
Foundations of Computing
Lecture 8

Arkady Yerukhimovich

February 8, 2024

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 1 / 19



Outline

1 Lecture 7 Review

2 Pushdown Automata

3 Formalizing PDAs

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 2 / 19



Lecture 7 Review

Proving languages not regular
Using the pumping lemma
Using closure properties

Today

Going beyond regular languages.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 3 / 19



Lecture 7 Review

Proving languages not regular
Using the pumping lemma
Using closure properties

Today

Going beyond regular languages.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 3 / 19



How Can We Recognize Non-Regular Languages?

Let L = {0n1n|n � 0}

Question
How can we build a machine to recognize this language?

Answer

Add some form of (unbounded) memory to the machine

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 4 / 19



How Can We Recognize Non-Regular Languages?

Let L = {0n1n|n � 0}

Question
How can we build a machine to recognize this language?

Answer

Add some form of (unbounded) memory to the machine

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 4 / 19



Outline

1 Lecture 7 Review

2 Pushdown Automata

3 Formalizing PDAs

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 5 / 19



Let’s Add Some Storage

Recall:

An NFA/DFA has no external storage

Only memory must be encoded in the finite number of states

Can only recognize regular languages
Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 6 / 19



Let’s Add Some Storage

Question
What kind of storage should we add?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 7 / 19



A Stack

Let’s add a Stack for storage

A stack has the following operations:

push value - push a value onto the top of the stack

pop value - pop the top item o↵ the stack

do nothing - denoted as ✏

A stack is a Last-In First-Out (LIFO) data structure,
that can hold an infinite amount of information (infinite depth)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 8 / 19



A Stack

Let’s add a Stack for storage

A stack has the following operations:

push value - push a value onto the top of the stack

pop value - pop the top item o↵ the stack

do nothing - denoted as ✏

A stack is a Last-In First-Out (LIFO) data structure,
that can hold an infinite amount of information (infinite depth)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 8 / 19



A Stack

Let’s add a Stack for storage

A stack has the following operations:

push value - push a value onto the top of the stack

pop value - pop the top item o↵ the stack

do nothing - denoted as ✏

A stack is a Last-In First-Out (LIFO) data structure,
that can hold an infinite amount of information (infinite depth)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 8 / 19



A Stack

Let’s add a Stack for storage

A stack has the following operations:

push value - push a value onto the top of the stack

pop value - pop the top item o↵ the stack

do nothing - denoted as ✏

A stack is a Last-In First-Out (LIFO) data structure,
that can hold an infinite amount of information (infinite depth)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 8 / 19



A Stack

Let’s add a Stack for storage

A stack has the following operations:

push value - push a value onto the top of the stack

pop value - pop the top item o↵ the stack

do nothing - denoted as ✏

A stack is a Last-In First-Out (LIFO) data structure,
that can hold an infinite amount of information (infinite depth)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 8 / 19



Pushdown Automata (PDA)

A PDA consists of:
An NFA for a control unit
A Stack for storage

Question
Is this any more powerful than an NFA?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 9 / 19



Pushdown Automata (PDA)

A PDA consists of:
An NFA for a control unit
A Stack for storage

Question
Is this any more powerful than an NFA?

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 9 / 19



Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following

1 Read a symbol from the input tape

2 Optionally, pop a value from the Stack

3 Use the input symbol and the Stack symbol to choose a next state

4 Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept
state once all the input has been processed

Observations:

Since the control is an NFA, ✏ transitions are allowed

A PDA may choose not to touch the stack in a particular step

Unlike the case for DFA/NFA, deterministic PDA’s are not equal to
non-deterministic ones. We will only study non-deterministic PDAs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 10 / 19



Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following

1 Read a symbol from the input tape

2 Optionally, pop a value from the Stack

3 Use the input symbol and the Stack symbol to choose a next state

4 Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept
state once all the input has been processed

Observations:

Since the control is an NFA, ✏ transitions are allowed

A PDA may choose not to touch the stack in a particular step

Unlike the case for DFA/NFA, deterministic PDA’s are not equal to
non-deterministic ones. We will only study non-deterministic PDAs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 10 / 19



Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following

1 Read a symbol from the input tape

2 Optionally, pop a value from the Stack

3 Use the input symbol and the Stack symbol to choose a next state

4 Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept
state once all the input has been processed

Observations:

Since the control is an NFA, ✏ transitions are allowed

A PDA may choose not to touch the stack in a particular step

Unlike the case for DFA/NFA, deterministic PDA’s are not equal to
non-deterministic ones. We will only study non-deterministic PDAs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 10 / 19



Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following

1 Read a symbol from the input tape

2 Optionally, pop a value from the Stack

3 Use the input symbol and the Stack symbol to choose a next state

4 Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept
state once all the input has been processed

Observations:

Since the control is an NFA, ✏ transitions are allowed

A PDA may choose not to touch the stack in a particular step

Unlike the case for DFA/NFA, deterministic PDA’s are not equal to
non-deterministic ones. We will only study non-deterministic PDAs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 10 / 19



Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following

1 Read a symbol from the input tape

2 Optionally, pop a value from the Stack

3 Use the input symbol and the Stack symbol to choose a next state

4 Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept
state once all the input has been processed

Observations:

Since the control is an NFA, ✏ transitions are allowed

A PDA may choose not to touch the stack in a particular step

Unlike the case for DFA/NFA, deterministic PDA’s are not equal to
non-deterministic ones. We will only study non-deterministic PDAs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 10 / 19



Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following

1 Read a symbol from the input tape

2 Optionally, pop a value from the Stack

3 Use the input symbol and the Stack symbol to choose a next state

4 Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept
state once all the input has been processed

Observations:

Since the control is an NFA, ✏ transitions are allowed

A PDA may choose not to touch the stack in a particular step

Unlike the case for DFA/NFA, deterministic PDA’s are not equal to
non-deterministic ones. We will only study non-deterministic PDAs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 10 / 19



Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following

1 Read a symbol from the input tape

2 Optionally, pop a value from the Stack

3 Use the input symbol and the Stack symbol to choose a next state

4 Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept
state once all the input has been processed

Observations:

Since the control is an NFA, ✏ transitions are allowed

A PDA may choose not to touch the stack in a particular step

Unlike the case for DFA/NFA, deterministic PDA’s are not equal to
non-deterministic ones. We will only study non-deterministic PDAs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 10 / 19



Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following

1 Read a symbol from the input tape

2 Optionally, pop a value from the Stack

3 Use the input symbol and the Stack symbol to choose a next state

4 Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept
state once all the input has been processed

Observations:

Since the control is an NFA, ✏ transitions are allowed

A PDA may choose not to touch the stack in a particular step

Unlike the case for DFA/NFA, deterministic PDA’s are not equal to
non-deterministic ones. We will only study non-deterministic PDAs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 10 / 19



Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following

1 Read a symbol from the input tape

2 Optionally, pop a value from the Stack

3 Use the input symbol and the Stack symbol to choose a next state

4 Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept
state once all the input has been processed

Observations:

Since the control is an NFA, ✏ transitions are allowed

A PDA may choose not to touch the stack in a particular step

Unlike the case for DFA/NFA, deterministic PDA’s are not equal to
non-deterministic ones. We will only study non-deterministic PDAs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 10 / 19



Computing With a PDA

Computing with a PDA

At each step, a PDA can do the following

1 Read a symbol from the input tape

2 Optionally, pop a value from the Stack

3 Use the input symbol and the Stack symbol to choose a next state

4 Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept
state once all the input has been processed

Observations:

Since the control is an NFA, ✏ transitions are allowed

A PDA may choose not to touch the stack in a particular step

Unlike the case for DFA/NFA, deterministic PDA’s are not equal to
non-deterministic ones. We will only study non-deterministic PDAs.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 10 / 19



An Example PDA

A PDA for L = {0n1n|n � 0}

Consider the following PDA “Algorithm”

1 Read a symbol from the input

2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack

3 If it is a 1, pop a value (a 0) from the stack

4 Accept if and only if the stack becomes empty when we read the last
character

5 Reject if any of the following happen:
the stack becomes empty and the input is not done or
there are still 0s left on the stack when the last input is read or
there are any 0s after the first 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 11 / 19



An Example PDA

A PDA for L = {0n1n|n � 0}

Consider the following PDA “Algorithm”

1 Read a symbol from the input

2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack

3 If it is a 1, pop a value (a 0) from the stack

4 Accept if and only if the stack becomes empty when we read the last
character

5 Reject if any of the following happen:
the stack becomes empty and the input is not done or
there are still 0s left on the stack when the last input is read or
there are any 0s after the first 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 11 / 19



An Example PDA

A PDA for L = {0n1n|n � 0}

Consider the following PDA “Algorithm”

1 Read a symbol from the input

2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack

3 If it is a 1, pop a value (a 0) from the stack

4 Accept if and only if the stack becomes empty when we read the last
character

5 Reject if any of the following happen:
the stack becomes empty and the input is not done or
there are still 0s left on the stack when the last input is read or
there are any 0s after the first 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 11 / 19



An Example PDA

A PDA for L = {0n1n|n � 0}

Consider the following PDA “Algorithm”

1 Read a symbol from the input

2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack

3 If it is a 1, pop a value (a 0) from the stack

4 Accept if and only if the stack becomes empty when we read the last
character

5 Reject if any of the following happen:
the stack becomes empty and the input is not done or
there are still 0s left on the stack when the last input is read or
there are any 0s after the first 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 11 / 19



An Example PDA

A PDA for L = {0n1n|n � 0}

Consider the following PDA “Algorithm”

1 Read a symbol from the input

2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack

3 If it is a 1, pop a value (a 0) from the stack

4 Accept if and only if the stack becomes empty when we read the last
character

5 Reject if any of the following happen:
the stack becomes empty and the input is not done or
there are still 0s left on the stack when the last input is read or
there are any 0s after the first 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 11 / 19



An Example PDA

A PDA for L = {0n1n|n � 0}

Consider the following PDA “Algorithm”

1 Read a symbol from the input

2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack

3 If it is a 1, pop a value (a 0) from the stack

4 Accept if and only if the stack becomes empty when we read the last
character

5 Reject if any of the following happen:
the stack becomes empty and the input is not done or
there are still 0s left on the stack when the last input is read or
there are any 0s after the first 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 11 / 19



An Example PDA

A PDA for L = {0n1n|n � 0}

Consider the following PDA “Algorithm”

1 Read a symbol from the input

2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack

3 If it is a 1, pop a value (a 0) from the stack

4 Accept if and only if the stack becomes empty when we read the last
character

5 Reject if any of the following happen:
the stack becomes empty and the input is not done or

there are still 0s left on the stack when the last input is read or
there are any 0s after the first 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 11 / 19



An Example PDA

A PDA for L = {0n1n|n � 0}

Consider the following PDA “Algorithm”

1 Read a symbol from the input

2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack

3 If it is a 1, pop a value (a 0) from the stack

4 Accept if and only if the stack becomes empty when we read the last
character

5 Reject if any of the following happen:
the stack becomes empty and the input is not done or
there are still 0s left on the stack when the last input is read or

there are any 0s after the first 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 11 / 19



An Example PDA

A PDA for L = {0n1n|n � 0}

Consider the following PDA “Algorithm”

1 Read a symbol from the input

2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack

3 If it is a 1, pop a value (a 0) from the stack

4 Accept if and only if the stack becomes empty when we read the last
character

5 Reject if any of the following happen:
the stack becomes empty and the input is not done or
there are still 0s left on the stack when the last input is read or
there are any 0s after the first 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 11 / 19



An Example PDA

A PDA for L = {0n1n|n � 0}

Consider the following PDA “Algorithm”

1 Read a symbol from the input

2 If it is a 0 and I have not seen any 1s, then push a 0 onto the stack

3 If it is a 1, pop a value (a 0) from the stack

4 Accept if and only if the stack becomes empty when we read the last
character

5 Reject if any of the following happen:
the stack becomes empty and the input is not done or
there are still 0s left on the stack when the last input is read or
there are any 0s after the first 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 11 / 19



Outline

1 Lecture 7 Review

2 Pushdown Automata

3 Formalizing PDAs

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 12 / 19



Formal Definition of PDAs

A PDA M is a 6-tuple (Q,⌃, �, �, q0,F ) where

Q – set of states of the NFA

⌃ – input alphabet

� – Stack alphabet

� : Q ⇥ ⌃✏ ⇥ �✏ ! P(Q ⇥ �✏) – transition function

q0 2 Q – start state

F ✓ Q – accept states

Recall that P(Q ⇥�✏) is the power set of the set of pairs {(q 2 Q, a 2 �✏)}

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 13 / 19

&
d



Computing with a PDA – Formal Notation

A PDA M accepts a string w = w1w2 · · ·wm with wi 2 ⌃✏ if there exist

A sequence of states q0, q1, . . . qm 2 Q, and

A sequence of strings s0, s1, . . . , sm 2 �⇤

that satisfy the following three conditions:

1 q0 is the start state, and s0 = ✏
M starts in the start state with an empty stack

2 For i = 0, . . . ,m � 1, (qi+1, b) 2 �(qi ,wi+1, a) where si = at and
si+1 = bt for some a, b 2 �✏ and t 2 �⇤

there is a transition in � s.t. M reads symbol wi+1 from the input,
pops a from the stack, pushes b back on the stack and moves from qi
to qi+1

3 rm 2 F – stop in an accept state

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 14 / 19



Computing with a PDA – Formal Notation

A PDA M accepts a string w = w1w2 · · ·wm with wi 2 ⌃✏ if there exist

A sequence of states q0, q1, . . . qm 2 Q, and

A sequence of strings s0, s1, . . . , sm 2 �⇤

that satisfy the following three conditions:

1 q0 is the start state, and s0 = ✏
M starts in the start state with an empty stack

2 For i = 0, . . . ,m � 1, (qi+1, b) 2 �(qi ,wi+1, a) where si = at and
si+1 = bt for some a, b 2 �✏ and t 2 �⇤

there is a transition in � s.t. M reads symbol wi+1 from the input,
pops a from the stack, pushes b back on the stack and moves from qi
to qi+1

3 rm 2 F – stop in an accept state

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 14 / 19



Computing with a PDA – Formal Notation

A PDA M accepts a string w = w1w2 · · ·wm with wi 2 ⌃✏ if there exist

A sequence of states q0, q1, . . . qm 2 Q, and

A sequence of strings s0, s1, . . . , sm 2 �⇤

that satisfy the following three conditions:

1 q0 is the start state, and s0 = ✏
M starts in the start state with an empty stack

2 For i = 0, . . . ,m � 1, (qi+1, b) 2 �(qi ,wi+1, a) where si = at and
si+1 = bt for some a, b 2 �✏ and t 2 �⇤

there is a transition in � s.t. M reads symbol wi+1 from the input,
pops a from the stack, pushes b back on the stack and moves from qi
to qi+1

3 rm 2 F – stop in an accept state

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 14 / 19



Computing with a PDA – Formal Notation

A PDA M accepts a string w = w1w2 · · ·wm with wi 2 ⌃✏ if there exist

A sequence of states q0, q1, . . . qm 2 Q, and

A sequence of strings s0, s1, . . . , sm 2 �⇤

that satisfy the following three conditions:

1 q0 is the start state, and s0 = ✏
M starts in the start state with an empty stack

2 For i = 0, . . . ,m � 1, (qi+1, b) 2 �(qi ,wi+1, a) where si = at and
si+1 = bt for some a, b 2 �✏ and t 2 �⇤

there is a transition in � s.t. M reads symbol wi+1 from the input,
pops a from the stack, pushes b back on the stack and moves from qi
to qi+1

3 rm 2 F – stop in an accept state

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 14 / 19



Back to Our Example

Recall the PDA we described before:

On input 0, push a 0 on the stack

On input 1, pop a value from the stack

If all 0s come before all 1s and the stack is empty when run out of
inputs, accept

Let’s build a PDA for this algorithm:

Q = {q0, q1, q2, q3}
q0 – start state
q1 – seen only 0s
q2 – seen 0s followed by 1s
q3 – accept state

⌃ = {0, 1}
� = {0, $} – $ is a special symbol to indicate the stack is empty

q0 = q0

F = {q3}

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 15 / 19



Back to Our Example

Recall the PDA we described before:

On input 0, push a 0 on the stack

On input 1, pop a value from the stack

If all 0s come before all 1s and the stack is empty when run out of
inputs, accept

Let’s build a PDA for this algorithm:

Q = {q0, q1, q2, q3}
q0 – start state
q1 – seen only 0s
q2 – seen 0s followed by 1s
q3 – accept state

⌃ = {0, 1}
� = {0, $} – $ is a special symbol to indicate the stack is empty

q0 = q0

F = {q3}

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 15 / 19



Back to Our Example

Recall the PDA we described before:

On input 0, push a 0 on the stack

On input 1, pop a value from the stack

If all 0s come before all 1s and the stack is empty when run out of
inputs, accept

Let’s build a PDA for this algorithm:

Q = {q0, q1, q2, q3}
q0 – start state
q1 – seen only 0s
q2 – seen 0s followed by 1s
q3 – accept state

⌃ = {0, 1}
� = {0, $} – $ is a special symbol to indicate the stack is empty

q0 = q0

F = {q3}

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 15 / 19



Back to Our Example

Recall the PDA we described before:

On input 0, push a 0 on the stack

On input 1, pop a value from the stack

If all 0s come before all 1s and the stack is empty when run out of
inputs, accept

Let’s build a PDA for this algorithm:

Q = {q0, q1, q2, q3}
q0 – start state
q1 – seen only 0s
q2 – seen 0s followed by 1s
q3 – accept state

⌃ = {0, 1}

� = {0, $} – $ is a special symbol to indicate the stack is empty

q0 = q0

F = {q3}

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 15 / 19



Back to Our Example

Recall the PDA we described before:

On input 0, push a 0 on the stack

On input 1, pop a value from the stack

If all 0s come before all 1s and the stack is empty when run out of
inputs, accept

Let’s build a PDA for this algorithm:

Q = {q0, q1, q2, q3}
q0 – start state
q1 – seen only 0s
q2 – seen 0s followed by 1s
q3 – accept state

⌃ = {0, 1}
� = {0, $} – $ is a special symbol to indicate the stack is empty

q0 = q0

F = {q3}

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 15 / 19



Back to Our Example

Recall the PDA we described before:

On input 0, push a 0 on the stack

On input 1, pop a value from the stack

If all 0s come before all 1s and the stack is empty when run out of
inputs, accept

Let’s build a PDA for this algorithm:

Q = {q0, q1, q2, q3}
q0 – start state
q1 – seen only 0s
q2 – seen 0s followed by 1s
q3 – accept state

⌃ = {0, 1}
� = {0, $} – $ is a special symbol to indicate the stack is empty

q0 = q0

F = {q3}

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 15 / 19



Back to Our Example

Recall the PDA we described before:

On input 0, push a 0 on the stack

On input 1, pop a value from the stack

If all 0s come before all 1s and the stack is empty when run out of
inputs, accept

Let’s build a PDA for this algorithm:

Q = {q0, q1, q2, q3}
q0 – start state
q1 – seen only 0s
q2 – seen 0s followed by 1s
q3 – accept state

⌃ = {0, 1}
� = {0, $} – $ is a special symbol to indicate the stack is empty

q0 = q0

F = {q3}
Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 15 / 19



Transition Function

Input: 0 1 ✏
Stack: 0 $ ✏ 0 $ ✏ 0 $ ✏

q0 {(q1, $)}
q1 {(q1, 0)} {(q2, ✏)}
q2 {(q2, ✏)} {(q3, ✏)}
q3

Table: Transition Function �

Empty cells correspond to output of ;

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 16 / 19



Example PDA as a Graph

q0 q1

q2q3

start
✏, ✏ ! $

0, ✏ ! 0

1, 0 ! ✏

1, 0 ! ✏
✏, $ ! ✏

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 17 / 19



Exercise – Work in Groups

Show a PDA that recognizes the language

L = {w | w has an equal number of 0s and 1s}
1 Describe a PDA algorithm for this language
2 Write the states and transition function
3 Draw the PDA graph

Solution:
1 Push $ on the stack
2 If input is 0, pop value from the stack

If it’s a 0 or $ push it back on the stack and push another 0 on top
If it’s a 1 pop it o↵ the stack

3 If input is 1, pop value from the stack
If it’s a 1 or $ push it back and push another 1 on top
If it’s a 0 pop it o↵ the stack

4 When the input is done, if $ is top of the stack, accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 18 / 19



Exercise – Work in Groups

Show a PDA that recognizes the language

L = {w | w has an equal number of 0s and 1s}
1 Describe a PDA algorithm for this language
2 Write the states and transition function
3 Draw the PDA graph

Solution:
1 Push $ on the stack
2 If input is 0, pop value from the stack

If it’s a 0 or $ push it back on the stack and push another 0 on top
If it’s a 1 pop it o↵ the stack

3 If input is 1, pop value from the stack
If it’s a 1 or $ push it back and push another 1 on top
If it’s a 0 pop it o↵ the stack

4 When the input is done, if $ is top of the stack, accept

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 18 / 19



Exercise – Work in Groups

q0

q1

q2

q3

q4

start

✏, ✏ ! $

✏, $ ! ✏

0, $ ! $, 0, 0 ! 0 ✏, ✏ ! 0

0, 1 ! ✏, 1, 0 ! ✏

1, $ ! $, 1, 1 ! 1 ✏, ✏ ! 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 8, 2024 19 / 19


