Foundations of Computing

```
Lecture 8
```

Arkady Yerukhimovich

February 8, 2024

Outline

(1) Lecture 7 Review

2 Pushdown Automata

3 Formalizing PDAs

Lecture 7 Review

- Proving languages not regular
- Using the pumping lemma
- Using closure properties

Lecture 7 Review

- Proving languages not regular
- Using the pumping lemma
- Using closure properties

Today
 Going beyond regular languages.

How Can We Recognize Non-Regular Languages?

$$
\text { Let } L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

Question

How can we build a machine to recognize this language?

How Can We Recognize Non-Regular Languages?

$$
\text { Let } L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

Question

How can we build a machine to recognize this language?

Answer

Add some form of (unbounded) memory to the machine

Outline

(1) Lecture 7 Review

(2) Pushdown Automata

(3) Formalizing PDAs

Let's Add Some Storage

Input file

Recall:

- An NFA/DFA has no external storage
- Only memory must be encoded in the finite number of states
- Can only recognize regular languages

Let's Add Some Storage

Input file

Output

Question

What kind of storage should we add?

A Stack

Let's add a Stack for storage

A Stack

Let's add a Stack for storage

A stack has the following operations:

- push value - push a value onto the top of the stack

A Stack

Let's add a Stack for storage

A stack has the following operations:

- push value - push a value onto the top of the stack
- pop value - pop the top item off the stack

A Stack

Let's add a Stack for storage

A stack has the following operations:

- push value - push a value onto the top of the stack
- pop value - pop the top item off the stack
- do nothing - denoted as ϵ

A Stack

Let's add a Stack for storage

A stack has the following operations:

- push value - push a value onto the top of the stack
- pop value - pop the top item off the stack
- do nothing - denoted as ϵ

A stack is a Last-In First-Out (LIFO) data structure, that can hold an infinite amount of information (infinite depth)

Pushdown Automata (PDA)

A PDA consists of:

- An NFA for a control unit
- A Stack for storage

Pushdown Automata (PDA)

A PDA consists of:

- An NFA for a control unit
- A Stack for storage

Question

Is this any more powerful than an NFA?

Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following

Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following
(1) Read a symbol from the input tape

Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following
(1) Read a symbol from the input tape
(2) Optionally, pop a value from the Stack

Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following
(1) Read a symbol from the input tape
(2) Optionally, pop a value from the Stack
(3) Use the input symbol and the Stack symbol to choose a next state

Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following
(1) Read a symbol from the input tape
(2) Optionally, pop a value from the Stack
(3) Use the input symbol and the Stack symbol to choose a next state
(1) Optionally, push a value onto the Stack

Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following
(1) Read a symbol from the input tape
(2) Optionally, pop a value from the Stack
(3) Use the input symbol and the Stack symbol to choose a next state
(9) Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following
(1) Read a symbol from the input tape
(2) Optionally, pop a value from the Stack
(3) Use the input symbol and the Stack symbol to choose a next state
(0) Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Observations:

Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following
(1) Read a symbol from the input tape
(2) Optionally, pop a value from the Stack
(3) Use the input symbol and the Stack symbol to choose a next state
(9) Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Observations:

- Since the control is an NFA, ϵ transitions are allowed

Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following
(1) Read a symbol from the input tape
(2) Optionally, pop a value from the Stack
(3) Use the input symbol and the Stack symbol to choose a next state
(9) Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Observations:

- Since the control is an NFA, ϵ transitions are allowed
- A PDA may choose not to touch the stack in a particular step

Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following
(1) Read a symbol from the input tape
(2) Optionally, pop a value from the Stack
(3) Use the input symbol and the Stack symbol to choose a next state
(9) Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Observations:

- Since the control is an NFA, ϵ transitions are allowed
- A PDA may choose not to touch the stack in a particular step
- Unlike the case for DFA/NFA, deterministic PDA's are not equal to non-deterministic ones. We will only study non-deterministic PDAs.

An Example PDA

A PDA for $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

An Example PDA

A PDA for $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
Consider the following PDA "Algorithm"

An Example PDA

A PDA for $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
Consider the following PDA "Algorithm"
(1) Read a symbol from the input

An Example PDA

A PDA for $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
Consider the following PDA "Algorithm"
(1) Read a symbol from the input
(2) If it is a 0 and I have not seen any 1 s , then push a 0 onto the stack

An Example PDA

A PDA for $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
Consider the following PDA "Algorithm"
(1) Read a symbol from the input
(2) If it is a 0 and I have not seen any 1 s , then push a 0 onto the stack
(3) If it is a 1 , pop a value (a) from the stack

An Example PDA

A PDA for $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
Consider the following PDA "Algorithm"
(1) Read a symbol from the input
(2) If it is a 0 and I have not seen any 1 s, then push a 0 onto the stack
(3) If it is a 1 , pop a value (a 0) from the stack
(9) Accept if and only if the stack becomes empty when we read the last character

An Example PDA

A PDA for $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
Consider the following PDA "Algorithm"
(1) Read a symbol from the input
(2) If it is a 0 and I have not seen any 1 s , then push a 0 onto the stack
(3) If it is a 1 , pop a value (a 0) from the stack
(9) Accept if and only if the stack becomes empty when we read the last character
(6) Reject if any of the following happen:

- the stack becomes empty and the input is not done or

An Example PDA

A PDA for $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
Consider the following PDA "Algorithm"
(1) Read a symbol from the input
(2) If it is a 0 and I have not seen any 1 s , then push a 0 onto the stack
(3) If it is a 1 , pop a value (a 0) from the stack
(9) Accept if and only if the stack becomes empty when we read the last character
(3) Reject if any of the following happen:

- the stack becomes empty and the input is not done or
- there are still 0 s left on the stack when the last input is read or

An Example PDA

A PDA for $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
Consider the following PDA "Algorithm"
(1) Read a symbol from the input
(2) If it is a 0 and I have not seen any 1 s , then push a 0 onto the stack
(3) If it is a 1 , pop a value (a 0) from the stack
(9) Accept if and only if the stack becomes empty when we read the last character
(3) Reject if any of the following happen:

- the stack becomes empty and the input is not done or
- there are still 0 s left on the stack when the last input is read or
- there are any 0 s after the first 1

An Example PDA

A PDA for $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
Consider the following PDA "Algorithm"
(1) Read a symbol from the input
(2) If it is a 0 and I have not seen any 1 s , then push a 0 onto the stack
(3) If it is a 1 , pop a value (a 0) from the stack
(9) Accept if and only if the stack becomes empty when we read the last character
(3) Reject if any of the following happen:

- the stack becomes empty and the input is not done or
- there are still 0 s left on the stack when the last input is read or
- there are any 0 s after the first 1

Outline

(1) Lecture 7 Review

(2) Pushdown Automata

(3) Formalizing PDAs

Formal Definition of PDAs

A PDA M is a 6 -tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ where

- Q - set of states of the NFA
- Σ - input alphabet
- 「 - Stack alphabet
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \rightarrow P\left(Q \times \Gamma_{\epsilon}\right)$ - transition function
- $q_{0} \in Q$ - start state
- $F \subseteq Q$ - accept states

Recall that $P\left(Q \times \Gamma_{\epsilon}\right)$ is the power set of the set of pairs $\left\{\left(q \in Q, a \in \Gamma_{\epsilon}\right)\right\}$

Computing with a PDA - Formal Notation

A PDA M accepts a string $w=w_{1} w_{2} \cdots w_{m}$ with $w_{i} \in \Sigma_{\epsilon}$ if there exist

- A sequence of states $q_{0}, q_{1}, \ldots q_{m} \in Q$, and
- A sequence of strings $s_{0}, s_{1}, \ldots, s_{m} \in \Gamma^{*}$
that satisfy the following three conditions:

Computing with a PDA - Formal Notation

A PDA M accepts a string $w=w_{1} w_{2} \cdots w_{m}$ with $w_{i} \in \Sigma_{\epsilon}$ if there exist

- A sequence of states $q_{0}, q_{1}, \ldots q_{m} \in Q$, and
- A sequence of strings $s_{0}, s_{1}, \ldots, s_{m} \in \Gamma^{*}$
that satisfy the following three conditions:
(1) q_{0} is the start state, and $s_{0}=\epsilon$
M starts in the start state with an empty stack

Computing with a PDA - Formal Notation

A PDA M accepts a string $w=w_{1} w_{2} \cdots w_{m}$ with $w_{i} \in \Sigma_{\epsilon}$ if there exist

- A sequence of states $q_{0}, q_{1}, \ldots q_{m} \in Q$, and
- A sequence of strings $s_{0}, s_{1}, \ldots, s_{m} \in \Gamma^{*}$
that satisfy the following three conditions:
(1) q_{0} is the start state, and $s_{0}=\epsilon$
M starts in the start state with an empty stack
(2) For $i=0, \ldots, m-1,\left(q_{i+1}, b\right) \in \delta\left({\underset{q}{i}}_{i}^{l}, w_{i+1}, \stackrel{\downarrow}{a}\right)$ where $s_{i}=a t$ and $s_{i+1}=b t$ for some $a, b \in \Gamma_{\epsilon}$ and $t \in \Gamma^{*}$ there is a transition in δ s.t. M reads symbol w_{i+1} from the input, pops a from the stack, pushes b back on the stack and moves from q_{i} to q_{i+1}

Computing with a PDA - Formal Notation

A PDA M accepts a string $w=w_{1} w_{2} \cdots w_{m}$ with $w_{i} \in \Sigma_{\epsilon}$ if there exist

- A sequence of states $q_{0}, q_{1}, \ldots q_{m} \in Q$, and
- A sequence of strings $s_{0}, s_{1}, \ldots, s_{m} \in \Gamma^{*}$
that satisfy the following three conditions:
(1) q_{0} is the start state, and $s_{0}=\epsilon$
M starts in the start state with an empty stack
(2) For $i=0, \ldots, m-1,\left(q_{i+1}, b\right) \in \delta\left(q_{i}, w_{i+1}, a\right)$ where $s_{i}=a t$ and $s_{i+1}=b t$ for some $a, b \in \Gamma_{\epsilon}$ and $t \in \Gamma^{*}$ there is a transition in δ s.t. M reads symbol w_{i+1} from the input, pops a from the stack, pushes b back on the stack and moves from q_{i} to q_{i+1}
(3) $r_{m} \in F$ - stop in an accept state

Back to Our Example

Recall the PDA we described before:

- On input 0 , push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0 s come before all $1 s$ and the stack is empty when run out of inputs, accept

Back to Our Example

Recall the PDA we described before:

- On input 0 , push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0 s come before all 1 s and the stack is empty when run out of inputs, accept
Let's build a PDA for this algorithm:

Back to Our Example

Recall the PDA we described before:

- On input 0 , push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0 s come before all $1 s$ and the stack is empty when run out of inputs, accept
Let's build a PDA for this algorithm:
- $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
- q_{0} - start state
- q_{1} - seen only 0 s
- q_{2} - seen 0 s followed by 1 s
- q_{3} - accept state

Back to Our Example

Recall the PDA we described before:

- On input 0 , push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0 s come before all $1 s$ and the stack is empty when run out of inputs, accept
Let's build a PDA for this algorithm:
- $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
- q_{0} - start state
- q_{1} - seen only 0s
- q_{2} - seen 0 s followed by 1 s
- q_{3} - accept state
- $\Sigma=\{0,1\}$

Back to Our Example

Recall the PDA we described before:

- On input 0 , push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0 s come before all $1 s$ and the stack is empty when run out of inputs, accept
Let's build a PDA for this algorithm:
- $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
- q_{0} - start state
- q_{1} - seen only 0s
- q_{2} - seen 0 s followed by 1 s
- q_{3} - accept state
- $\Sigma=\{0,1\}$
- $\Gamma=\{0, \$\}-\$$ is a special symbol to indicate the stack is empty

Back to Our Example

Recall the PDA we described before:

- On input 0 , push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0 s come before all $1 s$ and the stack is empty when run out of inputs, accept

Let's build a PDA for this algorithm:

- $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
- q_{0} - start state
- q_{1} - seen only 0 s
- q_{2} - seen 0 s followed by 1 s
- q_{3} - accept state
- $\Sigma=\{0,1\}$
- $\Gamma=\{0, \$\}-\$$ is a special symbol to indicate the stack is empty
- $q_{0}=q_{0}$

Back to Our Example

Recall the PDA we described before:

- On input 0 , push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0 s come before all $1 s$ and the stack is empty when run out of inputs, accept

Let's build a PDA for this algorithm:

- $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
- q_{0} - start state
- q_{1} - seen only 0 s
- q_{2} - seen 0 s followed by 1 s
- q_{3} - accept state
- $\Sigma=\{0,1\}$
- $\Gamma=\{0, \$\}-\$$ is a special symbol to indicate the stack is empty
- $q_{0}=q_{0}$
- $F=\left\{q_{3}\right\}$

Transition Function

Table: Transition Function δ

Empty cells correspond to output of \emptyset

Example PDA as a Graph

Exercise - Work in Groups

Show a PDA that recognizes the language

$$
L=\{w \mid w \text { has an equal number of } 0 \mathrm{~s} \text { and } 1 \mathrm{~s}\}
$$

(1) Describe a PDA algorithm for this language
(2) Write the states and transition function
(3) Draw the PDA graph

Exercise - Work in Groups

Show a PDA that recognizes the language

$$
L=\{w \mid w \text { has an equal number of } 0 \mathrm{~s} \text { and } 1 \mathrm{~s}\}
$$

(1) Describe a PDA algorithm for this language
(2) Write the states and transition function
(3) Draw the PDA graph

Solution:
(1) Push \$ on the stack
(2) If input is 0 , pop value from the stack

- If it's a 0 or $\$$ push it back on the stack and push another 0 on top
- If it's a 1 pop it off the stack
(3) If input is 1 , pop value from the stack
- If it's a 1 or $\$$ push it back and push another 1 on top
- If it's a 0 pop it off the stack
(9) When the input is done, if $\$$ is top of the stack, accept

Exercise - Work in Groups

