
Foundations of Computing

Lecture 5

Arkady Yerukhimovich

January 30, 2024

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 1 / 21

Outline

1 Lecture 4 Review

2 Regular Expressions

3 Regular Expressions == Regular Languages

4 Properties of Regular Expressions

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 2 / 21

Lecture 4 Review

More NFAs

Equivalence of NFAs and DFAs

NFAs for union, composition, and star – closure of regular languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 3 / 21

Outline

1 Lecture 4 Review

2 Regular Expressions

3 Regular Expressions == Regular Languages

4 Properties of Regular Expressions

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 4 / 21

Regular Expressions

Strings that describe a language

They consist of:
Symbols (e.g., 0,1)
Parentheses
[- representing union
⇤ - representing repetition 0 or more times

Examples:
0⇤10⇤ = {w |w has exactly one 1}
01 [10 = {01, 10}
⌃⇤1⌃⇤ = {w |w has at least one 1}

You’ve seen this before

Regular expressions very useful in compilers, and string search (e.g., grep)

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 5 / 21

Regular Expressions

Strings that describe a language

They consist of:
Symbols (e.g., 0,1)
Parentheses
[- representing union
⇤ - representing repetition 0 or more times

Examples:
0⇤10⇤ = {w |w has exactly one 1}
01 [10 = {01, 10}
⌃⇤1⌃⇤ = {w |w has at least one 1}

You’ve seen this before

Regular expressions very useful in compilers, and string search (e.g., grep)

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 5 / 21

Regular Expressions

Strings that describe a language

They consist of:
Symbols (e.g., 0,1)
Parentheses
[- representing union
⇤ - representing repetition 0 or more times

Examples:
0⇤10⇤ = {w |w has exactly one 1}

01 [10 = {01, 10}
⌃⇤1⌃⇤ = {w |w has at least one 1}

You’ve seen this before

Regular expressions very useful in compilers, and string search (e.g., grep)

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 5 / 21

Regular Expressions

Strings that describe a language

They consist of:
Symbols (e.g., 0,1)
Parentheses
[- representing union
⇤ - representing repetition 0 or more times

Examples:
0⇤10⇤ = {w |w has exactly one 1}
01 [10 = {01, 10}

⌃⇤1⌃⇤ = {w |w has at least one 1}

You’ve seen this before

Regular expressions very useful in compilers, and string search (e.g., grep)

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 5 / 21

Regular Expressions

Strings that describe a language

They consist of:
Symbols (e.g., 0,1)
Parentheses
[- representing union
⇤ - representing repetition 0 or more times

Examples:
0⇤10⇤ = {w |w has exactly one 1}
01 [10 = {01, 10}
⌃⇤1⌃⇤ = {w |w has at least one 1}

You’ve seen this before

Regular expressions very useful in compilers, and string search (e.g., grep)

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 5 / 21

Regular Expressions

Strings that describe a language

They consist of:
Symbols (e.g., 0,1)
Parentheses
[- representing union
⇤ - representing repetition 0 or more times

Examples:
0⇤10⇤ = {w |w has exactly one 1}
01 [10 = {01, 10}
⌃⇤1⌃⇤ = {w |w has at least one 1}

You’ve seen this before

Regular expressions very useful in compilers, and string search (e.g., grep)

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 5 / 21

Formal Definition

R is a regular expression if R is

1 a for some a in the alphabet ⌃ (or ⌃)

2 ✏ – the empty string

3 ; – the empty set

4 (R1 [R2) – R1 or R2 where R1 and R2 are regular expressions

5 (R1 � R2) – R1 concatenated with R2 where R1 and R2 are regular
expressions

6 (R⇤
1) – 0 or more repetitions of R1 where R1 is a regular expression

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 6 / 21

Formal Definition

R is a regular expression if R is

1 a for some a in the alphabet ⌃ (or ⌃)

2 ✏ – the empty string

3 ; – the empty set

4 (R1 [R2) – R1 or R2 where R1 and R2 are regular expressions

5 (R1 � R2) – R1 concatenated with R2 where R1 and R2 are regular
expressions

6 (R⇤
1) – 0 or more repetitions of R1 where R1 is a regular expression

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 6 / 21

Formal Definition

R is a regular expression if R is

1 a for some a in the alphabet ⌃ (or ⌃)

2 ✏ – the empty string

3 ; – the empty set

4 (R1 [R2) – R1 or R2 where R1 and R2 are regular expressions

5 (R1 � R2) – R1 concatenated with R2 where R1 and R2 are regular
expressions

6 (R⇤
1) – 0 or more repetitions of R1 where R1 is a regular expression

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 6 / 21

Formal Definition

R is a regular expression if R is

1 a for some a in the alphabet ⌃ (or ⌃)

2 ✏ – the empty string

3 ; – the empty set

4 (R1 [R2) – R1 or R2 where R1 and R2 are regular expressions

5 (R1 � R2) – R1 concatenated with R2 where R1 and R2 are regular
expressions

6 (R⇤
1) – 0 or more repetitions of R1 where R1 is a regular expression

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 6 / 21

Formal Definition

R is a regular expression if R is

1 a for some a in the alphabet ⌃ (or ⌃)

2 ✏ – the empty string

3 ; – the empty set

4 (R1 [R2) – R1 or R2 where R1 and R2 are regular expressions

5 (R1 � R2) – R1 concatenated with R2 where R1 and R2 are regular
expressions

6 (R⇤
1) – 0 or more repetitions of R1 where R1 is a regular expression

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 6 / 21

Formal Definition

R is a regular expression if R is

1 a for some a in the alphabet ⌃ (or ⌃)

2 ✏ – the empty string

3 ; – the empty set

4 (R1 [R2) – R1 or R2 where R1 and R2 are regular expressions

5 (R1 � R2) – R1 concatenated with R2 where R1 and R2 are regular
expressions

6 (R⇤
1) – 0 or more repetitions of R1 where R1 is a regular expression

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 6 / 21

Some More Examples

(⌃⌃)⇤ =

{w |w is a string of even length}
(0 [✏)(1 [✏) = {✏, 0, 1, 01}
1⇤; = ;
;⇤ = {✏}
0⌃⇤0 [1⌃⇤1 [0 [1 = {w |w starts and ends with the same symbol}

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 7 / 21

Some More Examples

(⌃⌃)⇤ = {w |w is a string of even length}
(0 [✏)(1 [✏) =

{✏, 0, 1, 01}
1⇤; = ;
;⇤ = {✏}
0⌃⇤0 [1⌃⇤1 [0 [1 = {w |w starts and ends with the same symbol}

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 7 / 21

Some More Examples

(⌃⌃)⇤ = {w |w is a string of even length}
(0 [✏)(1 [✏) = {✏, 0, 1, 01}
1⇤; =

;
;⇤ = {✏}
0⌃⇤0 [1⌃⇤1 [0 [1 = {w |w starts and ends with the same symbol}

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 7 / 21

Some More Examples

(⌃⌃)⇤ = {w |w is a string of even length}
(0 [✏)(1 [✏) = {✏, 0, 1, 01}
1⇤; = ;
;⇤ =

{✏}
0⌃⇤0 [1⌃⇤1 [0 [1 = {w |w starts and ends with the same symbol}

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 7 / 21

Some More Examples

(⌃⌃)⇤ = {w |w is a string of even length}
(0 [✏)(1 [✏) = {✏, 0, 1, 01}
1⇤; = ;
;⇤ = {✏}
0⌃⇤0 [1⌃⇤1 [0 [1 =

{w |w starts and ends with the same symbol}

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 7 / 21

Some More Examples

(⌃⌃)⇤ = {w |w is a string of even length}
(0 [✏)(1 [✏) = {✏, 0, 1, 01}
1⇤; = ;
;⇤ = {✏}
0⌃⇤0 [1⌃⇤1 [0 [1 = {w |w starts and ends with the same symbol}

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 7 / 21

Languages to Regular Expressions Examples

Consider languages over the alphabet {0, 1, 2}
1 L1 = {w |w has 2 consecutive 0’s}

2 L2 = {w |w has a substring 101 and ends in 22}

3 L3 = {w |w 2 L1 or w 2 L2}

Question:

What does this have to do with FAs and regular languages?

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 8 / 21

Outline

1 Lecture 4 Review

2 Regular Expressions

3 Regular Expressions == Regular Languages

4 Properties of Regular Expressions

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 9 / 21

Regular Expressions == Regular Languages == NFA

Theorem

A language L is regular if and only if some regular expression describes it.

Proof (Part 1): If L is described a regular expression then it is regular.
Enough to show how to construct NFA to recognize L

1 R = a for some a 2 ⌃

2 R = ✏

3 R = ;

4 R = R1 [R2

5 R = R1 � R2

6 R = R⇤
1

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 10 / 21

Regular Expressions == Regular Languages == NFA

Theorem

A language L is regular if and only if some regular expression describes it.

Proof (Part 1): If L is described a regular expression then it is regular.
Enough to show how to construct NFA to recognize L

1 R = a for some a 2 ⌃

2 R = ✏

3 R = ;

4 R = R1 [R2

5 R = R1 � R2

6 R = R⇤
1

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 10 / 21

Regular Expressions == Regular Languages == NFA

Theorem

A language L is regular if and only if some regular expression describes it.

Proof (Part 1): If L is described a regular expression then it is regular.
Enough to show how to construct NFA to recognize L

1 R = a for some a 2 ⌃

2 R = ✏

3 R = ;

4 R = R1 [R2

5 R = R1 � R2

6 R = R⇤
1

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 10 / 21

An Example

Problem: Convert (ab [a)⇤ to an NFA
In English: Either “ab” or “a” repeated 0 or more times

a:

b:

ab:

ab [a:

(ab [a)⇤:

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 11 / 21

Regular Expressions == Regular Languages

Theorem

A language L is regular if and only if some regular expression describes it.

Proof (Part 2): If L is regular then it can be described by a regular
expression.
Enough to show how to build regular expression corresponding to a NFA

1 2start

c

a

a, d

b

Question

How do we represent L by a regular expression?

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 12 / 21

Regular Expressions == Regular Languages

Theorem

A language L is regular if and only if some regular expression describes it.

Proof (Part 2): If L is regular then it can be described by a regular
expression.
Enough to show how to build regular expression corresponding to a NFA

1 2start

c

a

a, d

b

Question

How do we represent L by a regular expression?

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 12 / 21

Regular Expressions == Regular Languages

Theorem

A language L is regular if and only if some regular expression describes it.

Proof (Part 2): If L is regular then it can be described by a regular
expression.
Enough to show how to build regular expression corresponding to a NFA

1 2start

c

a

a, d

b

Question

How do we represent L by a regular expression?

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 12 / 21

Step 1: NFA ! generalized NFA

A generalized NFA has 3 important properties:

1 Start state has no incoming edges

2 Only one accept state, and it has no outgoing edges

3 Edges labeled by regular expressions

1 2start

c

a

a, d

b

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 13 / 21

Step 1: NFA ! generalized NFA

A generalized NFA has 3 important properties:

1 Start state has no incoming edges

2 Only one accept state, and it has no outgoing edges

3 Edges labeled by regular expressions

1 2start

c

a

a, d

b

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 13 / 21

Step 2: Node Elimination – Remove Node 1

Remove nodes one-by-one (in any order) until only start and accept states
left:

Need to update reg. exp.’s for all paths through removed nodes

1 2s a

c

a

a [d

b

✏start ✏

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 14 / 21

Step 2: Node Elimination – Remove Node 2

Remove nodes one-by-one (in any order) until only start and accept states
left:

Need to update reg. exp.’s for all paths through removed nodes

2s a

a [d

start ✏c⇤a

bc⇤a

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 15 / 21

X
(c)((avd)v(ba)

We are Done

Output label of final edge from start to accept state.

s astart
c⇤a(a [d [bc⇤a)⇤

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 16 / 21

Generalized Node Elimination

q0 q1

qrip

R4

R1

R2

R3
s a

(R1)(R2)⇤(R3) [(R4)

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 17 / 21

Proof

Theorem

For any GNFA G , G 0=NODE-ELIMINATE(G) is equivalent to G

Base Case: For |G | = 2, G consists of start and accept states and arrow
between them. The label on this arrow exactly describes the language of
strings accepted by G .

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 18 / 21

Proof

Theorem

For any GNFA G , G 0=NODE-ELIMINATE(G) is equivalent to G

Base Case: For |G | = 2, G consists of start and accept states and arrow
between them. The label on this arrow exactly describes the language of
strings accepted by G .

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 18 / 21

Proof

Theorem

For any GNFA G , G 0=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G | = k � 1, prove true for |G | = k . (i.e.,
prove that G 0 = G)

Assume some w s.t. G (w) = 1, then on input w , G goes through

qstart , q1, q2, . . . , qaccept

If qrip is not on this path, clearly G 0(w) = 1
If qrip is on this path, then the qi and qj nodes before and after qrip
have a new reg. exp. in G 0 describing all paths through qrip

Assume some w s.t. G 0(w) = 1, then G 0(w) stops in qaccept .
If it would have gone through qrip then the modified edge accepts w ,
so there is a path through qrip in G that accepts w .
If the accepting path would not have gone through qrip, then G must
also have the same path to accept w

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 19 / 21

Proof

Theorem

For any GNFA G , G 0=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G | = k � 1, prove true for |G | = k . (i.e.,
prove that G 0 = G)

Assume some w s.t. G (w) = 1, then on input w , G goes through

qstart , q1, q2, . . . , qaccept

If qrip is not on this path, clearly G 0(w) = 1

If qrip is on this path, then the qi and qj nodes before and after qrip
have a new reg. exp. in G 0 describing all paths through qrip

Assume some w s.t. G 0(w) = 1, then G 0(w) stops in qaccept .
If it would have gone through qrip then the modified edge accepts w ,
so there is a path through qrip in G that accepts w .
If the accepting path would not have gone through qrip, then G must
also have the same path to accept w

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 19 / 21

Proof

Theorem

For any GNFA G , G 0=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G | = k � 1, prove true for |G | = k . (i.e.,
prove that G 0 = G)

Assume some w s.t. G (w) = 1, then on input w , G goes through

qstart , q1, q2, . . . , qaccept

If qrip is not on this path, clearly G 0(w) = 1
If qrip is on this path, then the qi and qj nodes before and after qrip
have a new reg. exp. in G 0 describing all paths through qrip

Assume some w s.t. G 0(w) = 1, then G 0(w) stops in qaccept .
If it would have gone through qrip then the modified edge accepts w ,
so there is a path through qrip in G that accepts w .
If the accepting path would not have gone through qrip, then G must
also have the same path to accept w

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 19 / 21

Wi O-> I RidO->or
M

Proof

Theorem

For any GNFA G , G 0=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G | = k � 1, prove true for |G | = k . (i.e.,
prove that G 0 = G)

Assume some w s.t. G (w) = 1, then on input w , G goes through

qstart , q1, q2, . . . , qaccept

If qrip is not on this path, clearly G 0(w) = 1
If qrip is on this path, then the qi and qj nodes before and after qrip
have a new reg. exp. in G 0 describing all paths through qrip

Assume some w s.t. G 0(w) = 1, then G 0(w) stops in qaccept .

If it would have gone through qrip then the modified edge accepts w ,
so there is a path through qrip in G that accepts w .
If the accepting path would not have gone through qrip, then G must
also have the same path to accept w

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 19 / 21

Proof

Theorem

For any GNFA G , G 0=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G | = k � 1, prove true for |G | = k . (i.e.,
prove that G 0 = G)

Assume some w s.t. G (w) = 1, then on input w , G goes through

qstart , q1, q2, . . . , qaccept

If qrip is not on this path, clearly G 0(w) = 1
If qrip is on this path, then the qi and qj nodes before and after qrip
have a new reg. exp. in G 0 describing all paths through qrip

Assume some w s.t. G 0(w) = 1, then G 0(w) stops in qaccept .
If it would have gone through qrip then the modified edge accepts w ,
so there is a path through qrip in G that accepts w .

If the accepting path would not have gone through qrip, then G must
also have the same path to accept w

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 19 / 21

Proof

Theorem

For any GNFA G , G 0=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G | = k � 1, prove true for |G | = k . (i.e.,
prove that G 0 = G)

Assume some w s.t. G (w) = 1, then on input w , G goes through

qstart , q1, q2, . . . , qaccept

If qrip is not on this path, clearly G 0(w) = 1
If qrip is on this path, then the qi and qj nodes before and after qrip
have a new reg. exp. in G 0 describing all paths through qrip

Assume some w s.t. G 0(w) = 1, then G 0(w) stops in qaccept .
If it would have gone through qrip then the modified edge accepts w ,
so there is a path through qrip in G that accepts w .
If the accepting path would not have gone through qrip, then G must
also have the same path to accept w

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 19 / 21

Outline

1 Lecture 4 Review

2 Regular Expressions

3 Regular Expressions == Regular Languages

4 Properties of Regular Expressions

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 20 / 21

Properties of Regular Expressions

By equivalence between regular expressions and NFAs, we have:

1 Regular expressions are closed under complement

2 Regualr expressions are closed under union

3 Regular expressions are closed under star

4 . . .

Proof:

Build NFA M corresponding to each clause

Since we already showed how to build NFA to show closure, can
convert that to regular expression to prove the claim.

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 21 / 21

Properties of Regular Expressions

By equivalence between regular expressions and NFAs, we have:

1 Regular expressions are closed under complement

2 Regualr expressions are closed under union

3 Regular expressions are closed under star

4 . . .

Proof:

Build NFA M corresponding to each clause

Since we already showed how to build NFA to show closure, can
convert that to regular expression to prove the claim.

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 21 / 21

Properties of Regular Expressions

By equivalence between regular expressions and NFAs, we have:

1 Regular expressions are closed under complement

2 Regualr expressions are closed under union

3 Regular expressions are closed under star

4 . . .

Proof:

Build NFA M corresponding to each clause

Since we already showed how to build NFA to show closure, can
convert that to regular expression to prove the claim.

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 21 / 21

Properties of Regular Expressions

By equivalence between regular expressions and NFAs, we have:

1 Regular expressions are closed under complement

2 Regualr expressions are closed under union

3 Regular expressions are closed under star

4 . . .

Proof:

Build NFA M corresponding to each clause

Since we already showed how to build NFA to show closure, can
convert that to regular expression to prove the claim.

Arkady Yerukhimovich CS 3313 – Foundations of Computing January 30, 2024 21 / 21

