Foundations of Computing Lecture 4

Arkady Yerukhimovich

January 25, 2024

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

January 25, 2024

Lecture 3 Review

- 2 Example NFAs
- 3 Equivalence of NFAs and DFAs
- Properties of Regular Languages Using NFAs
- 5 Regular Expressions

< 行

∃ →

- Regular Languages
- Nondeterministic Finite Automata
- Understanding Nondeterminism

Lecture 3 Review

2 Example NFAs

3 Equivalence of NFAs and DFAs

Properties of Regular Languages Using NFAs

5 Regular Expressions

< 行

∃ →

NFA Example 1

Question: What is L(M)?

Arkady Yerukhimovich

< 行

< ∃→

æ

How does it work?

• M waits in q_1 until it "guesses" that it is 3 symbols from the end

How does it work?

- M waits in q_1 until it "guesses" that it is 3 symbols from the end
- Uses the rest of the states to verify that 1 is third from the end

How does it work?

- M waits in q_1 until it "guesses" that it is 3 symbols from the end
- Uses the rest of the states to verify that 1 is third from the end
- DFA doing the same thing would have to track the last three bits seen – requires 8 states

- $L = \{x | x \in \{0, 1\}^* \text{ and } x \text{ contains }$
 - the substring 101, or
 - the substring 010

Arkady Yerukhimovich

О

0 1

- $L = \{x | x \in \{0,1\}^* \text{ and } x \text{ contains}$
 - the substring 101, or
 - the substring 010

- $L = \{x | x \in \{0, 1\}^* \text{ and } x \text{ contains}$
 - the substring 101, or
 - the substring 010

- $L = \{x | x \in \{0, 1\}^* \text{ and } x \text{ contains}$
 - the substring 101, or
 - the substring 010

- NFAs are much simpler to design
- Only need to verify that inputs have correct form
- Ability to "guess" when some checkable property occurs is very useful

- NFAs are much simpler to design
- Only need to verify that inputs have correct form
- Ability to "guess" when some checkable property occurs is very useful

Question

Are NFAs more powerful than DFAs?

Quiz

イロト イヨト イヨト イヨト

æ

Quiz

January 25, 2024

Lecture 3 Review

2 Example NFAs

3 Equivalence of NFAs and DFAs

Properties of Regular Languages Using NFAs

5 Regular Expressions

< 行

∃ →

$\mathsf{DFAs} == \mathsf{NFAs}$

Theorem

For every NFA N there exists an equivalent DFA M

イロト イポト イヨト イヨト

2

For every NFA N there exists an equivalent DFA M

Intuition:

• Recall how we simulated NFA N by highlighting a set of nodes

- ∢ /⊐ >

3. 3

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes

∃ >

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

• Let node of DFA *M* represent set of "highlighted" nodes

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

- Let node of DFA *M* represent set of "highlighted" nodes
- $\bullet\,$ Define δ to move to new set of highlighted nodes

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

- Let node of DFA *M* represent set of "highlighted" nodes
- $\bullet\,$ Define δ to move to new set of highlighted nodes
- Accept states are ones in which at least one node is an accept node

For every NFA N there exists an equivalent DFA M

Intuition:

- Recall how we simulated NFA N by highlighting a set of nodes
- Each transition moved us to a new set of nodes
- Accept if any of the highlighted nodes end in accept state

A little more detail:

- Let node of DFA *M* represent set of "highlighted" nodes
- $\bullet\,$ Define δ to move to new set of highlighted nodes
- Accept states are ones in which at least one node is an accept node
- Can deal with ϵ edges by "placing more fingers" on resulting nodes

∃⊳

Let N be an NFA recognizing L. Contruct DFA M recognizing L Q' = P(Q) – power set of Q

- (日)

э

∃ >

- Q' = P(Q) power set of Q
- **2** For $R \in Q'$ and $a \in \Sigma$, let **(**

$$\delta'(R,a) = \cup_{r \in R} \delta(r,a)$$

Look at transitions from all states in set R and map to set that gives results of all these transitions

•
$$Q' = P(Q)$$
 – power set of Q

2 For $R \in Q'$ and $a \in \Sigma$, let

$$\delta'(R,a) = \cup_{r \in R} \delta(r,a)$$

Look at transitions from all states in set R and map to set that gives results of all these transitions

3
$$q'_0 = \{q_0\}$$

•
$$Q' = P(Q)$$
 – power set of Q

2 For $R \in Q'$ and $a \in \Sigma$, let

$$\delta'(R,a) = \cup_{r \in R} \delta(r,a)$$

Look at transitions from all states in set R and map to set that gives results of all these transitions

- 3 $q'_0 = \{q_0\}$
- *F'* = {*R* ∈ *Q'*|*R* contains an accept state of *N*} Accept if any state in *R* is an accept state

Intuition: For every ϵ edge, just place a new "finger" on the graph

Intuition: For every ϵ edge, just place a new "finger" on the graph Formally:

• Let $E(R) = \{q | q \text{ can be reached from } R \text{ along } \epsilon \text{ arrows} \}$

Intuition: For every ϵ edge, just place a new "finger" on the graph Formally:

• Let $E(R) = \{q | q \text{ can be reached from } R \text{ along } \epsilon \text{ arrows} \}$

② Define extended transition function

$$\delta'(R,a) = \cup_{r \in R} E(\delta(r,a))$$

Map to set of states that can be reached on input a or $a\epsilon$

An Example: NFA \rightarrow DFA

æ

< ∃⇒

• states: Q' =

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

January 25, 2024

Image: Image:

æ

< ∃⇒

• states: $Q' = P(Q) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$ • start state: q' =

- states: $Q' = P(Q) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$ • start state: $q' = E(1) = \{1,3\}$
- 3 accept states: F =

- states: $Q' = P(Q) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$ • start state: $q' = E(1) = \{1,3\}$
- **3** accept states: $F = \{\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}\}$

• Transition function
$$\delta':$$

 $\delta'(\emptyset, a) = \emptyset$
 $\delta'(\{1\}, a) = \emptyset$
• $\delta'(\{2\}, a) = \{1, 3\}$
 $\delta'(\{1, 2\}, a) =$
 $\delta'(\{3\}, a) =$
 $\delta'(\{1, 3\}, a) =$
 $\delta'(\{2, 3\}, a) =$
 $\delta'(\{1, 2, 3\}, a) =$

$$\delta'(\emptyset, b) = \emptyset'$$

$$\delta'(\{1\}, b) = \{2, 2\}$$

$$\delta'(\{2\}, b) = \delta'(\{1, 2\}, b) = \delta'(\{3\}, b) = \delta'(\{1, 3\}, b) = \delta'(\{2, 3\}, b) = \delta'(\{2, 3\}, b) = \delta'(\{1, 2, 3\}, b) = \delta'(\{1, 3, 3\}, b)$$

문 문 문

■ Transition function
$$\delta'$$
:
 $\delta'(\emptyset, a) = \emptyset$ $\delta'(\emptyset, b)$
 $\delta'(\{1\}, a) = \emptyset$ $\delta'(\{1\}, a) = \emptyset$ $\delta'(\{1\}, a) = \emptyset$
 $\delta'(\{2\}, a) = \{2, 3\}$ $\delta'(\{2\}, a) = \{2, 3\}$ $\delta'(\{1, 2\}, a) = \{2, 3\}$ $\delta'(\{1, 2\}, a) = \{1, 3\}$ $\delta'(\{1, 3\}, a) = \{1, 3\}$ $\delta'(\{1, 3\}, a) = \{1, 2, 3\}$ $\delta'(\{2, 3\}, a) = \{1, 2, 3\}$ $\delta'(\{2, 3\}, a) = \{1, 2, 3\}$ $\delta'(\{1, 2, 3\}, a) = \{1, 2, 3\}$

$$\begin{aligned} \delta'(\emptyset, b) &= \emptyset\\ \delta'(\{1\}, b) &= \{2\}\\ \delta'(\{2\}, b) &= \{3\}\\ \delta'(\{1, 2\}, b) &= \{2, 3\}\\ \delta'(\{3\}, b) &= \emptyset\\ \delta'(\{3\}, b) &= \{0\}\\ \delta'(\{1, 3\}, b) &= \{2\}\\ \delta'(\{2, 3\}, b) &= \{3\}\\ \delta'(\{1, 2, 3\}, b) &= \{2, 3\} \end{aligned}$$

3

January 25, 2024

ヨト・イヨト

æ

- Lecture 3 Review
- 2 Example NFAs
- **3** Equivalence of NFAs and DFAs
- Properties of Regular Languages Using NFAs

5 Regular Expressions

< 円

∃ →

Recall that:

Definition

A language L is regular if and only if there is a DFA that recognizes it

< 円

3 N 3

Recall that:

Definition

A language L is regular if and only if there is a DFA that recognizes it

Since we now know that NFAs and DFAs are equal:

Corollary

A language L is regular if and only if there is an NFA that recognizes it

Recall that:

Definition

A language L is regular if and only if there is a DFA that recognizes it

Since we now know that NFAs and DFAs are equal:

Corollary

A language L is regular if and only if there is an NFA that recognizes it

We can now use NFAs to argue the properties of regular languages

Closure Under Union

Closure Under Union

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

 $L_1 \cup L_2$ is the language consisting of all strings either in L_1 or L_2

Closure Under Concatenation

If L_1 and L_2 are both regular languages then $L_1 \circ L_2$ is also regular

$$L_1 \circ L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$$

Proof:

