof:

E

