# Foundations of Computing 

$$
\text { Lecture } 6
$$

Arkady Yerukhimovich

February 1, 2024

## Outline

## (1) Lecture 5 Review

## (2) A Non-regular Language

## (3) The Pumping Lemma for Regular Languages

4 Using the Pumping Lemma

## Lecture 5 Review

- Regular expressions
- Equivalence of regular expressions and NFAs/DFAs

Quiz Solutions

For each of the following languages over $\Sigma=\{a, b\}$, give two strings that are in the language and two strings not in the language.
(1) $a^{*} \cup b^{*}$
ara
a Gab
(2) $(a a \cup b b)^{*}$
alban
(3) $\Sigma^{*} a \Sigma^{*} b \Sigma^{*} a \Sigma^{*}$
auabacun

## Outline

## (1) Lecture 5 Review

## (2) A Non-regular Language

## (3) The Pumping Lemma for Regular Languages

4 Using the Pumping Lemma

## What We Know So Far

The following four things are equivalent:
(1) Regular languages
(2) Languages recognized by a DFA
(3) Languages recognized by an NFA
(9) Languages described by a regular expression

## What We Know So Far

The following four things are equivalent:
(1) Regular languages
(2) Languages recognized by a DFA
(3) Languages recognized by an NFA
(9) Languages described by a regular expression

## Are all languages regular?

Today we will see that there are languages that are not regular

## The F in DFA/NFA

## The F in DFA/NFA

## Important

In a Finite Automaton, the number of states is finite

## The F in DFA/NFA

## Important

In a Finite Automaton, the number of states is finite
This means that:

- The number of states is fixed independently of the input size


## The F in DFA/NFA

## Important

In a Finite Automaton, the number of states is finite
This means that:

- The number of states is fixed independently of the input size
- An automaton must be able to process strings $w$ s.t. $|w|>|Q|$


## The F in DFA/NFA

## Important

In a Finite Automaton, the number of states is finite
This means that:

- The number of states is fixed independently of the input size
- An automaton must be able to process strings $w$ s.t. $|w|>|Q|$
- Thus, a finite automaton cannot store its whole input

A Nonregular Language

Consider the following language:

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

Let's try to build a DFA for $L$ :


## A Nonregular Language

Consider the following language:

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

Let's try to build a DFA for $L$ :

## The Problem

We need to count the number of 0 s, but this is unbounded so can't have a state for each value

## The Need for a Proof

What we just saw

Intuition: An NFA/DFA cannot count unbounded inputs

## The Need for a Proof

## What we just saw

Intuition: An NFA/DFA cannot count unbounded inputs
Why isn't this a proof?

## The Need for a Proof

## What we just saw

Intuition: An NFA/DFA cannot count unbounded inputs
Why isn't this a proof?
Consider the following language:

## 01011110 <br> 1001

$L=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings $\}$


010

## General Proof Structure

$$
L=0^{n} 1^{n}
$$

We will prove that a language $L$ is not regular by contradiction

## General Proof Structure

We will prove that a language $L$ is not regular by contradiction
(1) Assume $L$ is regular - there is a NFA/DFA $M$ accepting it

## General Proof Structure

We will prove that a language $L$ is not regular by contradiction
(1) Assume $L$ is regular - there is a NFA/DFA $M$ accepting it
(2) Pick a string $w \in L$

## General Proof Structure

We will prove that a language $L$ is not regular by contradiction
(1) Assume $L$ is regular - there is a NFA/DFA $M$ accepting it
(2) Pick a string $w \in L$
(3) Show that if $M(w)=1$ then there exists a string $w^{\prime} \notin L$ s.t. $M\left(w^{\prime}\right)=1$

## General Proof Structure

We will prove that a language $L$ is not regular by contradiction
(1) Assume $L$ is regular - there is a NFA/DFA $M$ accepting it
(2) Pick a string $w \in L$
(3) Show that if $M(w)=1$ then there exists a string $w^{\prime} \notin L$ s.t. $M\left(w^{\prime}\right)=1$
(1) Conclude that $L$ is not regular since any $M$ that accepts all strings in $L$ must also accept strings not in $L$

## Outline

## (1) Lecture 5 Review

## (2) A Non-regular Language

## (3) The Pumping Lemma for Regular Languages

## 4 Using the Pumping Lemma

## The Pumping Lemma

## Pumping Lemma

If $L$ is a regular language, then there exists an integer $p$ (the pumping length) where any string $w \in L$ such that $|w| \geq p$ can be divided into three pieces $w=x y z$ satisfying:

## The Pumping Lemma

## Pumping Lemma

If $L$ is a regular language, then there exists an integer $p$ (the pumping length) where any string $w \in L$ such that $|w| \geq p$ can be divided into three pieces $w=x y z$ satisfying:
(1) For each $i \geq 0, x y^{i} z \in L$

## The Pumping Lemma

## Pumping Lemma

If $L$ is a regular language, then there exists an integer $p$ (the pumping length) where any string $w \in L$ such that $|w| \geq p$ can be divided into three pieces $w=x y z$ satisfying:
(1) For each $i \geq 0, x y^{i} z \in L$
(2) $|y|>0$, and

The Pumping Lemma

Pumping Lemma
If $L$ is a regular language, then there exists an integer $p$ (the pumping length) where any string $w \in L$ such that $|w| \geq p$ can be divided into three pieces $w=x y z$ satisfying:
(1) For each $i \geq 0, x y^{i} z \in L$
(2) $|y|>0$, and
(3) $|x y| \leq p$

$$
\exists_{p} \forall w \in L J \text { partition st. } \forall i \quad x_{j}^{i} z \in L
$$

## The Pumping Lemma

## Pumping Lemma

If $L$ is a regular language, then there exists an integer $p$ (the pumping length) where any string $w \in L$ such that $|w| \geq p$ can be divided into three pieces $w=x y z$ satisfying:
(1) For each $i \geq 0, x y^{i} z \in L$
(2) $|y|>0$, and
(3) $|x y| \leq p$

Next steps:
(1) Prove the pumping lemma
(2) Show how to use the pumping lemma to prove languages nonregular

## Proof Intuition

Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA that recognizes $L$ and let $p=|Q|$

## Proof Intuition

Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA that recognizes $L$ and let $p=|Q|$

- If for all $w \in L,|w|<p$, then we are done


## Proof Intuition

Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA that recognizes $L$ and let $p=|Q|$

- If for all $w \in L,|w|<p$, then we are done
- Suppose $w \in L$ s.t. $|w|=n \geq p$


## Proof Intuition

Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA that recognizes $L$ and let $p=|Q|$

- If for all $w \in L,|w|<p$, then we are done
- Suppose $w \in L$ s.t. $|w|=n \geq p$
- If we run $M(w)$, it will go through $n+1$ states - since it transitions on each symbol of $w$


## Proof Intuition

Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA that recognizes $L$ and let $p=|Q|$

- If for all $w \in L,|w|<p$, then we are done
- Suppose $w \in L$ s.t. $|w|=n \geq p$
- If we run $M(w)$, it will go through $n+1$ states - since it transitions on each symbol of $w$
- Since $n+1>p$, there must be some state that is visited twice



## Proof Intuition



Divide $w=x y z$ as follows:

## Proof Intuition



Divide $w=x y z$ as follows:

- $x$ is the part of $w$ until $M(w)$ visits $q_{5}$


## Proof Intuition



Divide $w=x y z$ as follows:

- $x$ is the part of $w$ until $M(w)$ visits $q_{5}$
- $y$ is the part of $w$ between the two visits to $q_{5}$


## Proof Intuition



Divide $w=x y z$ as follows:

- $x$ is the part of $w$ until $M(w)$ visits $q_{5}$
- $y$ is the part of $w$ between the two visits to $q_{5}$
- $z$ is the part of $w$ after the second visit to $q_{5}$


## Proof Intuition

We divided $w$ into $x y z$ as follows:

- $x$ is the part of $w$ until $M(w)$ visits $q_{5}$
- $y$ is the part of $w$ between the two visits to $q_{5}$
- $z$ is the part of $w$ after the second visit to $q_{5}$


## Proof Intuition

We divided $w$ into $x y z$ as follows:

- $x$ is the part of $w$ until $M(w)$ visits $q_{5}$
- $y$ is the part of $w$ between the two visits to $q_{5}$
- $z$ is the part of $w$ after the second visit to $q_{5}$

We show that the properties of the pumping lemma hold:

## Proof Intuition

We divided $w$ into $x y z$ as follows:

- $x$ is the part of $w$ until $M(w)$ visits $q_{5}$
- $y$ is the part of $w$ between the two visits to $q_{5}$
- $z$ is the part of $w$ after the second visit to $q_{5}$

We show that the properties of the pumping lemma hold:
(1) For each $i \geq 0, x y^{i} z \in L$

## Proof Intuition

We divided $w$ into $x y z$ as follows:

- $x$ is the part of $w$ until $M(w)$ visits $q_{5}$
- $y$ is the part of $w$ between the two visits to $q_{5}$
- $z$ is the part of $w$ after the second visit to $q_{5}$

We show that the properties of the pumping lemma hold:
(1) For each $i \geq 0, x y^{i} z \in L$

Proof: $y$ takes $M$ from $q_{5}$ back to $q_{5}$. So, if you run $M(x y y z)$, it would just run this cycle twice...

## Proof Intuition

We divided $w$ into $x y z$ as follows:

- $x$ is the part of $w$ until $M(w)$ visits $q_{5}$
- $y$ is the part of $w$ between the two visits to $q_{5}$
- $z$ is the part of $w$ after the second visit to $q_{5}$

We show that the properties of the pumping lemma hold:
(1) For each $i \geq 0, x y^{i} z \in L$

Proof: $y$ takes $M$ from $q_{5}$ back to $q_{5}$. So, if you run $M(x y y z)$, it would just run this cycle twice...
(2) $|y|>0$

## Proof Intuition

We divided $w$ into $x y z$ as follows:

- $x$ is the part of $w$ until $M(w)$ visits $q_{5}$
- $y$ is the part of $w$ between the two visits to $q_{5}$
- $z$ is the part of $w$ after the second visit to $q_{5}$

We show that the properties of the pumping lemma hold:
(1) For each $i \geq 0, x y^{i} z \in L$

Proof: $y$ takes $M$ from $q_{5}$ back to $q_{5}$. So, if you run $M(x y y z)$, it would just run this cycle twice...
(2) $|y|>0$

Proof: $\geq$ one character of $w$ must be between the two visits of $q_{5}$

## Proof Intuition

We divided $w$ into $x y z$ as follows:

- $x$ is the part of $w$ until $M(w)$ visits $q_{5}$
- $y$ is the part of $w$ between the two visits to $q_{5}$
- $z$ is the part of $w$ after the second visit to $q_{5}$

We show that the properties of the pumping lemma hold:
(1) For each $i \geq 0, x y^{i} z \in L$

Proof: $y$ takes $M$ from $q_{5}$ back to $q_{5}$. So, if you run $M(x y y z)$, it would just run this cycle twice...
(2) $|y|>0$

Proof: $\geq$ one character of $w$ must be between the two visits of $q_{5}$
(3) $|x y| \leq p$

## Proof Intuition

We divided $w$ into $x y z$ as follows:

- $x$ is the part of $w$ until $M(w)$ visits $q_{5}$
- $y$ is the part of $w$ between the two visits to $q_{5}$
- $z$ is the part of $w$ after the second visit to $q_{5}$

We show that the properties of the pumping lemma hold:
(1) For each $i \geq 0, x y^{i} z \in L$

Proof: $y$ takes $M$ from $q_{5}$ back to $q_{5}$. So, if you run $M(x y y z)$, it would just run this cycle twice...
(2) $|y|>0$

Proof: $\geq$ one character of $w$ must be between the two visits of $q_{5}$
(3) $|x y| \leq p$

Proof: if $q_{5}$ is the first repetition in $M(w)$, then this repetition must occur in the first $p+1$ states, hence $|x y| \leq p$

## Making it Formal

Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA recognizing $L$

## Making it Formal

> Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA recognizing $L$
> • Let $w=w_{1} w_{2} \ldots w_{n} \in L$

## Making it Formal

Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA recognizing $L$

- Let $w=w_{1} w_{2} \ldots w_{n} \in L$
- Let $r_{1}, r_{2}, \ldots, r_{n+1}$ be the sequence of states visited by $M(w)$ $\left(r_{i+1}=\delta\left(r_{i}, w_{i}\right)\right)$


## Making it Formal

Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA recognizing $L$

- Let $w=w_{1} w_{2} \ldots w_{n} \in L$
- Let $r_{1}, r_{2}, \ldots, r_{n+1}$ be the sequence of states visited by $M(w)$ $\left(r_{i+1}=\delta\left(r_{i}, w_{i}\right)\right)$
- In first $p+1$ elements of this sequence there must be a repeated element $r_{j}=r_{k}$, so $k \leq p+1$


## Making it Formal

Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA recognizing $L$

- Let $w=w_{1} w_{2} \ldots w_{n} \in L$
- Let $r_{1}, r_{2}, \ldots, r_{n+1}$ be the sequence of states visited by $M(w)$ $\left(r_{i+1}=\delta\left(r_{i}, w_{i}\right)\right)$
- In first $p+1$ elements of this sequence there must be a repeated element $r_{j}=r_{k}$, so $k \leq p+1$
- Let $x=w_{1} \cdots w_{j-1}, y=w_{j} \cdots w_{k-1}$, and $z=w_{k} \cdots w_{n}$


## Making it Formal

Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA recognizing $L$

- Let $w=w_{1} w_{2} \ldots w_{n} \in L$
- Let $r_{1}, r_{2}, \ldots, r_{n+1}$ be the sequence of states visited by $M(w)$ $\left(r_{i+1}=\delta\left(r_{i}, w_{i}\right)\right)$
- In first $p+1$ elements of this sequence there must be a repeated element $r_{j}=r_{k}$, so $k \leq p+1$
- Let $x=w_{1} \cdots w_{j-1}, y=w_{j} \cdots w_{k-1}$, and $z=w_{k} \cdots w_{n}$

Observe that:

- $x$ takes $M$ from $r_{1}=q_{1}$ to $r_{j}, y$ takes $M$ from $r_{j}$ to $r_{k}$, and $z$ takes $M$ from $r_{k}$ to $r_{n+1}$, which is an accept state. So, $M$ must accept $x y^{i} z$ for $i \geq 0$


## Making it Formal

Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA recognizing $L$

- Let $w=w_{1} w_{2} \ldots w_{n} \in L$
- Let $r_{1}, r_{2}, \ldots, r_{n+1}$ be the sequence of states visited by $M(w)$ $\left(r_{i+1}=\delta\left(r_{i}, w_{i}\right)\right)$
- In first $p+1$ elements of this sequence there must be a repeated element $r_{j}=r_{k}$, so $k \leq p+1$
- Let $x=w_{1} \cdots w_{j-1}, y=w_{j} \cdots w_{k-1}$, and $z=w_{k} \cdots w_{n}$

Observe that:

- $x$ takes $M$ from $r_{1}=q_{1}$ to $r_{j}, y$ takes $M$ from $r_{j}$ to $r_{k}$, and $z$ takes $M$ from $r_{k}$ to $r_{n+1}$, which is an accept state. So, $M$ must accept $x y^{i} z$ for $i \geq 0$
- $j \neq k$ so, $|y|>0$


## Making it Formal

Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA recognizing $L$

- Let $w=w_{1} w_{2} \ldots w_{n} \in L$
- Let $r_{1}, r_{2}, \ldots, r_{n+1}$ be the sequence of states visited by $M(w)$ $\left(r_{i+1}=\delta\left(r_{i}, w_{i}\right)\right)$
- In first $p+1$ elements of this sequence there must be a repeated element $r_{j}=r_{k}$, so $k \leq p+1$
- Let $x=w_{1} \cdots w_{j-1}, y=w_{j} \cdots w_{k-1}$, and $z=w_{k} \cdots w_{n}$

Observe that:

- $x$ takes $M$ from $r_{1}=q_{1}$ to $r_{j}, y$ takes $M$ from $r_{j}$ to $r_{k}$, and $z$ takes $M$ from $r_{k}$ to $r_{n+1}$, which is an accept state. So, $M$ must accept $x y^{i} z$ for $i \geq 0$
- $j \neq k$ so, $|y|>0$
- $k \leq p+1$, so $|x y| \leq p$


## Outline

## (1) Lecture 5 Review

## (2) A Non-regular Language

## (3) The Pumping Lemma for Regular Languages

(4) Using the Pumping Lemma

## The Recipe

To use the pumping lemma to prove that $L$ is not regular, we do the following:

## The Recipe

To use the pumping lemma to prove that $L$ is not regular, we do the following:
(1) Assume that $L$ is regular

## The Recipe

To use the pumping lemma to prove that $L$ is not regular, we do the following:
(1) Assume that $L$ is regular
(2) By pumping lemma there exists pumping length $p$, s.t. all $w$ with $|w|>p$ can be pumped

## The Recipe

To use the pumping lemma to prove that $L$ is not regular, we do the following:
(1) Assume that $L$ is regular
(2) By pumping lemma there exists pumping length $p$, s.t. all $w$ with $|w|>p$ can be pumped
(3) Choose a particular $w \in L$ with $|w| \geq p$

## The Recipe

To use the pumping lemma to prove that $L$ is not regular, we do the following:
(1) Assume that $L$ is regular
(2) By pumping lemma there exists pumping length $p$, s.t. all $w$ with $|w|>p$ can be pumped
(3) Choose a particular $w \in L$ with $|w| \geq p$
(9) Demonstrate that $w$ cannot be pumped:

- For each possible division $w=x y z$, find an $i$ such that $x y^{i} z \notin L$

The Recipe
$P L: \exists_{p}$ r.t. $\forall z_{p \text { art }} \forall i, x_{j}^{j} z \in L$

To use the pumping lemma to prove that $L$ is not regular, we do the following:
(1) Assume that $L$ is regular
(2) By pumping lemma there exists pumping length $p$, s.t. all $w$ with $|w|>p$ can be pumped
(3) Choose a particular $w \in L$ with $|w| \geq p$
(9) Demonstrate that $w$ cannot be pumped:

- For each possible division $w=x y z$, find an $i$ such that $x y^{i} z \notin L$
(5) Contradiction!!!
$\forall p \nexists w \forall$ pat $z_{i}$ st. $x_{j}^{i} z \notin L$


## Example 1

Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, prove $L$ is not regular.

## Example 1

Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, prove $L$ is not regular. Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies

## Example 1

Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, prove $L$ is not regular. Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies
(2) Choose $w=0^{p} 1^{p} \quad L \in L$

## Example 1

Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, prove $L$ is not regular.
Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies
(2) Choose $w=0^{p} 1^{p}$
(3) By pumping lemma, $w$ can be split into $x y z$ s.t. $x y^{i} z \in L$

## Example 1

Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, prove $L$ is not regular.
Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies
(2) Choose $w=0^{p} 1^{p}$
(3) By pumping lemma, $w$ can be split into $x y z$ s.t. $x y^{i} z \in L$
(3) Complete proof by considering all possible values for $y$

## Example 1

## 

Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, prove $L$ is not regular.
Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies
(2) Choose $w=0^{p} 1^{p}$
(3) By pumping lemma, $w$ can be split into $x y z$ s.t. $x y^{i} z \in L$
(9) Complete proof by considering all possible values for $y$

- $y$ consists of only 0 s - then $x y y z$ has more 0 s than 1 s, so $w \notin L$


## Example 1

$$
000{ }_{0}^{2} 11+1 \rightarrow 000 \stackrel{2}{0} \operatorname{cin}_{011}^{2} 11
$$

Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, prove $L$ is not regular.
Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies
(2) Choose $w=0^{p} 1^{p}$
(3) By pumping lemma, $w$ can be split into $x y z$ s.t. $x y^{i} z \in L$
(1) Complete proof by considering all possible values for $y$

- $y$ consists of only 0 s - then $x y y z$ has more 0 s than 1 s , so $w \notin L$
- $y$ consists of only 1 s - then xyyz has more 0 s than 1 s, so $w \notin L$


## Example 1

Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, prove $L$ is not regular.
Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies
(2) Choose $w=0^{p} 1^{p}$
(3) By pumping lemma, $w$ can be split into $x y z$ s.t. $x y^{i} z \in L$
(1) Complete proof by considering all possible values for $y$

- $y$ consists of only 0 s - then $x y y z$ has more 0 s than 1 s, so $w \notin L$
- $y$ consists of only 1 s - then $x y y z$ has more 0 s than 1 s, so $w \notin L$
- $y$ consists of both 0 s and 1 s - then $x y y z$ has 0 s alternating with 1 s more than once, so $w \notin L$


## Example 1

Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, prove $L$ is not regular.
Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies
(2) Choose $w=0^{p} 1^{p}$
(3) By pumping lemma, $w$ can be split into $x y z$ s.t. $x y^{i} z \in L$
(1) Complete proof by considering all possible values for $y$

- $y$ consists of only 0 s - then $x y y z$ has more 0 s than 1 s, so $w \notin L$
- $y$ consists of only 1 s - then $x y y z$ has more 0 s than 1 s, so $w \notin L$
- $y$ consists of both 0 s and 1 s - then $x y y z$ has 0 s alternating with 1 s more than once, so $w \notin L$
(5) Contradiction - hence, $L$ is not regular


## Example 2

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove $L$ is not regular

## Example 2

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove $L$ is not regular

Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies

## Example 2

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove $L$ is not regular

Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies
(2) Choose $w=0^{p} 1^{p}$

## Example 2

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove $L$ is not regular

Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies
(2) Choose $w=0^{p} 1^{p}$
(3) By pumping lemma, $w=x y z$ s.t. $x y^{i} z \in L$

## Example 2

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove $L$ is not regular

## Proof:

(1) Assume $L$ is regular, and let $p$ be the pumping length this implies
(2) Choose $w=0^{p} 1^{p}$
(3) By pumping lemma, $w=x y z$ s.t. $x y^{i} z \in L$
(9) Problem: If $y=0^{m} 1^{m}$, then $w$ can be pumped - no contradiction

## Example 2

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove $L$ is not regular

Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies
(2) Choose $w=0^{p} 1^{p}$
(3) By pumping lemma, $w=x y z$ s.t. $x y^{i} z \in L$
(9) Problem: If $y=0^{m} 1^{m}$, then $w$ can be pumped - no contradiction
(9) Solution: Use condition that $|x y| \leq p$

## Example 2

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove $L$ is not regular

Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies
(2) Choose $w=0^{p} 1^{p}$
(3) By pumping lemma, $w=x y z$ s.t. $x y^{i} z \in L$
(9) Problem: If $y=0^{m} 1^{m}$, then $w$ can be pumped - no contradiction
(3) Solution: Use condition that $|x y| \leq p$

- Since $w=0^{p} 1^{p}$ and $|x y| \leq p$, we know that $y$ must be in first $p$ symbols


## Example 2

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove $L$ is not regular

Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies
(2) Choose $w=0^{p} 1^{p}$
(3) By pumping lemma, $w=x y z$ s.t. $x y^{i} z \in L$
(9) Problem: If $y=0^{m} 1^{m}$, then $w$ can be pumped - no contradiction
(9) Solution: Use condition that $|x y| \leq p$

- Since $w=0^{p} 1^{p}$ and $|x y| \leq p$, we know that $y$ must be in first $p$ symbols
- But, this means that $y$ must be all $0 s$


## Example 2

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove $L$ is not regular

Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies
(2) Choose $w=0^{p} 1^{p}$
(3) By pumping lemma, $w=x y z$ s.t. $x y^{i} z \in L$
(9) Problem: If $y=0^{m} 1^{m}$, then $w$ can be pumped - no contradiction
(3) Solution: Use condition that $|x y| \leq p$

- Since $w=0^{p} 1^{p}$ and $|x y| \leq p$, we know that $y$ must be in first $p$ symbols
- But, this means that $y$ must be all 0 s
(0) Complete proof by considering all possible values for $y$
- $y$ consists of only 0 s - then xyyz has more 0 s than 1 s, so $w \notin L$


## Example 2

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove $L$ is not regular

Proof:
(1) Assume $L$ is regular, and let $p$ be the pumping length this implies
(2) Choose $w=0^{p} 1^{p}$
(3) By pumping lemma, $w=x y z$ s.t. $x y^{i} z \in L$
(9) Problem: If $y=0^{m} 1^{m}$, then $w$ can be pumped - no contradiction
(3) Solution: Use condition that $|x y| \leq p$

- Since $w=0^{p} 1^{p}$ and $|x y| \leq p$, we know that $y$ must be in first $p$ symbols
- But, this means that $y$ must be all 0 s
( Complete proof by considering all possible values for $y$
- $y$ consists of only 0 s - then $x y y z$ has more 0 s than 1 s, so $w \notin L$
(3) Contradiction - hence, $L$ is not regular


## Example 2

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove $L$ is not regular

A simpler proof:

## Example 2

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove $L$ is not regular

A simpler proof:
(1) We already proved that $L_{1}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is nonregular

## Example 2

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove $L$ is not regular

A simpler proof:
(1) We already proved that $L_{1}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is nonregular
(2) Observe that $L_{1}=L \cap 0^{*} 1^{*}$

## Example 2

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove $L$ is not regular

A simpler proof:
(1) We already proved that $L_{1}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is nonregular
(2) Observe that $L_{1}=L \cap 0^{*} 1^{*}$
(3) Easy to see that $0^{*} 1^{*}$ is regular
(9) Since regular languages are closed under $\cap$, if $L$ is regular then $L_{1}$ must be regular

## Example 2

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove $L$ is not regular

A simpler proof:
(1) We already proved that $L_{1}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is nonregular
(2) Observe that $L_{1}=L \cap 0^{*} 1^{*}$
(3) Easy to see that $0^{*} 1^{*}$ is regular
(9) Since regular languages are closed under $\cap$, if $L$ is regular then $L_{1}$ must be regular
(5) Since we know $L_{1}$ is nonregular, this means that $L$ must be nonregular

## Exercise

Prove that the following language is nonregular:

$$
L=\left\{0^{i} 1^{j} 2^{i} 3^{j} \mid i, j>0\right\}
$$

## What's Next?

- We will get plenty of practice with proving languages nonregular
- We will add (a small amount of) memory to our machines to recognize a richer class of languages

