
Foundations of Computing
Lecture 9

Arkady Yerukhimovich

February 13, 2024

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 1 / 25

Outline

1 Midterm 1 Announcement

2 Lecture 8 Review

3 Grammars

4 Designing Context-Free Grammars

5 Derivations and Parse Trees

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 2 / 25

Midterm 1 – February 22

Exam 1 will be in class on February 22 (next Thursday)

It will cover NFA/DFA/regular languages, and PDAs/Context-free

grammars

Exam Policies
The exam will be closed book and closed notes

You will be allowed two 8.5⇥ 11 pieces of paper with notes –

anything you choose

No computers, calculators, or other digital devices – bring a pencil or

pen

Important

If you have a conflict with this exam, let me know ASAP!

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 3 / 25

Next Week

Lecture and lab next week will be largely for review

This is your chance to clear things up before the midterm

Bring your questions!

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 4 / 25

Outline

1 Midterm 1 Announcement

2 Lecture 8 Review

3 Grammars

4 Designing Context-Free Grammars

5 Derivations and Parse Trees

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 5 / 25

Lecture 8 Review

Pushdown Automata

Using a stack to recognize non-regular languages

Examples of building PDAs

Today

An alternative formulation for languages accepted by PDAs

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 6 / 25

Lecture 8 Review

Pushdown Automata

Using a stack to recognize non-regular languages

Examples of building PDAs

Today

An alternative formulation for languages accepted by PDAs

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 6 / 25

Outline

1 Midterm 1 Announcement

2 Lecture 8 Review

3 Grammars

4 Designing Context-Free Grammars

5 Derivations and Parse Trees

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 7 / 25

Representing Languages

Recall that a language L is a set of strings

We have seen several ways for describing a language L:

DFA/NFA – the language of strings accepted by M

Regular expressions

Pushdown Automata

Grammars
A grammar is a set of rules by which strings in L are

constructed/derived

Today, we will focus on context-free grammars and the languages

they represent

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 8 / 25

Representing Languages

Recall that a language L is a set of strings

We have seen several ways for describing a language L:

DFA/NFA – the language of strings accepted by M

Regular expressions

Pushdown Automata

Grammars
A grammar is a set of rules by which strings in L are

constructed/derived

Today, we will focus on context-free grammars and the languages

they represent

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 8 / 25

Representing Languages

Recall that a language L is a set of strings

We have seen several ways for describing a language L:

DFA/NFA – the language of strings accepted by M

Regular expressions

Pushdown Automata

Grammars
A grammar is a set of rules by which strings in L are

constructed/derived

Today, we will focus on context-free grammars and the languages

they represent

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 8 / 25

Grammar

A grammar G consists of:

V – finite set of variables (usually Capital Letters)

⌃ – a finite set of symbols called the terminals (usually lower case

letters)

R – finite set of rules how strings in L can be produced

S 2 V – start variable

If no S is specified, can assume it is the variable in the first rule.

Definition
For a grammar G , the language LG generated by G is the set of all

terminal strings that can be produced by G starting with the start symbol

by using a sequence of the production rules.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 9 / 25

Grammar

A grammar G consists of:

V – finite set of variables (usually Capital Letters)

⌃ – a finite set of symbols called the terminals (usually lower case

letters)

R – finite set of rules how strings in L can be produced

S 2 V – start variable

If no S is specified, can assume it is the variable in the first rule.

Definition
For a grammar G , the language LG generated by G is the set of all

terminal strings that can be produced by G starting with the start symbol

by using a sequence of the production rules.

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 9 / 25

Example 1

Consider the following grammar G1:

V = {A,B}
⌃ = {0, 1,#}
R =

A ! 0A1

A ! B

B ! #

S = A

Strings Produced by G1:

A) 0A1) 00A11) 000A111) 000B111) 000#111

L(G1) = {0n#1
n}

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 10 / 25

Example 1

Consider the following grammar G1:

V = {A,B}
⌃ = {0, 1,#}
R =

A ! 0A1

A ! B

B ! #

S = A

Strings Produced by G1:

A) 0A1) 00A11) 000A111) 000B111) 000#111

L(G1) = {0n#1
n}

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 10 / 25

Example 1

Consider the following grammar G1:

V = {A,B}
⌃ = {0, 1,#}
R =

A ! 0A1

A ! B

B ! #

S = A

Strings Produced by G1:

A) 0A1) 00A11) 000A111) 000B111) 000#111

L(G1) = {0n#1
n}

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 10 / 25

Example 1

Consider the following grammar G1:

V = {A,B}
⌃ = {0, 1,#}
R =

A ! 0A1

A ! B

B ! #

S = A

Strings Produced by G1:

A) 0A1) 00A11) 000A111) 000B111) 000#111

L(G1) = {0n#1
n}

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 10 / 25

Strings Produced by a Grammar

For a grammar G generating language L, can generate each string w 2 L

as follows:

1 Write down the start variable

2 Find a written-down variable and a rule starting with that variable.

Replace the written variable with the right side of that rule

3 Repeat Step 2 until no variables remain

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 11 / 25

Strings Produced by a Grammar

For a grammar G generating language L, can generate each string w 2 L

as follows:

1 Write down the start variable

2 Find a written-down variable and a rule starting with that variable.

Replace the written variable with the right side of that rule

3 Repeat Step 2 until no variables remain

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 11 / 25

Strings Produced by a Grammar

For a grammar G generating language L, can generate each string w 2 L

as follows:

1 Write down the start variable

2 Find a written-down variable and a rule starting with that variable.

Replace the written variable with the right side of that rule

3 Repeat Step 2 until no variables remain

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 11 / 25

Strings Produced by a Grammar

For a grammar G generating language L, can generate each string w 2 L

as follows:

1 Write down the start variable

2 Find a written-down variable and a rule starting with that variable.

Replace the written variable with the right side of that rule

3 Repeat Step 2 until no variables remain

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 11 / 25

Context-Free Grammars (CFG)

Definition
A grammar G is context-free if for all of its rules, the left side consists of

exactly one variable and no terminals.

This is called context-free since a variable (on left side of rule) always

produces same output, regardless of “context”

Context-free grammars originated in the study of human languages

They capture recursive structures common in language (e.g., noun

phrases can be made of verb-phrases and vice-versa)

a girl with a flower likes the boy

Also, very useful for describing programming languages:

Can capture matching, nested brackets:

if x > 3 {
if y < 5 {
Do something

}
}

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 12 / 25

Context-Free Grammars (CFG)

Definition
A grammar G is context-free if for all of its rules, the left side consists of

exactly one variable and no terminals.

This is called context-free since a variable (on left side of rule) always

produces same output, regardless of “context”

Context-free grammars originated in the study of human languages

They capture recursive structures common in language (e.g., noun

phrases can be made of verb-phrases and vice-versa)

a girl with a flower likes the boy

Also, very useful for describing programming languages:

Can capture matching, nested brackets:

if x > 3 {
if y < 5 {
Do something

}
}

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 12 / 25

Context-Free Grammars (CFG)

Definition
A grammar G is context-free if for all of its rules, the left side consists of

exactly one variable and no terminals.

This is called context-free since a variable (on left side of rule) always

produces same output, regardless of “context”

Context-free grammars originated in the study of human languages

They capture recursive structures common in language (e.g., noun

phrases can be made of verb-phrases and vice-versa)

a girl with a flower likes the boy

Also, very useful for describing programming languages:

Can capture matching, nested brackets:

if x > 3 {
if y < 5 {
Do something

}
}

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 12 / 25

Context-Free Grammars (CFG)

Definition
A grammar G is context-free if for all of its rules, the left side consists of

exactly one variable and no terminals.

This is called context-free since a variable (on left side of rule) always

produces same output, regardless of “context”

Context-free grammars originated in the study of human languages

They capture recursive structures common in language (e.g., noun

phrases can be made of verb-phrases and vice-versa)

a girl with a flower likes the boy

Also, very useful for describing programming languages:

Can capture matching, nested brackets:

if x > 3 {
if y < 5 {
Do something

}
}

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 12 / 25

Outline

1 Midterm 1 Announcement

2 Lecture 8 Review

3 Grammars

4 Designing Context-Free Grammars

5 Derivations and Parse Trees

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 13 / 25

How to Design CFGs for L

Designing CFGs

CFGs are inherently recursive (e.g., A ! 0A1) – need to think what

happens when we recurse

Build a string from outside in

Build from both ends at the same time (due to recursion)

This is Tricky

Designing CFGs is not natural, takes lots of practice

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 14 / 25

How to Design CFGs for L

Designing CFGs

CFGs are inherently recursive (e.g., A ! 0A1) – need to think what

happens when we recurse

Build a string from outside in

Build from both ends at the same time (due to recursion)

This is Tricky

Designing CFGs is not natural, takes lots of practice

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 14 / 25

How to Design CFGs for L

Designing CFGs

CFGs are inherently recursive (e.g., A ! 0A1) – need to think what

happens when we recurse

Build a string from outside in

Build from both ends at the same time (due to recursion)

This is Tricky

Designing CFGs is not natural, takes lots of practice

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 14 / 25

How to Design CFGs for L

Designing CFGs

CFGs are inherently recursive (e.g., A ! 0A1) – need to think what

happens when we recurse

Build a string from outside in

Build from both ends at the same time (due to recursion)

This is Tricky

Designing CFGs is not natural, takes lots of practice

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 14 / 25

How to Design CFGs for L

Designing CFGs

CFGs are inherently recursive (e.g., A ! 0A1) – need to think what

happens when we recurse

Build a string from outside in

Build from both ends at the same time (due to recursion)

This is Tricky

Designing CFGs is not natural, takes lots of practice

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 14 / 25

Example 1

Question

Design a CFG for the language L = {0n1n | n � 0} [{1n0n | n � 0}

Intuition: Generate each of the two, and take the union

1 Build a grammar for L1 = {0n1n | n � 0}
S1 ! 0S11 | ✏

2 Build a grammar for L2 = {1n0n | n � 0}
S2 ! 1S20 | ✏

3 Combine the two to give the grammar for the union

S ! S1 | S2
S1 ! 0S11 | ✏
S2 ! 1S20 | ✏

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 15 / 25

Example 1

Question

Design a CFG for the language L = {0n1n | n � 0} [{1n0n | n � 0}

Intuition: Generate each of the two, and take the union

1 Build a grammar for L1 = {0n1n | n � 0}
S1 ! 0S11 | ✏

2 Build a grammar for L2 = {1n0n | n � 0}
S2 ! 1S20 | ✏

3 Combine the two to give the grammar for the union

S ! S1 | S2
S1 ! 0S11 | ✏
S2 ! 1S20 | ✏

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 15 / 25

Example 1

Question

Design a CFG for the language L = {0n1n | n � 0} [{1n0n | n � 0}

Intuition: Generate each of the two, and take the union

1 Build a grammar for L1 = {0n1n | n � 0}

S1 ! 0S11 | ✏

2 Build a grammar for L2 = {1n0n | n � 0}
S2 ! 1S20 | ✏

3 Combine the two to give the grammar for the union

S ! S1 | S2
S1 ! 0S11 | ✏
S2 ! 1S20 | ✏

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 15 / 25

Example 1

Question

Design a CFG for the language L = {0n1n | n � 0} [{1n0n | n � 0}

Intuition: Generate each of the two, and take the union

1 Build a grammar for L1 = {0n1n | n � 0}
S1 ! 0S11 | ✏

2 Build a grammar for L2 = {1n0n | n � 0}
S2 ! 1S20 | ✏

3 Combine the two to give the grammar for the union

S ! S1 | S2
S1 ! 0S11 | ✏
S2 ! 1S20 | ✏

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 15 / 25

Example 1

Question

Design a CFG for the language L = {0n1n | n � 0} [{1n0n | n � 0}

Intuition: Generate each of the two, and take the union

1 Build a grammar for L1 = {0n1n | n � 0}
S1 ! 0S11 | ✏

2 Build a grammar for L2 = {1n0n | n � 0}

S2 ! 1S20 | ✏

3 Combine the two to give the grammar for the union

S ! S1 | S2
S1 ! 0S11 | ✏
S2 ! 1S20 | ✏

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 15 / 25

Example 1

Question

Design a CFG for the language L = {0n1n | n � 0} [{1n0n | n � 0}

Intuition: Generate each of the two, and take the union

1 Build a grammar for L1 = {0n1n | n � 0}
S1 ! 0S11 | ✏

2 Build a grammar for L2 = {1n0n | n � 0}
S2 ! 1S20 | ✏

3 Combine the two to give the grammar for the union

S ! S1 | S2
S1 ! 0S11 | ✏
S2 ! 1S20 | ✏

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 15 / 25

Example 1

Question

Design a CFG for the language L = {0n1n | n � 0} [{1n0n | n � 0}

Intuition: Generate each of the two, and take the union

1 Build a grammar for L1 = {0n1n | n � 0}
S1 ! 0S11 | ✏

2 Build a grammar for L2 = {1n0n | n � 0}
S2 ! 1S20 | ✏

3 Combine the two to give the grammar for the union

S ! S1 | S2
S1 ! 0S11 | ✏
S2 ! 1S20 | ✏

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 15 / 25

Example 2

Question

Design a CFG for the language L = {ambn | m > n � 0}

Intuition: This is concatenation of a
n
b
n
and a

m�n

1 Build a grammar for L1 = {anbn | n � 0}
C ! aCb | ✏

2 Build a grammar for L2 = {am�n | m > n � 0}
A ! aA | a

3 Concatenate the two to give the grammar for L

S ! AC

C ! aCb | ✏
A ! aA | a

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 16 / 25

Example 2

Question

Design a CFG for the language L = {ambn | m > n � 0}

Intuition: This is concatenation of a
n
b
n
and a

m�n

1 Build a grammar for L1 = {anbn | n � 0}
C ! aCb | ✏

2 Build a grammar for L2 = {am�n | m > n � 0}
A ! aA | a

3 Concatenate the two to give the grammar for L

S ! AC

C ! aCb | ✏
A ! aA | a

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 16 / 25

Example 2

Question

Design a CFG for the language L = {ambn | m > n � 0}

Intuition: This is concatenation of a
n
b
n
and a

m�n

1 Build a grammar for L1 = {anbn | n � 0}

C ! aCb | ✏

2 Build a grammar for L2 = {am�n | m > n � 0}
A ! aA | a

3 Concatenate the two to give the grammar for L

S ! AC

C ! aCb | ✏
A ! aA | a

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 16 / 25

Example 2

Question

Design a CFG for the language L = {ambn | m > n � 0}

Intuition: This is concatenation of a
n
b
n
and a

m�n

1 Build a grammar for L1 = {anbn | n � 0}
C ! aCb | ✏

2 Build a grammar for L2 = {am�n | m > n � 0}
A ! aA | a

3 Concatenate the two to give the grammar for L

S ! AC

C ! aCb | ✏
A ! aA | a

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 16 / 25

Example 2

Question

Design a CFG for the language L = {ambn | m > n � 0}

Intuition: This is concatenation of a
n
b
n
and a

m�n

1 Build a grammar for L1 = {anbn | n � 0}
C ! aCb | ✏

2 Build a grammar for L2 = {am�n | m > n � 0}

A ! aA | a

3 Concatenate the two to give the grammar for L

S ! AC

C ! aCb | ✏
A ! aA | a

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 16 / 25

Example 2

Question

Design a CFG for the language L = {ambn | m > n � 0}

Intuition: This is concatenation of a
n
b
n
and a

m�n

1 Build a grammar for L1 = {anbn | n � 0}
C ! aCb | ✏

2 Build a grammar for L2 = {am�n | m > n � 0}
A ! aA | a

3 Concatenate the two to give the grammar for L

S ! AC

C ! aCb | ✏
A ! aA | a

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 16 / 25

Example 2

Question

Design a CFG for the language L = {ambn | m > n � 0}

Intuition: This is concatenation of a
n
b
n
and a

m�n

1 Build a grammar for L1 = {anbn | n � 0}
C ! aCb | ✏

2 Build a grammar for L2 = {am�n | m > n � 0}
A ! aA | a

3 Concatenate the two to give the grammar for L

S ! AC

C ! aCb | ✏
A ! aA | a

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 16 / 25

- 2

Exercise

Give a CFG for L = {ambn | m 6= n,m, n � 0}
Hint: Think of this as the union of two languages

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 17 / 25

Outline

1 Midterm 1 Announcement

2 Lecture 8 Review

3 Grammars

4 Designing Context-Free Grammars

5 Derivations and Parse Trees

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 18 / 25

Derivations

Derivations of a string w in CFG G is the sequence of substitutions

resulting in w

Consider Grammar G1

R = A ! 0A1 | B , B ! #

Find derivation of w = 000#111

R) 0A1) 00A11) 000A111) 000B111) 000#111

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 19 / 25

Derivations

Derivations of a string w in CFG G is the sequence of substitutions

resulting in w

Consider Grammar G1

R = A ! 0A1 | B , B ! #

Find derivation of w = 000#111

R) 0A1) 00A11) 000A111) 000B111) 000#111

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 19 / 25

Derivations

Derivations of a string w in CFG G is the sequence of substitutions

resulting in w

Consider Grammar G1

R = A ! 0A1 | B , B ! #

Find derivation of w = 000#111

R) 0A1) 00A11) 000A111) 000B111) 000#111

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 19 / 25

Derivations

Derivations of a string w in CFG G is the sequence of substitutions

resulting in w

Consider Grammar G1

R = A ! 0A1 | B , B ! #

Find derivation of w = 000#111

R) 0A1) 00A11) 000A111) 000B111) 000#111

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 19 / 25

Parse Trees

Parse trees are trees with nodes labeled by symbols of a CFG G

Leaves: Labeled by a terminal or ✏
These labels read left-to-right give you the string represented by this

parse tree

Interior nodes: Labeled by a variable (on left-hand side of a

production rule)

Children are labeled by right-hand side of parent’s rule

Root: Labeled by start variable

Why study parse trees?

Parse trees help us understand the “meaning” of a string

Also, how parsers can parse a string according to a grammar (e.g., of

a programming language)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 20 / 25

Parse Trees

Parse trees are trees with nodes labeled by symbols of a CFG G

Leaves: Labeled by a terminal or ✏
These labels read left-to-right give you the string represented by this

parse tree

Interior nodes: Labeled by a variable (on left-hand side of a

production rule)

Children are labeled by right-hand side of parent’s rule

Root: Labeled by start variable

Why study parse trees?

Parse trees help us understand the “meaning” of a string

Also, how parsers can parse a string according to a grammar (e.g., of

a programming language)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 20 / 25

Parse Trees

Parse trees are trees with nodes labeled by symbols of a CFG G

Leaves: Labeled by a terminal or ✏
These labels read left-to-right give you the string represented by this

parse tree

Interior nodes: Labeled by a variable (on left-hand side of a

production rule)

Children are labeled by right-hand side of parent’s rule

Root: Labeled by start variable

Why study parse trees?

Parse trees help us understand the “meaning” of a string

Also, how parsers can parse a string according to a grammar (e.g., of

a programming language)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 20 / 25

Parse Trees

Parse trees are trees with nodes labeled by symbols of a CFG G

Leaves: Labeled by a terminal or ✏
These labels read left-to-right give you the string represented by this

parse tree

Interior nodes: Labeled by a variable (on left-hand side of a

production rule)

Children are labeled by right-hand side of parent’s rule

Root: Labeled by start variable

Why study parse trees?

Parse trees help us understand the “meaning” of a string

Also, how parsers can parse a string according to a grammar (e.g., of

a programming language)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 20 / 25

Parse Trees

Parse trees are trees with nodes labeled by symbols of a CFG G

Leaves: Labeled by a terminal or ✏
These labels read left-to-right give you the string represented by this

parse tree

Interior nodes: Labeled by a variable (on left-hand side of a

production rule)

Children are labeled by right-hand side of parent’s rule

Root: Labeled by start variable

Why study parse trees?

Parse trees help us understand the “meaning” of a string

Also, how parsers can parse a string according to a grammar (e.g., of

a programming language)

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 20 / 25

Parse Trees – An Example

Consider Grammar G1

R = A ! 0A1 | B , B ! #

Parse tree for 000#111 in grammar G1

A

A

A

A

B

#0 0 0 1 1 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 21 / 25

Parse Trees – An Example

Consider Grammar G1

R = A ! 0A1 | B , B ! #

Parse tree for 000#111 in grammar G1

A

A

A

A

B

#0 0 0 1 1 1

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 21 / 25

Another Example

A Grammar G2 for Arithmetic Statements

V = {hEXPRi, hTERMi, hFACTORi}
⌃ = {a,+,⇥, (,)}
R = hEXPRi ! hEXPRi+ hTERMi | hTERMi

hTERMi ! hTERMi ⇥ hFACTORi | hFACTORi
hFACTORi ! (hEXPRi) | a

What is L(G2)?

Parse tree for a+ a⇥ a

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 22 / 25

Another Example

A Grammar G2 for Arithmetic Statements

V = {hEXPRi, hTERMi, hFACTORi}
⌃ = {a,+,⇥, (,)}
R = hEXPRi ! hEXPRi+ hTERMi | hTERMi

hTERMi ! hTERMi ⇥ hFACTORi | hFACTORi
hFACTORi ! (hEXPRi) | a

What is L(G2)?

Parse tree for a+ a⇥ a

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 22 / 25

Another Example

A Grammar G2 for Arithmetic Statements

V = {hEXPRi, hTERMi, hFACTORi}
⌃ = {a,+,⇥, (,)}
R = hEXPRi ! hEXPRi+ hTERMi | hTERMi

hTERMi ! hTERMi ⇥ hFACTORi | hFACTORi
hFACTORi ! (hEXPRi) | a

What is L(G2)?

Parse tree for a+ a⇥ a

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 22 / 25

Ambiguity of Grammars

Definitions
1 A derivation of w in G is a leftmost derivation if at every step, the

leftmost variable is replaced

2 A string w is derived ambiguously if it has two or more di↵erent

leftmost derivations

3 Grammar G is ambiguous if it generates some string ambiguously

4 A language L is inherently ambiguous if it can only be generated by

ambiguous grammars

Is ambiguity a problem?

Ambiguous derivation may lead to di↵erent meanings for the string

Example: The girl touches the boy with the flower

Unfortunately, ambiguous languages cannot be made unambiguous

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 23 / 25

Ambiguity of Grammars

Definitions
1 A derivation of w in G is a leftmost derivation if at every step, the

leftmost variable is replaced

2 A string w is derived ambiguously if it has two or more di↵erent

leftmost derivations

3 Grammar G is ambiguous if it generates some string ambiguously

4 A language L is inherently ambiguous if it can only be generated by

ambiguous grammars

Is ambiguity a problem?

Ambiguous derivation may lead to di↵erent meanings for the string

Example: The girl touches the boy with the flower

Unfortunately, ambiguous languages cannot be made unambiguous

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 23 / 25

Ambiguity of Grammars

Definitions
1 A derivation of w in G is a leftmost derivation if at every step, the

leftmost variable is replaced

2 A string w is derived ambiguously if it has two or more di↵erent

leftmost derivations

3 Grammar G is ambiguous if it generates some string ambiguously

4 A language L is inherently ambiguous if it can only be generated by

ambiguous grammars

Is ambiguity a problem?

Ambiguous derivation may lead to di↵erent meanings for the string

Example: The girl touches the boy with the flower

Unfortunately, ambiguous languages cannot be made unambiguous

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 23 / 25

Ambiguity of Grammars

Definitions
1 A derivation of w in G is a leftmost derivation if at every step, the

leftmost variable is replaced

2 A string w is derived ambiguously if it has two or more di↵erent

leftmost derivations

3 Grammar G is ambiguous if it generates some string ambiguously

4 A language L is inherently ambiguous if it can only be generated by

ambiguous grammars

Is ambiguity a problem?

Ambiguous derivation may lead to di↵erent meanings for the string

Example: The girl touches the boy with the flower

Unfortunately, ambiguous languages cannot be made unambiguous

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 23 / 25

Ambiguity of Grammars

Definitions
1 A derivation of w in G is a leftmost derivation if at every step, the

leftmost variable is replaced

2 A string w is derived ambiguously if it has two or more di↵erent

leftmost derivations

3 Grammar G is ambiguous if it generates some string ambiguously

4 A language L is inherently ambiguous if it can only be generated by

ambiguous grammars

Is ambiguity a problem?

Ambiguous derivation may lead to di↵erent meanings for the string

Example: The girl touches the boy with the flower

Unfortunately, ambiguous languages cannot be made unambiguous

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 23 / 25

Ambiguity of Grammars

Definitions
1 A derivation of w in G is a leftmost derivation if at every step, the

leftmost variable is replaced

2 A string w is derived ambiguously if it has two or more di↵erent

leftmost derivations

3 Grammar G is ambiguous if it generates some string ambiguously

4 A language L is inherently ambiguous if it can only be generated by

ambiguous grammars

Is ambiguity a problem?

Ambiguous derivation may lead to di↵erent meanings for the string

Example: The girl touches the boy with the flower

Unfortunately, ambiguous languages cannot be made unambiguous

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 23 / 25

An Example

Consider the following grammar G3

E ! E + E | E ⇥ E | (E) | a

E

⇥a + a a

E

E E

E

E

⇥a + a a

E

E E

E

Two parse trees for the string a+ a⇥ a

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 24 / 25

On Thursday

Equivalence between CFGs and PDAs

A pumping lemma for CFGs

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 25 / 25

