Foundations of Computing Lecture 8

Arkady Yerukhimovich

February 8, 2024

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

February 8, 2024

2 Pushdown Automata

Arkady Yerukhimovich

▶ < ∃ >

< □ > < 同 >

æ

- Proving languages not regular
 - Using the pumping lemma
 - Using closure properties

∃⊳

• Proving languages not regular

- Using the pumping lemma
- Using closure properties

Today

Going beyond regular languages.

Let
$$L = \{0^n 1^n | n \ge 0\}$$

Question

How can we build a machine to recognize this language?

Let
$$L = \{0^n 1^n | n \ge 0\}$$

Question

How can we build a machine to recognize this language?

Answer

Add some form of (unbounded) memory to the machine

Arkady Yerukhimovich

▶ < ∃ >

< □ > < 同 >

æ

Let's Add Some Storage

Recall:

- An NFA/DFA has no external storage
- Only memory must be encoded in the finite number of states
- Can only recognize regular languages

Arkady Yerukhimovich

CS 3313 - Foundations of Computing

Let's Add Some Storage

Question

What kind of storage should we add?

Arkady Yerukhimovich

Let's add a Stack for storage

Let's add a Stack for storage

A stack has the following operations:

• push value - push a value onto the top of the stack

Let's add a Stack for storage

A stack has the following operations:

- push value push a value onto the top of the stack
- pop value pop the top item off the stack

Let's add a Stack for storage

A stack has the following operations:

- push value push a value onto the top of the stack
- pop value pop the top item off the stack
- $\bullet\,$ do nothing denoted as $\epsilon\,$

Let's add a Stack for storage

A stack has the following operations:

- push value push a value onto the top of the stack
- pop value pop the top item off the stack
- $\bullet\,$ do nothing denoted as $\epsilon\,$

A stack is a Last-In First-Out (LIFO) data structure, that can hold an infinite amount of information (infinite depth)

Pushdown Automata (PDA)

A PDA consists of:

- An NFA for a control unit
- A Stack for storage

∃ >

Pushdown Automata (PDA)

A PDA consists of:

- An NFA for a control unit
- A Stack for storage

Question

Is this any more powerful than an NFA?

Arkady Yerukhimovich

February 8, 2024

9/19

Computing with a PDA

At each step, a PDA can do the following

∃ >

Computing with a PDA

At each step, a PDA can do the following

Read a symbol from the input tape

Computing with a PDA

At each step, a PDA can do the following

- Read a symbol from the input tape
- Optionally, pop a value from the Stack

At each step, a PDA can do the following

- Read a symbol from the input tape
- Optionally, pop a value from the Stack
- **③** Use the input symbol and the Stack symbol to choose a next state

At each step, a PDA can do the following

- Read a symbol from the input tape
- Optionally, pop a value from the Stack
- **③** Use the input symbol and the Stack symbol to choose a next state
- Optionally, push a value onto the Stack

At each step, a PDA can do the following

- Read a symbol from the input tape
- Optionally, pop a value from the Stack
- **③** Use the input symbol and the Stack symbol to choose a next state
- Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

At each step, a PDA can do the following

- Read a symbol from the input tape
- Optionally, pop a value from the Stack
- **③** Use the input symbol and the Stack symbol to choose a next state
- Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Observations:

Arkady Yerukhimovich

At each step, a PDA can do the following

- Read a symbol from the input tape
- Optionally, pop a value from the Stack
- **③** Use the input symbol and the Stack symbol to choose a next state
- Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Observations:

• Since the control is an NFA, ϵ transitions are allowed

At each step, a PDA can do the following

- Read a symbol from the input tape
- Optionally, pop a value from the Stack
- **③** Use the input symbol and the Stack symbol to choose a next state
- Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Observations:

- Since the control is an NFA, ϵ transitions are allowed
- A PDA may choose not to touch the stack in a particular step

At each step, a PDA can do the following

- Read a symbol from the input tape
- Optionally, pop a value from the Stack
- **③** Use the input symbol and the Stack symbol to choose a next state
- Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Observations:

- Since the control is an NFA, ϵ transitions are allowed
- A PDA may choose not to touch the stack in a particular step
- Unlike the case for DFA/NFA, deterministic PDA's are not equal to non-deterministic ones. We will only study non-deterministic PDAs.

Arkady Yerukhimovich

A PDA for $L = \{0^n 1^n | n \ge 0\}$

CS 3313 - Foundations of Computing

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

3

A PDA for $L = \{0^n 1^n | n \ge 0\}$

Consider the following PDA "Algorithm"

Image: A matrix

< ∃⇒

э

A PDA for $L = \{0^n 1^n | n \ge 0\}$

Consider the following PDA "Algorithm"

Read a symbol from the input

< 円

∃ →

A PDA for $L = \{0^n 1^n | n \ge 0\}$

- Read a symbol from the input
- 2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack

A PDA for $L = \{0^n 1^n | n \ge 0\}$

- Read a symbol from the input
- 2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack
- If it is a 1, pop a value (a 0) from the stack

A PDA for $L = \{0^n 1^n | n \ge 0\}$

- Read a symbol from the input
- 2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack
- If it is a 1, pop a value (a 0) from the stack
- Accept if and only if the stack becomes empty when we read the last character

A PDA for $L = \{0^n 1^n | n \ge 0\}$

- Read a symbol from the input
- 2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack
- If it is a 1, pop a value (a 0) from the stack
- Accept if and only if the stack becomes empty when we read the last character
- Solution Reject if any of the following happen:
 - the stack becomes empty and the input is not done or

A PDA for $L = \{0^n 1^n | n \ge 0\}$

Consider the following PDA "Algorithm"

- Read a symbol from the input
- 2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack
- If it is a 1, pop a value (a 0) from the stack
- Accept if and only if the stack becomes empty when we read the last character
- Solution Reject if any of the following happen:
 - the stack becomes empty and the input is not done or
 - there are still 0s left on the stack when the last input is read or

11/19

A PDA for $L = \{0^n 1^n | n \ge 0\}$

- Read a symbol from the input
- 2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack
- If it is a 1, pop a value (a 0) from the stack
- Accept if and only if the stack becomes empty when we read the last character
- Solution Reject if any of the following happen:
 - the stack becomes empty and the input is not done or
 - there are still 0s left on the stack when the last input is read or
 - there are any 0s after the first 1

A PDA for $L = \{0^n 1^n | n \ge 0\}$

- Read a symbol from the input
- 2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack
- If it is a 1, pop a value (a 0) from the stack
- Accept if and only if the stack becomes empty when we read the last character
- Solution Reject if any of the following happen:
 - the stack becomes empty and the input is not done or
 - there are still 0s left on the stack when the last input is read or
 - there are any 0s after the first 1

1 Lecture 7 Review

2 Pushdown Automata

Arkady Yerukhimovich

< □ > < 同 >

æ

A PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- Q set of states of the NFA
- Σ input alphabet
- Γ Stack alphabet $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to P(Q \times \Gamma_{\epsilon})$ transition function
- $q_0 \in Q$ start state
- $F \subseteq Q$ accept states

Recall that $P(Q \times \Gamma_{\epsilon})$ is the power set of the set of pairs $\{(q \in Q, a \in \Gamma_{\epsilon})\}$

- A sequence of states $q_0, q_1, \ldots q_m \in Q$, and
- A sequence of strings $s_0, s_1, \ldots, s_m \in \Gamma^*$

that satisfy the following three conditions:

- A sequence of states $q_0, q_1, \ldots q_m \in Q$, and
- A sequence of strings $s_0, s_1, \ldots, s_m \in \Gamma^*$

that satisfy the following three conditions:

q₀ is the start state, and s₀ = e
 M starts in the start state with an empty stack

- A sequence of states $q_0, q_1, \ldots q_m \in Q$, and
- A sequence of strings $s_0, s_1, \ldots, s_m \in \Gamma^*$

that satisfy the following three conditions:

*q*₀ is the start state, and *s*₀ = *ϵ M* starts in the start state with an empty stack
For *i* = 0,..., *m* − 1, (*q*_{*i*+1}, *b*) ∈ δ(*q*_{*i*}, *w*_{*i*+1}, *a*) where *s*_{*i*} = *at* and *s*_{*i*+1} = *bt* for some *a*, *b* ∈ Γ_{*ϵ*} and *t* ∈ Γ* there is a transition in δ s.t. *M* reads symbol *w*_{*i*+1} from the input, pops *a* from the stack, pushes *b* back on the stack and moves from *q*_{*i*} to *q*_{*i*+1}

- A sequence of states $q_0, q_1, \ldots q_m \in Q$, and
- A sequence of strings $s_0, s_1, \ldots, s_m \in \Gamma^*$

that satisfy the following three conditions:

q₀ is the start state, and s₀ = e
 M starts in the start state with an empty stack

• $r_m \in F$ – stop in an accept state

14/19

Recall the PDA we described before:

- On input 0, push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0s come before all 1s and the stack is empty when run out of inputs, accept

Recall the PDA we described before:

- On input 0, push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0s come before all 1s and the stack is empty when run out of inputs, accept

Recall the PDA we described before:

- On input 0, push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0s come before all 1s and the stack is empty when run out of inputs, accept

•
$$Q = \{q_0, q_1, q_2, q_3\}$$

- q₀ start state
- q1 seen only 0s
- q_2 seen 0s followed by 1s
- q₃ accept state

Recall the PDA we described before:

- On input 0, push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0s come before all 1s and the stack is empty when run out of inputs, accept

•
$$Q = \{q_0, q_1, q_2, q_3\}$$

- q₀ start state
- q_1 seen only 0s
- q_2 seen 0s followed by 1s
- q₃ accept state

•
$$\Sigma = \{0, 1\}$$

Recall the PDA we described before:

- On input 0, push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0s come before all 1s and the stack is empty when run out of inputs, accept

Let's build a PDA for this algorithm:

•
$$Q = \{q_0, q_1, q_2, q_3\}$$

- q₀ start state
- q_1 seen only 0s
- q_2 seen 0s followed by 1s
- q₃ accept state

•
$$\Sigma = \{0, 1\}$$

• $\Gamma=\{0,\$\}$ – \$ is a special symbol to indicate the stack is empty

Recall the PDA we described before:

- On input 0, push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0s come before all 1s and the stack is empty when run out of inputs, accept

•
$$Q = \{q_0, q_1, q_2, q_3\}$$

- q₀ start state
- q_1 seen only 0s
- q_2 seen 0s followed by 1s
- q₃ accept state
- $\Sigma = \{0,1\}$
- $\Gamma=\{0,\$\}$ \$ is a special symbol to indicate the stack is empty
- $q_0 = q_0$

Recall the PDA we described before:

- On input 0, push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0s come before all 1s and the stack is empty when run out of inputs, accept

•
$$Q = \{q_0, q_1, q_2, q_3\}$$

- q₀ start state
- q_1 seen only 0s
- q_2 seen 0s followed by 1s
- q₃ accept state
- $\Sigma = \{0,1\}$
- $\Gamma=\{0,\$\}$ \$ is a special symbol to indicate the stack is empty
- $q_0 = q_0$
- $F = \{q_3\}$

Transition Function

Table: Transition Function δ

Empty cells correspond to output of \emptyset

Example PDA as a Graph

February 8, 2024

- ∢ ⊒ →

æ

Show a PDA that recognizes the language

 $L = \{w \mid w \text{ has an equal number of 0s and 1s}\}$

- Describe a PDA algorithm for this language
- Write the states and transition function
- Oraw the PDA graph

Show a PDA that recognizes the language

 $L = \{w \mid w \text{ has an equal number of 0s and 1s}\}$

- Describe a PDA algorithm for this language
- Write the states and transition function
- Oraw the PDA graph

Solution:

- Push \$ on the stack
- If input is 0, pop value from the stack
 - If it's a 0 or \$ push it back on the stack and push another 0 on top
 - If it's a 1 pop it off the stack
- If input is 1, pop value from the stack
 - If it's a 1 or \$ push it back and push another 1 on top
 - If it's a 0 pop it off the stack
- When the input is done, if \$ is top of the stack, accept

Exercise – Work in Groups

