Foundations of Computing Lecture 5

Arkady Yerukhimovich

January 30, 2024

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

<u>Ja</u>nuary 30, 2024

Lecture 4 Review

- 2 Regular Expressions
- 3 Regular Expressions == Regular Languages
- Properties of Regular Expressions

- ∢ /⊐ >

▶ < ∃ >

- More NFAs
- Equivalence of NFAs and DFAs
- NFAs for union, composition, and star closure of regular languages

1 Lecture 4 Review

3 Regular Expressions == Regular Languages

Properties of Regular Expressions

- ∢ ⊒ →

< (T) >

• Strings that describe a language

< A

문 문 문

- Strings that describe a language
- They consist of:
 - Symbols (e.g., 0,1)
 - Parentheses
 - $\bullet~\cup$ representing union
 - * representing repetition 0 or more times

- Strings that describe a language
- They consist of:
 - Symbols (e.g., 0,1)
 - Parentheses
 - $\bullet~\cup$ representing union
 - * representing repetition 0 or more times
- Examples:
 - $0^*10^* = \{w | w \text{ has exactly one } 1\}$

- Strings that describe a language
- They consist of:
 - Symbols (e.g., 0,1)
 - Parentheses
 - $\bullet~\cup$ representing union
 - * representing repetition 0 or more times
- Examples:
 - $0^*10^* = \{w | w \text{ has exactly one } 1\}$
 - $01 \cup 10 = \{01, 10\}$

- Strings that describe a language
- They consist of:
 - Symbols (e.g., 0,1)
 - Parentheses
 - $\bullet~\cup$ representing union
 - * representing repetition 0 or more times
- Examples:
 - $0^*10^* = \{w | w \text{ has exactly one } 1\}$
 - $01 \cup 10 = \{01, 10\}$
 - $\Sigma^* 1 \Sigma^* = \{ w | w \text{ has at least one } 1 \}$

- Strings that describe a language
- They consist of:
 - Symbols (e.g., 0,1)
 - Parentheses
 - $\bullet~\cup$ representing union
 - * representing repetition 0 or more times
- Examples:
 - $0^*10^* = \{w | w \text{ has exactly one } 1\}$
 - $01 \cup 10 = \{01, 10\}$
 - $\Sigma^* 1 \Sigma^* = \{ w | w \text{ has at least one } 1 \}$

You've seen this before

Regular expressions very useful in compilers, and string search (e.g., grep)

1 a for some a in the alphabet Σ (or Σ)

- a for some a in the alphabet Σ (or Σ)
- **2** ϵ the empty string

- **1** a for some a in the alphabet Σ (or Σ)
- 2 ϵ the empty string
- \emptyset the empty set

Eest Ø

- a for some a in the alphabet Σ (or Σ)
- 2 ϵ the empty string
- I ∅ − the empty set
- **(** $R_1 \cup R_2$) R_1 or R_2 where R_1 and R_2 are regular expressions

- a for some a in the alphabet Σ (or Σ)
- 2 ϵ the empty string
- **③** ∅ the empty set
- **③** $(R_1 \cup R_2) R_1$ or R_2 where R_1 and R_2 are regular expressions
- $(R_1 \circ R_2) R_1$ concatenated with R_2 where R_1 and R_2 are regular expressions

- a for some a in the alphabet Σ (or Σ)
- 2 ϵ the empty string
- \emptyset the empty set
- **(** $R_1 \cup R_2$) R_1 or R_2 where R_1 and R_2 are regular expressions
- $(R_1 \circ R_2) R_1$ concatenated with R_2 where R_1 and R_2 are regular expressions
- **(** R_1^*) 0 or more repetitions of R_1 where R_1 is a regular expression

Some More Examples

• $(\Sigma\Sigma)^* =$

イロト イポト イヨト イヨト

3

- $(\Sigma\Sigma)^* = \{w | w \text{ is a string of even length}\}$
- $(0 \cup \epsilon)(1 \cup \epsilon) =$

- ∢ 🗗 ▶

∃ ⇒

- $(\Sigma\Sigma)^* = \{w | w \text{ is a string of even length}\}$
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$
- $1^* \emptyset =$

- ∢ 🗗 ▶

< ∃ >

- $(\Sigma\Sigma)^* = \{w | w \text{ is a string of even length}\}$
- $(0\cup\epsilon)(1\cup\epsilon)=\{\epsilon,0,1,01\}$
- $1^* \emptyset = \emptyset$
- $\emptyset^* =$

Image: A matrix

→ < ∃ →</p>

- $(\Sigma\Sigma)^* = \{w | w \text{ is a string of even length}\}$
- $(0\cup\epsilon)(1\cup\epsilon)=\{\epsilon,0,1,01\}$
- $1^* \emptyset = \emptyset$
- $\emptyset^* = \{\epsilon\}$
- $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 =$

3. 3

- $(\Sigma\Sigma)^* = \{w | w \text{ is a string of even length}\}$
- $(0\cup\epsilon)(1\cup\epsilon)=\{\epsilon,0,1,01\}$
- $1^* \emptyset = \emptyset$
- $\emptyset^* = \{\epsilon\}$
- $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = \{w | w \text{ starts and ends with the same symbol}\}$

Languages to Regular Expressions Examples

Consider languages over the alphabet $\{0, 1, 2\}$ $L_1 = \{ w | w \text{ has } 2 \text{ consecutive } 0's \}$ 5.00 5. 2 $L_2 = \{w | w \text{ has a substring 101 and ends in 22}\}$ 5. 101 2 22 $\left(\begin{array}{c} \mathcal{C} & \mathcal{O} \\ \mathcalO \\ \mathcalO \\ \mathcalO \\ \mathcalO \\ \mathcalO \\ \mathcalO$ **3** $L_3 = \{ w | w \in L_1 \text{ or } w \in L_2 \}$ $(R) \cup (R)$ Question: What does this have to do with FAs and regular languages? Arkady Yerukhimovich CS 3313 - Foundations of Computing January 30, 2024 8/21

- 3 Regular Expressions == Regular Languages
- Properties of Regular Expressions

< 行

∃ →

Regular Expressions == Regular Languages == NFA

Theorem

A language L is regular if and only if some regular expression describes it.

Regular Expressions == Regular Languages == NFA

Theorem

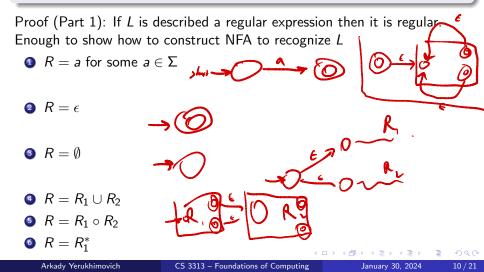
A language L is regular if and only if some regular expression describes it.

Proof (Part 1): If L is described a regular expression then it is regular. Enough to show how to construct NFA to recognize L

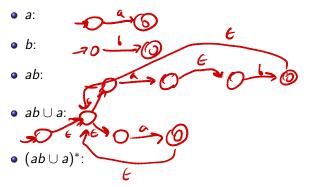
Regular Expressions == Regular Languages == NFA

Theorem

A language L is regular if and only if some regular expression describes it.



Problem: Convert $(ab \cup a)^*$ to an NFA In English: Either "ab" or "a" repeated 0 or more times



Regular Expressions == Regular Languages

Theorem

A language L is regular if and only if some regular expression describes it.

Regular Expressions == Regular Languages

Theorem

A language L is regular if and only if some regular expression describes it.

Proof (Part 2): If L is regular then it can be described by a regular expression.

Enough to show how to build regular expression corresponding to a NFA

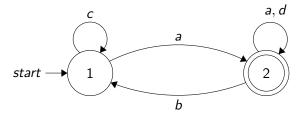
Regular Expressions == Regular Languages

Theorem

A language L is regular if and only if some regular expression describes it.

Proof (Part 2): If L is regular then it can be described by a regular expression.

Enough to show how to build regular expression corresponding to a NFA



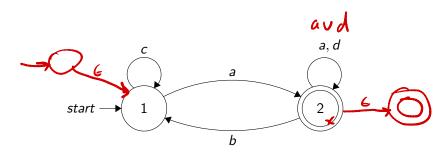
Question How do we represent L by a regular expression? Arkady Yerukhimovich CS 3313 - Foundations of Computing January 30, 2024 12/21

A generalized NFA has 3 important properties:

- Start state has no incoming edges
- Only one accept state, and it has no outgoing edges
- Section 2 Construction 2 Construc

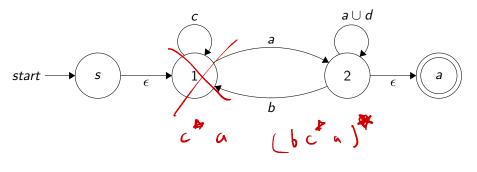
A generalized NFA has 3 important properties:

- Start state has no incoming edges
- Only one accept state, and it has no outgoing edges
- Section 2 Construction 2 Construc



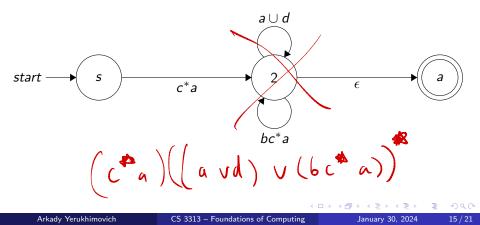
Remove nodes one-by-one (in any order) until only start and accept states left:

• Need to update reg. exp.'s for all paths through removed nodes

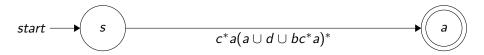


Remove nodes one-by-one (in any order) until only start and accept states left:

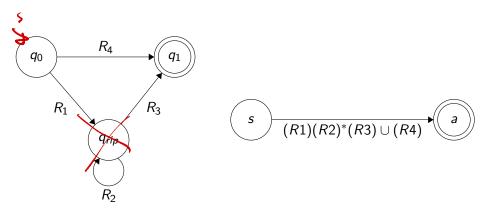
• Need to update reg. exp.'s for all paths through removed nodes



Output label of final edge from start to accept state.



Generalized Node Elimination



3 N 3

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

- 4 🗗 ▶

문 🛌 🖻

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Base Case: For |G| = 2, G consists of start and accept states and arrow between them. The label on this arrow exactly describes the language of strings accepted by G.

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G| = k - 1, prove true for |G| = k. (i.e., prove that G' = G)

• Assume some w s.t. G(w) = 1, then on input w, G goes through

 $q_{start}, q_1, q_2, \ldots, q_{accept}$

3

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G| = k - 1, prove true for |G| = k. (i.e., prove that G' = G)

• Assume some w s.t. G(w) = 1, then on input w, G goes through

 $q_{start}, q_1, q_2, \ldots, q_{accept}$

• If q_{rip} is not on this path, clearly G'(w) = 1

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G| = k - 1, prove true for |G| = k. (i.e., prove that G' = G)

• Assume some w s.t. G(w) = 1, then on input w, G goes through

 $q_{start}, q_1, q_2, \dots, q_{accept}$

- If q_{rip} is not on this path, clearly G'(w) = 1
- If q_{rip} is on this path, then the q_i and q_j nodes before and after q_{rip} have a new reg. exp. in G' describing all paths through q_{rip}

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G| = k - 1, prove true for |G| = k. (i.e., prove that G' = G)

• Assume some w s.t. G(w) = 1, then on input w, G goes through

 $q_{start}, q_1, q_2, \dots, q_{accept}$

- If q_{rip} is not on this path, clearly G'(w) = 1
- If q_{rip} is on this path, then the q_i and q_j nodes before and after q_{rip} have a new reg. exp. in G' describing all paths through q_{rip}
- Assume some w s.t. G'(w) = 1, then G'(w) stops in q_{accept} .

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G| = k - 1, prove true for |G| = k. (i.e., prove that G' = G)

• Assume some w s.t. G(w) = 1, then on input w, G goes through

 $q_{start}, q_1, q_2, \ldots, q_{accept}$

- If q_{rip} is not on this path, clearly G'(w) = 1
- If q_{rip} is on this path, then the q_i and q_j nodes before and after q_{rip} have a new reg. exp. in G' describing all paths through q_{rip}
- Assume some w s.t. G'(w) = 1, then G'(w) stops in q_{accept} .
 - If it would have gone through q_{rip} then the modified edge accepts w, so there is a path through q_{rip} in G that accepts w.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

For any GNFA G, G'=NODE-ELIMINATE(G) is equivalent to G

Inductive step: Assume true for |G| = k - 1, prove true for |G| = k. (i.e., prove that G' = G)

• Assume some w s.t. G(w) = 1, then on input w, G goes through

 $q_{start}, q_1, q_2, \ldots, q_{accept}$

- If q_{rip} is not on this path, clearly G'(w) = 1
- If q_{rip} is on this path, then the q_i and q_j nodes before and after q_{rip} have a new reg. exp. in G' describing all paths through q_{rip}
- Assume some w s.t. G'(w) = 1, then G'(w) stops in q_{accept} .
 - If it would have gone through q_{rip} then the modified edge accepts w, so there is a path through q_{rip} in G that accepts w.
 - If the accepting path would not have gone through q_{rip} , then G must also have the same path to accept w

Lecture 4 Review

- 2 Regular Expressions
- 3 Regular Expressions == Regular Languages

Properties of Regular Expressions

< 円

< ∃⇒

э

- Regular expressions are closed under complement
- egualr expressions are closed under union
- 8 Regular expressions are closed under star
- 4 . . .

- Regular expressions are closed under complement
- egualr expressions are closed under union
- 8 Regular expressions are closed under star
- **④** ...

Proof:

- Regular expressions are closed under complement
- ② Regualr expressions are closed under union
- 8 Regular expressions are closed under star

④ ...

Proof:

• Build NFA *M* corresponding to each clause

- Regular expressions are closed under complement
- Regualr expressions are closed under union
- 8 Regular expressions are closed under star

4 ...

Proof:

- Build NFA *M* corresponding to each clause
- Since we already showed how to build NFA to show closure, can convert that to regular expression to prove the claim.