Foundations of Computing

```
Lecture 5
```

Arkady Yerukhimovich

January 30, 2024

Outline

(1) Lecture 4 Review

(2) Regular Expressions

(3) Regular Expressions $==$ Regular Languages
(4) Properties of Regular Expressions

Lecture 4 Review

- More NFAs
- Equivalence of NFAs and DFAs
- NFAs for union, composition, and star - closure of regular languages

Outline

(1) Lecture 4 Review

(2) Regular Expressions

(3) Regular Expressions $==$ Regular Languages

4 Properties of Regular Expressions

Regular Expressions

- Strings that describe a language

Regular Expressions

- Strings that describe a language
- They consist of:
- Symbols (e.g., 0,1)
- Parentheses
- U - representing union
- * - representing repetition 0 or more times

Regular Expressions

- Strings that describe a language
- They consist of:
- Symbols (e.g., 0,1)
- Parentheses
- U - representing union
- * - representing repetition 0 or more times
- Examples:
- $0^{*} 10^{*}=\{w \mid w$ has exactly one 1$\}$

Regular Expressions

- Strings that describe a language
- They consist of:
- Symbols (e.g., 0,1)
- Parentheses
- U - representing union
- * - representing repetition 0 or more times
- Examples:
- $0^{*} 10^{*}=\{w \mid w$ has exactly one 1$\}$
- $01 \cup 10=\{01,10\}$

Regular Expressions

- Strings that describe a language
- They consist of:
- Symbols (e.g., 0,1)
- Parentheses
- U - representing union
- * - representing repetition 0 or more times
- Examples:
- $0^{*} 10^{*}=\{w \mid w$ has exactly one 1$\}$
- $01 \cup 10=\{01,10\}$
- $\Sigma^{*} 1 \Sigma^{*}=\{w \mid w$ has at least one 1$\}$

Regular Expressions

- Strings that describe a language
- They consist of:
- Symbols (e.g., 0,1)
- Parentheses
- \cup - representing union
- * - representing repetition 0 or more times
- Examples:
- $0^{*} 10^{*}=\{w \mid w$ has exactly one 1$\}$
- $01 \cup 10=\{01,10\}$
- $\Sigma^{*} 1 \Sigma^{*}=\{w \mid w$ has at least one 1$\}$

You've seen this before

Regular expressions very useful in compilers, and string search (e.g., grep)

Formal Definition

R is a regular expression if R is
(1) a for some a in the alphabet Σ (or Σ)

Formal Definition

R is a regular expression if R is
(1) a for some a in the alphabet Σ (or Σ)
(2) ϵ - the empty string

Formal Definition

R is a regular expression if R is
(1) a for some a in the alphabet Σ (or Σ)
(2) ϵ - the empty string
(3) \emptyset - the empty set

Formal Definition

R is a regular expression if R is
(1) a for some a in the alphabet Σ (or Σ)
(2) ϵ - the empty string
(3) \emptyset - the empty set
(9) $\left(R_{1} \cup R_{2}\right)-R_{1}$ or R_{2} where R_{1} and R_{2} are regular expressions

Formal Definition

R is a regular expression if R is
(1) a for some a in the alphabet Σ (or Σ)
(2) ϵ - the empty string
(3) \emptyset - the empty set
(1) $\left(R_{1} \cup R_{2}\right)-R_{1}$ or R_{2} where R_{1} and R_{2} are regular expressions
(5) $\left(R_{1} \circ R_{2}\right)-R_{1}$ concatenated with R_{2} where R_{1} and R_{2} are regular expressions

Formal Definition

R is a regular expression if R is
(1) a for some a in the alphabet Σ (or Σ)
(2) ϵ - the empty string
(3) \emptyset - the empty set
(1) $\left(R_{1} \cup R_{2}\right)-R_{1}$ or R_{2} where R_{1} and R_{2} are regular expressions
(5) $\left(R_{1} \circ R_{2}\right)-R_{1}$ concatenated with R_{2} where R_{1} and R_{2} are regular expressions
(0. $\left(R_{1}^{*}\right)$ - 0 or more repetitions of R_{1} where R_{1} is a regular expression

Some More Examples

- $(\Sigma \Sigma)^{*}=$

Some More Examples

- $(\Sigma \Sigma)^{*}=\{w \mid w$ is a string of even length $\}$
- $(0 \cup \epsilon)(1 \cup \epsilon)=$

Some More Examples

- $(\Sigma \Sigma)^{*}=\{w \mid w$ is a string of even length $\}$
- $(0 \cup \epsilon)(1 \cup \epsilon)=\{\epsilon, 0,1,01\}$
- $1^{*} \emptyset=$

Some More Examples

- $(\Sigma \Sigma)^{*}=\{w \mid w$ is a string of even length $\}$
- $(0 \cup \epsilon)(1 \cup \epsilon)=\{\epsilon, 0,1,01\}$
- $1^{*} \emptyset=\emptyset$
- $\emptyset^{*}=$

Some More Examples

- $(\Sigma \Sigma)^{*}=\{w \mid w$ is a string of even length $\}$
- $(0 \cup \epsilon)(1 \cup \epsilon)=\{\epsilon, 0,1,01\}$
- $1^{*} \emptyset=\emptyset$
- $\emptyset^{*}=\{\epsilon\}$
- $0 \Sigma^{*} 0 \cup 1 \Sigma^{*} 1 \cup 0 \cup 1=$

Some More Examples

- $(\Sigma \Sigma)^{*}=\{w \mid w$ is a string of even length $\}$
- $(0 \cup \epsilon)(1 \cup \epsilon)=\{\epsilon, 0,1,01\}$
- $1^{*} \emptyset=\emptyset$
- $\emptyset^{*}=\{\epsilon\}$
- $0 \Sigma^{*} 0 \cup 1 \Sigma^{*} 1 \cup 0 \cup 1=\{w \mid w$ starts and ends with the same symbol $\}$

Languages to Regular Expressions Examples
Consider languages over the alphabet $\{0,1,2\}$
(1) $L_{1}=\{w \mid w$ has 2 consecutive 0 's $\}$

(2) $L_{2}=\{w \mid w$ has a substring 101 and ends in 22 $\}$

$$
\Sigma^{*} 101 \Sigma^{B} 22
$$

(3) $L_{3}=\left\{w \mid w \in L_{1}\right.$ or $\left.w \in L_{2}\right\}$

$$
\left(R_{1}\right) \cup\left(R_{2}\right)
$$

$$
\begin{aligned}
& \left(\varepsilon^{*} 00 \varepsilon^{p}\right) \\
& v\left(\varepsilon^{*}|0| \varepsilon^{\prime \prime} L_{2}\right)
\end{aligned}
$$

Question:
What does this have to do with FAs and regular languages?

Outline

(1) Lecture 4 Review
(2) Regular Expressions
(3) Regular Expressions $==$ Regular Languages

44 Properties of Regular Expressions

Regular Expressions $==$ Regular Languages $==$ NFA

Theorem

A language L is regular if and only if some regular expression describes it.

Regular Expressions $==$ Regular Languages $==$ NFA

Theorem

A language L is regular if and only if some regular expression describes it.
Proof (Part 1): If L is described a regular expression then it is regular. Enough to show how to construct NFA to recognize L

Regular Expressions $==$ Regular Languages $==$ NFA

Theorem

A language L is regular if and only if some regular expression describes it.
Proof (Part 1): If L is described a regular expression then it is regular ${ }^{\epsilon}$ Enough to show how to construct NFA to recognize L
(1) $R=a$ for some $a \in \Sigma$

(3) $R=\emptyset$
(9) $R=R_{1} \cup R_{2}$
(3) $R=R_{1} \circ R_{2}$
(-) $R=R_{1}^{*}$

(2) $R=\epsilon$

An Example

Problem: Convert $(a b \cup a)^{*}$ to an NFA
In English: Either "ab" or "a" repeated 0 or more times

- a:
- b :
ab:

Regular Expressions $==$ Regular Languages

Theorem

A language L is regular if and only if some regular expression describes it.

Regular Expressions $==$ Regular Languages

Theorem

A language L is regular if and only if some regular expression describes it.
Proof (Part 2): If L is regular then it can be described by a regular expression.
Enough to show how to build regular expression corresponding to a NFA

Regular Expressions $==$ Regular Languages

Theorem

A language L is regular if and only if some regular expression describes it.
Proof (Part 2): If L is regular then it can be described by a regular expression.
Enough to show how to build regular expression corresponding to a NFA

Question

How do we represent L by a regular expression?

Step 1: NFA \rightarrow generalized NFA

A generalized NFA has 3 important properties:
(1) Start state has no incoming edges
(2) Only one accept state, and it has no outgoing edges
(3) Edges labeled by regular expressions

Step 1: NFA \rightarrow generalized NFA

A generalized NFA has 3 important properties:
(1) Start state has no incoming edges
(2) Only one accept state, and it has no outgoing edges
(3) Edges labeled by regular expressions

aud

Step 2: Node Elimination - Remove Node 1

Remove nodes one-by-one (in any order) until only start and accept states left:

- Need to update reg. exp.'s for all paths through removed nodes

Step 2: Node Elimination - Remove Node 2

Remove nodes one-by-one (in any order) until only start and accept states left:

- Need to update reg. exp.'s for all paths through removed nodes

We are Done

Output label of final edge from start to accept state.

Generalized Node Elimination

Proof

Theorem
For any GNFA $G, G^{\prime}=\operatorname{NODE}-\operatorname{ELIMINATE}(G)$ is equivalent to G

Proof

Theorem

For any GNFA $G, G^{\prime}=\operatorname{NODE-ELIMINATE}(G)$ is equivalent to G

Base Case: For $|G|=2, G$ consists of start and accept states and arrow between them. The label on this arrow exactly describes the language of strings accepted by G.

Proof

Theorem

For any GNFA $G, G^{\prime}=\operatorname{NODE}-\operatorname{ELIMINATE}(G)$ is equivalent to G
Inductive step: Assume true for $|G|=k-1$, prove true for $|G|=k$. (i.e., prove that $G^{\prime}=G$)

- Assume some w s.t. $G(w)=1$, then on input w, G goes through

$$
q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}
$$

Proof

Theorem

For any GNFA $G, G^{\prime}=\operatorname{NODE-ELIMINATE}(G)$ is equivalent to G
Inductive step: Assume true for $|G|=k-1$, prove true for $|G|=k$. (i.e., prove that $G^{\prime}=G$)

- Assume some w s.t. $G(w)=1$, then on input w, G goes through

$$
q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}
$$

- If $q_{\text {rip }}$ is not on this path, clearly $G^{\prime}(w)=1$

Proof

Theorem

For any GNFA $G, G^{\prime}=\operatorname{NODE-ELIMINATE}(G)$ is equivalent to G
Inductive step: Assume true for $|G|=k-1$, prove true for $|G|=k$. (i.e., prove that $G^{\prime}=G$)

- Assume some w s.t. $G(w)=1$, then on input w, G goes through

$$
q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}
$$

- If $q_{r i p}$ is not on this path, clearly $G^{\prime}(w)=1$
- If $q_{r i p}$ is on this path, then the q_{i} and q_{j} nodes before and after $q_{r i p}$ have a new reg. exp. in G^{\prime} describing all paths through $q_{\text {rip }}$

Proof

Theorem

For any GNFA $G, G^{\prime}=\operatorname{NODE-ELIMINATE}(G)$ is equivalent to G
Inductive step: Assume true for $|G|=k-1$, prove true for $|G|=k$. (i.e., prove that $G^{\prime}=G$)

- Assume some w s.t. $G(w)=1$, then on input w, G goes through

$$
q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}
$$

- If $q_{\text {rip }}$ is not on this path, clearly $G^{\prime}(w)=1$
- If $q_{r i p}$ is on this path, then the q_{i} and q_{j} nodes before and after $q_{\text {rip }}$ have a new reg. exp. in G^{\prime} describing all paths through $q_{\text {rip }}$
- Assume some w s.t. $G^{\prime}(w)=1$, then $G^{\prime}(w)$ stops in $q_{\text {accept }}$.

Proof

Theorem

For any GNFA $G, G^{\prime}=\operatorname{NODE-ELIMINATE}(G)$ is equivalent to G
Inductive step: Assume true for $|G|=k-1$, prove true for $|G|=k$. (i.e., prove that $G^{\prime}=G$)

- Assume some w s.t. $G(w)=1$, then on input w, G goes through

$$
q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}
$$

- If $q_{\text {rip }}$ is not on this path, clearly $G^{\prime}(w)=1$
- If $q_{r i p}$ is on this path, then the q_{i} and q_{j} nodes before and after $q_{r i p}$ have a new reg. exp. in G^{\prime} describing all paths through $q_{\text {rip }}$
- Assume some w s.t. $G^{\prime}(w)=1$, then $G^{\prime}(w)$ stops in $q_{\text {accept }}$.
- If it would have gone through $q_{\text {rip }}$ then the modified edge accepts w, so there is a path through $q_{\text {rip }}$ in G that accepts w.

Proof

Theorem

For any GNFA $G, G^{\prime}=\operatorname{NODE-ELIMINATE}(G)$ is equivalent to G
Inductive step: Assume true for $|G|=k-1$, prove true for $|G|=k$. (i.e., prove that $G^{\prime}=G$)

- Assume some w s.t. $G(w)=1$, then on input w, G goes through

$$
q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}
$$

- If $q_{r i p}$ is not on this path, clearly $G^{\prime}(w)=1$
- If $q_{r i p}$ is on this path, then the q_{i} and q_{j} nodes before and after $q_{r i p}$ have a new reg. exp. in G^{\prime} describing all paths through $q_{\text {rip }}$
- Assume some w s.t. $G^{\prime}(w)=1$, then $G^{\prime}(w)$ stops in $q_{\text {accept }}$.
- If it would have gone through $q_{\text {rip }}$ then the modified edge accepts w, so there is a path through $q_{\text {rip }}$ in G that accepts w.
- If the accepting path would not have gone through $q_{\text {rip }}$, then G must also have the same path to accept w

Outline

(1) Lecture 4 Review

(2) Regular Expressions

(3) Regular Expressions $==$ Regular Languages

44 Properties of Regular Expressions

Properties of Regular Expressions

By equivalence between regular expressions and NFAs, we have:
(1) Regular expressions are closed under complement
(2) Regualr expressions are closed under union
(3) Regular expressions are closed under star
(9)...

Properties of Regular Expressions

By equivalence between regular expressions and NFAs, we have:
(1) Regular expressions are closed under complement
(2) Regualr expressions are closed under union
(3) Regular expressions are closed under star
© ...
Proof:

Properties of Regular Expressions

By equivalence between regular expressions and NFAs, we have:
(1) Regular expressions are closed under complement
(2) Regualr expressions are closed under union
(3) Regular expressions are closed under star
© ...
Proof:

- Build NFA M corresponding to each clause

Properties of Regular Expressions

By equivalence between regular expressions and NFAs, we have:
(1) Regular expressions are closed under complement
(2) Regualr expressions are closed under union
(3) Regular expressions are closed under star
(9)...

Proof:

- Build NFA M corresponding to each clause
- Since we already showed how to build NFA to show closure, can convert that to regular expression to prove the claim.

