## Foundations of Computing Lecture 6

Arkady Yerukhimovich

February 1, 2024

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

February 1, 2024

### Lecture 5 Review

- 2 A Non-regular Language
- 3 The Pumping Lemma for Regular Languages
- 4 Using the Pumping Lemma

< 円

∃ →

- Regular expressions
- Equivalence of regular expressions and NFAs/DFAs

## **Quiz Solutions**

For each of the following languages over  $\Sigma = \{a, b\}$ , give two strings that are in the language and two strings not in the language.

| ● a* ∪ b*<br><i>O</i> • 0 4                           | ac 66 |
|-------------------------------------------------------|-------|
| $(aa \cup bb)^* \qquad a \leftarrow b \leftarrow a a$ | f     |
| δ Σ*aΣ*bΣ*aΣ*<br>ααα β ααω                            |       |

#### Lecture 5 Review

### 2 A Non-regular Language

3 The Pumping Lemma for Regular Languages

#### 4 Using the Pumping Lemma

< 円

∃ →

The following four things are equivalent:

- Regular languages
- 2 Languages recognized by a DFA
- Substant Contract State Sta
- Languages described by a regular expression

The following four things are equivalent:

- Regular languages
- 2 Languages recognized by a DFA
- Substant State State
- Languages described by a regular expression

#### Are all languages regular?

Today we will see that there are languages that are not regular

## The F in DFA/NFA

Arkady Yerukhimovich

<ロト <問ト < 目ト < 目ト

3

In a Finite Automaton, the number of states is finite

- (日)

< ∃⇒

æ

In a Finite Automaton, the number of states is finite

This means that:

• The number of states is fixed independently of the input size

In a Finite Automaton, the number of states is finite

This means that:

- The number of states is fixed independently of the input size
- An automaton must be able to process strings w s.t. |w| > |Q|

In a Finite Automaton, the number of states is finite

This means that:

- The number of states is fixed independently of the input size
- An automaton must be able to process strings w s.t. |w| > |Q|
- Thus, a finite automaton cannot store its whole input

## A Nonregular Language

Consider the following language:

$$L = \{0^n 1^n | n \ge 0\}$$

Let's try to build a DFA for *L*:

٠



## A Nonregular Language

Consider the following language:

$$L = \{0^n 1^n | n \ge 0\}$$

Let's try to build a DFA for L:



Arkady Yerukhimovich

CS 3313 - Foundations of Computing

## The Need for a Proof

What we just saw

Intuition: An NFA/DFA cannot count unbounded inputs

3 N 3

## The Need for a Proof

#### What we just saw

Intuition: An NFA/DFA cannot count unbounded inputs

Why isn't this a proof?

Arkady Yerukhimovich

∃ >

#### What we just saw

Intuition: An NFA/DFA cannot count unbounded inputs

Why isn't this a proof?O | O ( || \ OJ o (Consider the following language:

 $L = \{w | w \text{ has an equal number of occurrences of 01 and 10 as substrings}\}$ 

<u>ן</u>

010

## $L = 0^{n} 1^{n}$

We will prove that a language *L* is not regular by contradiction Assume *L* is regular – there is a NFA/DFA *M* accepting it

- Assume L is regular there is a NFA/DFA M accepting it
- **2** Pick a string  $w \in L$

- Solution State A second and the second state of the second state o
- 2 Pick a string  $w \in L$
- Show that if M(w) = 1 then there exists a string w' ∉ L s.t. M(w') = 1

- **()** Assume L is regular there is a NFA/DFA M accepting it
- 2 Pick a string  $w \in L$
- Show that if M(w) = 1 then there exists a string w' ∉ L s.t. M(w') = 1
- Conclude that L is not regular since any M that accepts all strings in L must also accept strings not in L





- 3 The Pumping Lemma for Regular Languages
- 4 Using the Pumping Lemma

∃ >

If L is a regular language, then there exists an integer p (the pumping length) where any string  $w \in L$  such that  $|w| \ge p$  can be divided into three pieces w = xyz satisfying:

If L is a regular language, then there exists an integer p (the pumping length) where any string  $w \in L$  such that  $|w| \ge p$  can be divided into three pieces w = xyz satisfying:

• For each 
$$i \ge 0$$
,  $xy^i z \in L$ 

If L is a regular language, then there exists an integer p (the pumping length) where any string  $w \in L$  such that  $|w| \ge p$  can be divided into three pieces w = xyz satisfying:

- For each  $i \ge 0$ ,  $xy^i z \in L$
- **2** |y| > 0, and

## The Pumping Lemma

-

#### Pumping Lemma

If *L* is a regular language, then there exists an integer *p* (the pumping length) where any string  $w \in L$  such that  $|w| \ge p$  can be divided into three pieces w = xyz satisfying:

- For each  $i \ge 0$ ,  $xy^i z \in L$
- **2** |y| > 0, and
- $|xy| \le p$

# 3 p Yvel 3 partition site Yi xjiz e L

If L is a regular language, then there exists an integer p (the pumping length) where any string  $w \in L$  such that  $|w| \ge p$  can be divided into three pieces w = xyz satisfying:

- For each  $i \ge 0$ ,  $xy^i z \in L$
- **2** |y| > 0, and
- $|xy| \le p$

Next steps:

- Prove the pumping lemma
- Show how to use the pumping lemma to prove languages nonregular

#### Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA that recognizes L and let p = |Q|

Arkady Yerukhimovich

Image: Image:

3. 3

Let  $M = (Q, \Sigma, \delta, q_1, F)$  be a DFA that recognizes L and let p = |Q|• If for all  $w \in L$ , |w| < p, then we are done

∃ >

< 円

Let  $M = (Q, \Sigma, \delta, q_1, F)$  be a DFA that recognizes L and let p = |Q|

- If for all  $w \in L$ , |w| < p, then we are done
- Suppose  $w \in L$  s.t.  $|w| = n \ge p$

Let  $M = (Q, \Sigma, \delta, q_1, F)$  be a DFA that recognizes L and let p = |Q|

- If for all  $w \in L$ , |w| < p, then we are done
- Suppose  $w \in L$  s.t.  $|w| = n \ge p$ 
  - If we run M(w), it will go through n + 1 states since it transitions on each symbol of w

Let  $M = (Q, \Sigma, \delta, q_1, F)$  be a DFA that recognizes L and let p = |Q|

- If for all  $w \in L$ , |w| < p, then we are done
- Suppose  $w \in L$  s.t.  $|w| = n \ge p$ 
  - If we run M(w), it will go through n + 1 states since it transitions on each symbol of w
  - Since n + 1 > p, there must be some state that is visited twice





Divide w = xyz as follows:

æ



Divide w = xyz as follows:

• x is the part of w until M(w) visits  $q_5$ 



Divide w = xyz as follows:

- x is the part of w until M(w) visits  $q_5$
- y is the part of w between the two visits to  $q_5$



Divide w = xyz as follows:

- x is the part of w until M(w) visits  $q_5$
- y is the part of w between the two visits to  $q_5$
- z is the part of w after the second visit to  $q_5$

We divided w into xyz as follows:

- x is the part of w until M(w) visits  $q_5$
- y is the part of w between the two visits to  $q_5$
- z is the part of w after the second visit to q<sub>5</sub>

We divided w into xyz as follows:

- x is the part of w until M(w) visits  $q_5$
- y is the part of w between the two visits to  $q_5$
- z is the part of w after the second visit to q<sub>5</sub>

We show that the properties of the pumping lemma hold:

We divided w into xyz as follows:

- x is the part of w until M(w) visits  $q_5$
- y is the part of w between the two visits to  $q_5$
- z is the part of w after the second visit to q<sub>5</sub>

We show that the properties of the pumping lemma hold:

• For each  $i \ge 0$ ,  $xy^i z \in L$ 

- x is the part of w until M(w) visits  $q_5$
- y is the part of w between the two visits to  $q_5$
- z is the part of w after the second visit to q<sub>5</sub>

We show that the properties of the pumping lemma hold:

For each i ≥ 0, xy<sup>i</sup>z ∈ L
 Proof: y takes M from q<sub>5</sub> back to q<sub>5</sub>. So, if you run M(xyyz), it would just run this cycle twice...

- x is the part of w until M(w) visits  $q_5$
- y is the part of w between the two visits to  $q_5$
- z is the part of w after the second visit to q<sub>5</sub>

We show that the properties of the pumping lemma hold:

- For each i ≥ 0, xy<sup>i</sup>z ∈ L
  Proof: y takes M from q<sub>5</sub> back to q<sub>5</sub>. So, if you run M(xyyz), it would just run this cycle twice...
- **2** |y| > 0

February 1, 2024

- x is the part of w until M(w) visits  $q_5$
- y is the part of w between the two visits to  $q_5$
- z is the part of w after the second visit to q<sub>5</sub>

We show that the properties of the pumping lemma hold:

For each i ≥ 0, xy<sup>i</sup>z ∈ L
 Proof: y takes M from q<sub>5</sub> back to q<sub>5</sub>. So, if you run M(xyyz), it would just run this cycle twice...

**2** |y| > 0

Proof:  $\geq$  one character of w must be between the two visits of  $q_5$ 

- x is the part of w until M(w) visits  $q_5$
- y is the part of w between the two visits to  $q_5$
- z is the part of w after the second visit to q<sub>5</sub>

We show that the properties of the pumping lemma hold:

For each i ≥ 0, xy<sup>i</sup>z ∈ L
 Proof: y takes M from q<sub>5</sub> back to q<sub>5</sub>. So, if you run M(xyyz), it would just run this cycle twice...

#### **2** |y| > 0

Proof:  $\geq$  one character of w must be between the two visits of  $q_5$ 

$$|xy| \le p$$

- x is the part of w until M(w) visits  $q_5$
- y is the part of w between the two visits to  $q_5$
- z is the part of w after the second visit to q<sub>5</sub>

We show that the properties of the pumping lemma hold:

For each i ≥ 0, xy<sup>i</sup>z ∈ L
 Proof: y takes M from q<sub>5</sub> back to q<sub>5</sub>. So, if you run M(xyyz), it would just run this cycle twice...

#### **2** |y| > 0

Proof:  $\geq$  one character of w must be between the two visits of  $q_5$ 

 $|xy| \le p$ 

Proof: if  $q_5$  is the first repetition in M(w), then this repetition must occur in the first p + 1 states, hence  $|xy| \le p$ 

Arkady Yerukhimovich

Let  $M = (Q, \Sigma, \delta, q_1, F)$  be a DFA recognizing L

Image: A matrix

→ < ∃ →</p>

э

- Let  $M = (Q, \Sigma, \delta, q_1, F)$  be a DFA recognizing L
  - Let  $w = w_1 w_2 \dots w_n \in L$

Image: A matrix

→

э

Let  $M = (Q, \Sigma, \delta, q_1, F)$  be a DFA recognizing L

- Let  $w = w_1 w_2 \dots w_n \in L$
- Let  $r_1, r_2, ..., r_{n+1}$  be the sequence of states visited by M(w) $(r_{i+1} = \delta(r_i, w_i))$

Let  $M = (Q, \Sigma, \delta, q_1, F)$  be a DFA recognizing L

- Let  $w = w_1 w_2 \dots w_n \in L$
- Let  $r_1, r_2, ..., r_{n+1}$  be the sequence of states visited by M(w) $(r_{i+1} = \delta(r_i, w_i))$
- In first p + 1 elements of this sequence there must be a repeated element r<sub>j</sub> = r<sub>k</sub>, so k ≤ p + 1

Let  $M = (Q, \Sigma, \delta, q_1, F)$  be a DFA recognizing L

• Let 
$$w = w_1 w_2 \dots w_n \in L$$

- Let  $r_1, r_2, ..., r_{n+1}$  be the sequence of states visited by M(w) $(r_{i+1} = \delta(r_i, w_i))$
- In first p + 1 elements of this sequence there must be a repeated element r<sub>j</sub> = r<sub>k</sub>, so k ≤ p + 1

• Let 
$$x = w_1 \cdots w_{j-1}$$
,  $y = w_j \cdots w_{k-1}$ , and  $z = w_k \cdots w_n$ 

Let  $M = (Q, \Sigma, \delta, q_1, F)$  be a DFA recognizing L

• Let 
$$w = w_1 w_2 \dots w_n \in L$$

- Let  $r_1, r_2, ..., r_{n+1}$  be the sequence of states visited by M(w) $(r_{i+1} = \delta(r_i, w_i))$
- In first p + 1 elements of this sequence there must be a repeated element  $r_j = r_k$ , so  $k \le p + 1$

• Let 
$$x = w_1 \cdots w_{j-1}$$
,  $y = w_j \cdots w_{k-1}$ , and  $z = w_k \cdots w_n$ 

Observe that:

• x takes M from  $r_1 = q_1$  to  $r_j$ , y takes M from  $r_j$  to  $r_k$ , and z takes M from  $r_k$  to  $r_{n+1}$ , which is an accept state. So, M must accept  $xy^iz$  for  $i \ge 0$ 

Let  $M = (Q, \Sigma, \delta, q_1, F)$  be a DFA recognizing L

• Let 
$$w = w_1 w_2 \dots w_n \in L$$

- Let  $r_1, r_2, ..., r_{n+1}$  be the sequence of states visited by M(w) $(r_{i+1} = \delta(r_i, w_i))$
- In first p + 1 elements of this sequence there must be a repeated element  $r_j = r_k$ , so  $k \le p + 1$

• Let 
$$x = w_1 \cdots w_{j-1}$$
,  $y = w_j \cdots w_{k-1}$ , and  $z = w_k \cdots w_n$ 

Observe that:

• x takes M from  $r_1 = q_1$  to  $r_j$ , y takes M from  $r_j$  to  $r_k$ , and z takes M from  $r_k$  to  $r_{n+1}$ , which is an accept state. So, M must accept  $xy^i z$  for  $i \ge 0$ 

• 
$$j \neq k$$
 so,  $|y| > 0$ 

Let  $M = (Q, \Sigma, \delta, q_1, F)$  be a DFA recognizing L

• Let 
$$w = w_1 w_2 \dots w_n \in L$$

- Let  $r_1, r_2, ..., r_{n+1}$  be the sequence of states visited by M(w) $(r_{i+1} = \delta(r_i, w_i))$
- In first p + 1 elements of this sequence there must be a repeated element r<sub>j</sub> = r<sub>k</sub>, so k ≤ p + 1

• Let 
$$x = w_1 \cdots w_{j-1}$$
,  $y = w_j \cdots w_{k-1}$ , and  $z = w_k \cdots w_n$ 

Observe that:

• x takes M from  $r_1 = q_1$  to  $r_j$ , y takes M from  $r_j$  to  $r_k$ , and z takes M from  $r_k$  to  $r_{n+1}$ , which is an accept state. So, M must accept  $xy^iz$  for  $i \ge 0$ 

• 
$$j \neq k$$
 so,  $|y| > 0$ 

•  $k \leq p+1$ , so  $|xy| \leq p$ 

#### Lecture 5 Review

- 2 A Non-regular Language
- 3 The Pumping Lemma for Regular Languages
- Using the Pumping Lemma

.∋...>

< A

э

∃ >

- Assume that L is regular

- Assume that L is regular
- By pumping lemma there exists pumping length p, s.t. all w with |w| > p can be pumped

- Assume that L is regular
- By pumping lemma there exists pumping length p, s.t. all w with |w| > p can be pumped
- Solution Choose a particular  $w \in L$  with  $|w| \ge p$

- Assume that L is regular
- By pumping lemma there exists pumping length p, s.t. all w with |w| > p can be pumped
- Solution 6.5 Choose a particular  $w \in L$  with  $|w| \ge p$
- Oemonstrate that w cannot be pumped:
  - For each possible division w = xyz, find an *i* such that  $xy^i z \notin L$

# PL: 31 s.t. V 3 pul V i, xj 2 eL

- Assume that L is regular
- By pumping lemma there exists pumping length p, s.t. all w with |w| > p can be pumped
- Solution Choose a particular  $w \in L$  with  $|w| \ge p$
- Oemonstrate that w cannot be pumped:
  - For each possible division w = xyz, find an *i* such that  $xy^iz \notin L$
- Sontradiction!!!



< ∃ >

Image: A matrix

æ

Proof:

**(**) Assume L is regular, and let p be the pumping length this implies

- (日)

э

∃ >

Proof:

- **(**) Assume L is regular, and let p be the pumping length this implies
- 2 Choose  $w = 0^p 1^p$   $\iota \epsilon L$

3 N 3

Proof:

• Assume L is regular, and let p be the pumping length this implies

2 Choose 
$$w = 0^p 1^p$$

**③** By pumping lemma, w can be split into xyz s.t.  $xy^iz \in L$ 

Proof:

**(**) Assume L is regular, and let p be the pumping length this implies

2 Choose 
$$w = 0^p 1^p$$

- **③** By pumping lemma, w can be split into xyz s.t.  $xy^iz \in L$
- **\bigcirc** Complete proof by considering all possible values for y

## Example 1

# 0000 1111

Consider  $L = \{0^n 1^n | n \ge 0\}$ , prove L is not regular.

- Assume L is regular, and let p be the pumping length this implies
- 2 Choose  $w = 0^p 1^p$
- Solution By pumping lemma, w can be split into xyz s.t.  $xy^iz \in L$
- **(**) Complete proof by considering all possible values for y
  - y consists of only 0s then xyyz has more 0s than 1s, so  $w \notin L$

## Example 1

# 00001111 - 0000001111

Consider  $L = \{0^n 1^n | n \ge 0\}$ , prove L is not regular.

- Assume L is regular, and let p be the pumping length this implies
- 2 Choose  $w = 0^p 1^p$
- Is pumping lemma, w can be split into xyz s.t.  $xy^i z \in L$
- **(**) Complete proof by considering all possible values for y
  - y consists of only 0s then xyyz has more 0s than 1s, so  $w \notin L$
  - y consists of only 1s then xyyz has more 0s than 1s, so  $w \notin L$

- Assume L is regular, and let p be the pumping length this implies
- 2 Choose  $w = 0^p 1^p$
- Is by pumping lemma, w can be split into xyz s.t.  $xy^i z \in L$
- **(**) Complete proof by considering all possible values for y
  - y consists of only 0s then xyyz has more 0s than 1s, so  $w \notin L$
  - y consists of only 1s then xyyz has more 0s than 1s, so  $w \notin L$
  - y consists of both 0s and 1s then xyyz has 0s alternating with 1s more than once, so  $w \notin L$

- **(**) Assume L is regular, and let p be the pumping length this implies
- 2 Choose  $w = 0^p 1^p$
- Is pumping lemma, w can be split into xyz s.t.  $xy^i z \in L$
- **(**) Complete proof by considering all possible values for y
  - y consists of only 0s then xyyz has more 0s than 1s, so  $w \notin L$
  - y consists of only 1s then xyyz has more 0s than 1s, so  $w \notin L$
  - y consists of both 0s and 1s then xyyz has 0s alternating with 1s more than once, so  $w \notin L$
- Sontradiction hence, L is not regular

#### Example 2

Consider  $L = \{w | w \text{ has an equal number of 0s and 1s}\}$ , prove L is not regular

Image: A matrix

э

< ∃⇒

#### Example 2

Consider  $L = \{w | w \text{ has an equal number of 0s and 1s}\}$ , prove L is not regular

Proof:

**(**) Assume L is regular, and let p be the pumping length this implies

Consider  $L = \{w | w \text{ has an equal number of 0s and 1s}\}$ , prove L is not regular

- **(**) Assume L is regular, and let p be the pumping length this implies
- 2 Choose  $w = 0^p 1^p$

- **(**) Assume L is regular, and let p be the pumping length this implies
- 2 Choose  $w = 0^p 1^p$
- **(3)** By pumping lemma, w = xyz s.t.  $xy^i z \in L$

## Example 2

Consider  $L = \{w | w \text{ has an equal number of 0s and 1s}\}$ , prove L is not regular

Proof: (۵٫۱۱)

**(**) Assume L is regular, and let p be the pumping length this implies

2 Choose 
$$w = 0^p 1^p$$

- **③** By pumping lemma, w = xyz s.t.  $xy^i z \in L$
- Solution Problem: If  $y = 0^m 1^m$ , then w can be pumped no contradiction

- **(**) Assume L is regular, and let p be the pumping length this implies
- Ochoose  $w = 0^p 1^p$
- **③** By pumping lemma, w = xyz s.t.  $xy^i z \in L$
- **(4)** Problem: If  $y = 0^m 1^m$ , then w can be pumped no contradiction
- Solution: Use condition that  $|xy| \le p$

- **(**) Assume L is regular, and let p be the pumping length this implies
- 2 Choose  $w = 0^p 1^p$
- **③** By pumping lemma, w = xyz s.t.  $xy^i z \in L$
- **9** Problem: If  $y = 0^m 1^m$ , then w can be pumped no contradiction
- Solution: Use condition that  $|xy| \le p$ 
  - Since  $w = 0^{p}1^{p}$  and  $|xy| \le p$ , we know that y must be in first p symbols

- **(**) Assume L is regular, and let p be the pumping length this implies
- 2 Choose  $w = 0^p 1^p$
- **③** By pumping lemma, w = xyz s.t.  $xy^i z \in L$
- **9** Problem: If  $y = 0^m 1^m$ , then w can be pumped no contradiction
- Solution: Use condition that  $|xy| \le p$ 
  - Since  $w = 0^{p}1^{p}$  and  $|xy| \le p$ , we know that y must be in first p symbols
  - But, this means that y must be all 0s

Proof:

- **(**) Assume L is regular, and let p be the pumping length this implies
- 2 Choose  $w = 0^p 1^p$
- **③** By pumping lemma, w = xyz s.t.  $xy^i z \in L$
- **9** Problem: If  $y = 0^m 1^m$ , then w can be pumped no contradiction
- Solution: Use condition that  $|xy| \le p$ 
  - Since  $w = 0^{p}1^{p}$  and  $|xy| \le p$ , we know that y must be in first p symbols
  - But, this means that y must be all 0s
- **(**) Complete proof by considering all possible values for y
  - y consists of only 0s then xyyz has more 0s than 1s, so  $w \notin L$

< □ > < □ > < □ > < □ > < □ > < □ >

- **(**) Assume L is regular, and let p be the pumping length this implies
- 2 Choose  $w = 0^p 1^p$
- **③** By pumping lemma, w = xyz s.t.  $xy^i z \in L$
- Problem: If  $y = 0^m 1^m$ , then w can be pumped no contradiction
- Solution: Use condition that  $|xy| \le p$ 
  - Since  $w = 0^{p}1^{p}$  and  $|xy| \le p$ , we know that y must be in first p symbols
  - But, this means that y must be all 0s
- Omplete proof by considering all possible values for y
  - y consists of only 0s then xyyz has more 0s than 1s, so  $w \notin L$
- Contradiction hence, L is not regular

A simpler proof:

- (日)

э

∃ >

A simpler proof:

**(**) We already proved that  $L_1 = \{0^n 1^n | n \ge 0\}$  is nonregular

A simpler proof:

- We already proved that  $L_1 = \{0^n 1^n | n \ge 0\}$  is nonregular
- 2 Observe that  $L_1 = L \cap 0^* 1^*$

A simpler proof:

- **()** We already proved that  $L_1 = \{0^n 1^n | n \ge 0\}$  is nonregular
- 2 Observe that  $L_1 = L \cap 0^* 1^*$
- Easy to see that 0\*1\* is regular
- Since regular languages are closed under ∩, if L is regular then L<sub>1</sub> must be regular

A simpler proof:

- We already proved that  $L_1 = \{0^n 1^n | n \ge 0\}$  is nonregular
- 2 Observe that  $L_1 = L \cap 0^* 1^*$
- Easy to see that 0\*1\* is regular
- Since regular languages are closed under ∩, if L is regular then L<sub>1</sub> must be regular
- Since we know  $L_1$  is nonregular, this means that L must be nonregular

21/23

## Exercise

Prove that the following language is nonregular:

$$L = \{0^{i}1^{j}2^{i}3^{j}|i, j > 0\}$$

문 문 문

- We will get plenty of practice with proving languages nonregular
- We will add (a small amount of) memory to our machines to recognize a richer class of languages