Foundations of Computing

Lecture 7

Arkady Yerukhimovich

February 6, 2024

Outline

(1) Lecture 6 Review

(2) Proving Languages Not Regular

(3) Using the Pumping Lemma

4 Using Closure Properties

5 Pushdown Automata

Lecture 6 Review

- Nonregular languages
- Proving The NFA pumping lemma
- Using the pumping lemma

Lecture 6 Review

- Nonregular languages
- Proving The NFA pumping lemma
- Using the pumping lemma

Today

- Some more examples proving languages are not regular
- Going beyond regular languages

HW2 Problem 4

Let L be a regular language, prove that the following languages are regular.
(1) $\operatorname{NOPREFIX}(L)=\{w \in L \mid$ no proper prefix of w is a member of $L\}$
(2) $\operatorname{NOEXTEND}(L)=\{w \in L \mid w$ is not a proper prefix of any string in $L\}$

HW2 Problem 4

Let L be a regular language, prove that the following languages are regular.
(1) $\operatorname{NOPREFIX}(L)=\{w \in L \mid$ no proper prefix of w is a member of $L\}$
(2) $\operatorname{NOEXTEND}(L)=\{w \in L \mid w$ is not a proper prefix of any string in $L\}$

Example:

- $L=\{00,11,001,101\}$
- $\operatorname{NOPREFIX}(L)=\{00,11,101\}$
- $\operatorname{NOEXTEND}(L)=\{11,001,101\}$

Let L be a regular language, prove that the following languages are regular.
(1) $\operatorname{NOPREFIX}(L)=\{w \in L \mid$ no proper prefix of w is a member of $L\}$

HW2 Problem 4

Let L be a regular language, prove that the following languages are regular.
(1) $\operatorname{NOPREFIX}(L)=\{w \in L \mid$ no proper prefix of w is a member of $L\}$
(2) $\operatorname{NOEXTEND}(L)=\{w \in L \mid w$ is not a proper prefix of any string in $L\}$

Outline

(1) Lecture 6 Review

(2) Proving Languages Not Regular

(3) Using the Pumping Lemma

4 Using Closure Properties

5 Pushdown Automata

The Regular Language Pumping Lemma

Pumping Lemma

If L is a regular language, then there exists an integer p (the pumping length) where any string $w \in L$ such that $|w| \geq p$ can be divided into three pieces $w=x y z$ satisfying:
(1) For each $i \geq 0, x y^{i} z \in L$
(2) $|y|>0$, and
(3) $|x y| \leq p$
$J_{p} \forall(w \mid \geq p]$ partition $x y b$ s.! $\forall i x_{y}^{\prime} z \in L$

Outline

(1) Lecture 6 Review

(2) Proving Languages Not Regular

(3) Using the Pumping Lemma

4 Using Closure Properties

(5) Pushdown Automata

The Proof Procedure

To use the pumping lemma to prove that L is not regular, we do the following:

The Proof Procedure

To use the pumping lemma to prove that L is not regular, we do the following:
(1) Assume that L is regular

The Proof Procedure

To use the pumping lemma to prove that L is not regular, we do the following:
(1) Assume that L is regular
(2) Use pumping lemma to guarantee pumping length p, s.t. all w with $|w|>p$ can be pumped - Note: proof must work for all p

The Proof Procedure

To use the pumping lemma to prove that L is not regular, we do the following:
(1) Assume that L is regular
(2) Use pumping lemma to guarantee pumping length p, s.t. all w with $|w|>p$ can be pumped - Note: proof must work for all p
(3) Choose $w \in L$ with $|w| \geq p$

The Proof Procedure

To use the pumping lemma to prove that L is not regular, we do the following:
(1) Assume that L is regular
(2) Use pumping lemma to guarantee pumping length p, s.t. all w with $|w|>p$ can be pumped - Note: proof must work for all p
(3) Choose $w \in L$ with $|w| \geq p$
(9) Demonstrate that w cannot be pumped

- For each possible division $w=x y z$ (with $|y|>0$ and $|x y| \leq p$), find an integer i such that $x y^{i} z \notin L$

The Proof Procedure

To use the pumping lemma to prove that L is not regular, we do the following:
(1) Assume that L is regular
(2) Use pumping lemma to guarantee pumping length p, s.t. all w with $|w|>p$ can be pumped - Note: proof must work for all p
(3) Choose $w \in L$ with $|w| \geq p$
(9) Demonstrate that w cannot be pumped

- For each possible division $w=x y z$ (with $|y|>0$ and $|x y| \leq p$), find an integer i such that $x y^{i} z \notin L$
(5) Contradiction!!!

Prior Examples

We've already seen how to prove:

- $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular
- $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$ is not regular

In both proofs, we picked $w=0^{p} 1^{p}$
Easy to show that this string cannot be pumped

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular
(1) Assume L is regular, and let p be the pumping length

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular
(1) Assume L is regular, and let p be the pumping length
(2) For any sufficiently long w, by pumping lemma, there must be a partition $w=x y z$ s.t. $x y^{i} z \in L$ for all i

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular
(1) Assume L is regular, and let p be the pumping length
(2) For any sufficiently long w, by pumping lemma, there must be a partition $w=x y z$ s.t. $x y^{i} z \in L$ for all i
(3) Goal: Show that for all partitions, $x y^{i} z \notin L$ for some $i \geq 0$

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular
(1) Assume L is regular, and let p be the pumping length
(2) For any sufficiently long w, by pumping lemma, there must be a partition $w=x y z$ s.t. $x y^{i} z \in L$ for all i
(3) Goal: Show that for all partitions, $x y^{i} z \notin L$ for some $i \geq 0$ That is, $x y^{i} z=0^{m^{\prime}} 1^{n^{\prime}}$ with $m^{\prime}=n^{\prime}$.

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular
(1) Assume L is regular, and let p be the pumping length
(2) For any sufficiently long w, by pumping lemma, there must be a partition $w=x y z$ s.t. $x y^{i} z \in L$ for all i
(3) Goal: Show that for all partitions, $x y^{i} z \notin L$ for some $i \geq 0$ That is, $x y^{i} z=0^{m^{\prime}} 1^{n^{\prime}}$ with $m^{\prime}=n^{\prime}$.

Question

What w should we choose?

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions $w=x y z$, for some $i \geq 0, x y^{i} z=0^{m^{\prime}} 1^{m^{\prime}}$.

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions $w=x y z$, for some $i \geq 0, x y^{i} z=0^{m^{\prime}} 1^{m^{\prime}}$.
(1) Suppose we choose $w=0^{p} 1^{p+1}$, then since $|x y| \leq p$,

$$
x=0^{\alpha}, y=0^{\beta}, z=0^{p-(\alpha+\beta)} 1^{p+1}
$$

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions $w=x y z$, for some $i \geq 0, x y^{i} z=0^{m^{\prime}} 1^{m^{\prime}}$.
(1) Suppose we choose $w=0^{p} 1^{p+1}$, then since $|x y| \leq p$, $x=0^{\alpha}, y=0^{\beta}, z=0^{p-(\alpha+\beta)} 1^{p+1}$
(2) Consider what happens when we pump k times:

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions $w=x y z$, for some $i \geq 0, x y^{i} z=0^{m^{\prime}} 1^{m^{\prime}}$.
(1) Suppose we choose $w=0^{p} 1^{p+1}$, then since $|x y| \leq p$, $x=0^{\alpha}, y=0^{\beta}, z=0^{p-(\alpha+\beta)} 1^{p+1}$
(2) Consider what happens when we pump k times:

$$
x y^{k} z=0_{\bar{x}}^{\alpha+k \beta+} \sum_{k \cdot \mathcal{\gamma}} \underbrace{p-(\alpha+\beta)}_{z} 1^{p+1} .
$$

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions $w=x y z$, for some $i \geq 0, x y^{i} z=0^{m^{\prime}} 1^{m^{\prime}}$.
(1) Suppose we choose $w=0^{p} 1^{p+1}$, then since $|x y| \leq p$, $x=0^{\alpha}, y=0^{\beta}, z=0^{p-(\alpha+\beta)} 1^{p+1}$
(2) Consider what happens when we pump k times:

$$
x y^{k} z=0 \underbrace{\alpha+k \beta+p-(\alpha+\beta)} 1^{p+1}
$$

For this to give a contradiction we need

$$
m^{\prime}=n^{\prime} \text {, i.e. } \not \subset+k \beta+p-(\not \subset+\beta)=p+(k-1) \beta=p+1
$$

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions $w=x y z$, for some $i \geq 0, x y^{i} z=0^{m^{\prime}} 1^{m^{\prime}}$.
(1) Suppose we choose $w=0^{p} 1^{p+1}$, then since $|x y| \leq p$, $x=0^{\alpha}, y=0^{\beta}, z=0^{p-(\alpha+\beta)} 1^{p+1}$
(2) Consider what happens when we pump k times:

$$
x y^{k} z=0^{\alpha+k \beta+p-(\alpha+\beta)} 1^{p+1}
$$

For this to give a contradiction we need

$$
m^{\prime}=n^{\prime} \text {, i.e. } \alpha+k \beta+p-(\alpha+\beta)=p+(k-1) \beta=p+1
$$

Equivalently, we need

$$
(k-1) \beta=1
$$

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions $w=x y z$, for some $i \geq 0, x y^{i} z=0^{m^{\prime}} 1^{m^{\prime}}$.
(1) Suppose we choose $w=0^{p} 1^{p+1}$, then since $|x y| \leq p$, $x=0^{\alpha}, y=0^{\beta}, z=0^{p-(\alpha+\beta)} 1^{p+1}$
(2) Consider what happens when we pump k times:

$$
x y^{k} z=0^{\alpha+k \beta+p-(\alpha+\beta)} 1^{p+1}
$$

For this to give a contradiction we need

$$
m^{\prime}=n^{\prime} \text {, i.e. } \alpha+k \beta+p-(\alpha+\beta)=p+(k-1) \beta=p+1
$$

Equivalently, we need

$$
(k-1) \beta=1
$$

(3) But, we can't control β, so this w does not work

Let's try again!!!

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions $w=x y z$, for some $i \geq 0, x y^{i} z=0^{m^{\prime}} 1^{m^{\prime}}$.

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions $w=x y z$, for some $i \geq 0, x y^{i} z=0^{m^{\prime}} 1^{m^{\prime}}$.
(1) Suppose we choose $w=0^{m} 1^{n}$ with $m \geq p$, then $x=0^{\alpha}, y=0^{\beta}$, $z=0^{m-(\alpha+\beta)} 1^{n}$

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions $w=x y z$, for some $i \geq 0, x y^{i} z=0^{m^{\prime}} 1^{m^{\prime}}$.
(1) Suppose we choose $w=0^{m} 1^{n}$ with $m \geq p$, then $x=0^{\alpha}, y=0^{\beta}$, $z=0^{m-(\alpha+\beta)} 1^{n}$
(2) Consider what happens when we pump k times:

$$
x y^{k} z=0 \underbrace{\alpha+k \beta+m-(\alpha+\beta)} 1^{n} .
$$

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions $w=x y z$, for some $i \geq 0, x y^{i} z=0^{m^{\prime}} 1^{m^{\prime}}$.
(1) Suppose we choose $w=0^{m} 1^{n}$ with $m \geq p$, then $x=0^{\alpha}, y=0^{\beta}$, $z=0^{m-(\alpha+\beta)} 1^{n}$
(2) Consider what happens when we pump k times:

$$
x y^{k} z=0^{\alpha+k \beta+m-(\alpha+\beta)} 1^{n} .
$$

We need a k s.t. $m+(k-1) \beta=n$ for a contradiction

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions $w=x y z$, for some $i \geq 0, x y^{i} z=0^{m^{\prime}} 1^{m^{\prime}}$.
(1) Suppose we choose $w=0^{m} 1^{n}$ with $m \geq p$, then $x=0^{\alpha}, y=0^{\beta}$, $z=0^{m-(\alpha+\beta)} 1^{n}$
(2) Consider what happens when we pump k times:

$$
x y^{k} z=0^{\alpha+k \beta+m-(\alpha+\beta)} 1^{n}
$$

We need a k st. $m+(k-1) \beta=n$ for a contradiction

$$
\begin{aligned}
& 1.2 \cdot 2 \cdot 7 \cdot \cdots p \\
& =p!
\end{aligned}
$$ Equivalently, we need $k=1+(n-m) / \beta$ to be an integer

$$
\begin{gathered}
\text { Wank } n-m \text { divisible by } \beta \\
\text { s.L } 0<\beta \leq p
\end{gathered}
$$

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions $w=x y z$, for some $i \geq 0, x y^{i} z=0^{m^{\prime}} 1^{m^{\prime}}$.
(1) Suppose we choose $w=0^{m} 1^{n}$ with $m \geq p$, then $x=0^{\alpha}, y=0^{\beta}$, $z=0^{m-(\alpha+\beta)} 1^{n}$
(2) Consider what happens when we pump k times:

$$
x y^{k} z=0^{\alpha+k \beta+m-(\alpha+\beta)} 1^{n} .
$$

We need a k s.t. $m+(k-1) \beta=n$ for a contradiction
Equivalently, we need $k=1+(n-m) / \beta$ to be an integer
(3) We only know $\beta \leq p$, how can we guarantee $(n-m)$ is divisible by β ?

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions $w=x y z$, for some $i \geq 0, x y^{i} z=0^{m^{\prime}} 1^{m^{\prime}}$.
(1) Suppose we choose $w=0^{m} 1^{n}$ with $m \geq p$, then $x=0^{\alpha}, y=0^{\beta}$, $z=0^{m-(\alpha+\beta)} 1^{n}$
(2) Consider what happens when we pump k times:

$$
x y^{k} z=0^{\alpha+k \beta+m-(\alpha+\beta)} 1^{n}
$$

We need a k s.t. $m+(k-1) \beta=n$ for a contradiction
Equivalently, we need $k=1+(n-m) / \beta$ to be an integer
(3) We only know $\beta \leq p$, how can we guarantee $(n-m)$ is divisible by β ? Hint: What number is divisible by all integers $\leq p$?

A More Challenging Example

Consider $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions $w=x y z$, for some $i \geq 0, x y^{i} z=0^{m^{\prime}} 1^{m^{\prime}}$.
(1) Suppose we choose $w=0^{m} 1^{n}$ with $m \geq p$, then $x=0^{\alpha}, y=0^{\beta}$, $z=0^{m-(\alpha+\beta)} 1^{n}$
(2) Consider what happens when we pump k times:
$w=\left.0^{p!}\right|^{2 p!}$

$$
x y^{k} z=0^{\alpha+k \beta+m-(\alpha+\beta)} 1^{n} .
$$

We need a k s.t. $m+(k-1) \beta=n$ for a contradiction
Equivalently, we need $k=1+(n-m) / \beta$ to be an integer
(3) We only know $\beta \leq p$, how can we guarantee $(n-m)$ is divisible by β ? Hint: What number is divisible by all integers $\leq p$?
(9) Set $n=2(p!), m=p!$, then $(n-m)=p$! is divisible by β, so there is k s.t. $x y^{k} z \notin L$

Hints for Using the Pumping Lemma

To use the pumping lemma, need to do the following

- Identify what it means for $x \notin L$
- Choose w such that any valid split $x y z$ can lead to a contradiction
- Prove that $w^{\prime}=x y^{k} z \notin L$ form some k

Choosing w is often tricky, requires intuition and some trial and error.

Outline

(1) Lecture 6 Review

(2) Proving Languages Not Regular

(3) Using the Pumping Lemma

4 Using Closure Properties

5 Pushdown Automata

Proving Non-Regularity Using Closure Properties

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s$\}$, prove L is not regular

A simpler proof:

Proving Non-Regularity Using Closure Properties

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s $\}$, prove L is not regular

A simpler proof:
(1) We already proved that $L_{1}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is nonregular

Proving Non-Regularity Using Closure Properties

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s $\}$, prove L is not regular

A simpler proof:
(1) We already proved that $L_{1}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is nonregular
(2) Observe that $L_{1}=L \cap 0^{*} 1^{*}$

Proving Non-Regularity Using Closure Properties

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s $\}$, prove L is not regular

A simpler proof:
(1) We already proved that $L_{1}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is nonregular
(2) Observe that $L_{1}=L \cap 0^{*} 1^{*}$
(3) Easy to see that $0^{*} 1^{*}$ is regular
(9) Since regular languages are closed under \cap, if L is regular then L_{1} must be regular

Proving Non-Regularity Using Closure Properties

Consider $L=\{w \mid w$ has an equal number of 0 s and 1 s $\}$, prove L is not regular

A simpler proof:
(1) We already proved that $L_{1}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is nonregular
(2) Observe that $L_{1}=L \cap 0^{*} 1^{*}$
(3) Easy to see that $0^{*} 1^{*}$ is regular
(9) Since regular languages are closed under \cap, if L is regular then L_{1} must be regular
(3) Since we know L_{1} is nonregular, this means that L must be nonregular

Using Closure Properties of Regular Languages

We have seen a number of closure properties of REs
(1) Closure under complement: \bar{L} is regular if L is
(2) Closure under union: $L_{1} \cup L_{2}$ is regular if L_{1}, L_{2} are
(3) Closure under intersection: $L_{1} \cap L_{2}$ is regular if L_{1}, L_{2} are
(9) Closure under reversal: L^{R} is regular if L is
(5) NOPREFIX, NOEXTEND
(0) There are many more (e.g., set difference, cross product, ...)

Using Closure Properties of Regular Languages

We have seen a number of closure properties of REs
(1) Closure under complement: \bar{L} is regular if L is
(2) Closure under union: $L_{1} \cup L_{2}$ is regular if L_{1}, L_{2} are
(3) Closure under intersection: $L_{1} \cap L_{2}$ is regular if L_{1}, L_{2} are
(9) Closure under reversal: L^{R} is regular if L is
(3) NOPREFIX, NOEXTEND
(0) There are many more (e.g., set difference, cross product, ...)

Important

- It is often much easier to prove non-regularity using closure properties
- Try this first before you turn to pumping lemma

Exercise

Prove that the following language is nonregular:

$$
\begin{aligned}
& v=0^{\rho} 1^{\prime} 2^{\rho} 3^{\prime} \\
& \left|x_{y}\right| \leq \rho \\
& y=0^{\rho}
\end{aligned}
$$

