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Midterm 1 – February 22

Exam 1 will be in class on February 22 (next Thursday)

It will cover NFA/DFA/regular languages, and PDAs/Context-free

grammars

Exam Policies
The exam will be closed book and closed notes

You will be allowed two 8.5⇥ 11 pieces of paper with notes –

anything you choose

No computers, calculators, or other digital devices – bring a pencil or

pen

Important

If you have a conflict with this exam, let me know ASAP!
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Next Week

Lecture and lab next week will be largely for review

This is your chance to clear things up before the midterm

Bring your questions!
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Lecture 8 Review

Pushdown Automata

Using a stack to recognize non-regular languages

Examples of building PDAs

Today

An alternative formulation for languages accepted by PDAs
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Representing Languages

Recall that a language L is a set of strings

We have seen several ways for describing a language L:

DFA/NFA – the language of strings accepted by M

Regular expressions

Pushdown Automata

Grammars
A grammar is a set of rules by which strings in L are

constructed/derived

Today, we will focus on context-free grammars and the languages

they represent
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Grammar

A grammar G consists of:

V – finite set of variables (usually Capital Letters)

⌃ – a finite set of symbols called the terminals (usually lower case

letters)

R – finite set of rules how strings in L can be produced

S 2 V – start variable

If no S is specified, can assume it is the variable in the first rule.

Definition
For a grammar G , the language LG generated by G is the set of all

terminal strings that can be produced by G starting with the start symbol

by using a sequence of the production rules.
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Example 1

Consider the following grammar G1:

V = {A,B}
⌃ = {0, 1,#}
R =

A ! 0A1

A ! B

B ! #

S = A

Strings Produced by G1:

A ) 0A1 ) 00A11 ) 000A111 ) 000B111 ) 000#111

L(G1) = {0n#1
n}
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Strings Produced by a Grammar

For a grammar G generating language L, can generate each string w 2 L

as follows:

1 Write down the start variable

2 Find a written-down variable and a rule starting with that variable.

Replace the written variable with the right side of that rule

3 Repeat Step 2 until no variables remain
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Context-Free Grammars (CFG)

Definition
A grammar G is context-free if for all of its rules, the left side consists of

exactly one variable and no terminals.

This is called context-free since a variable (on left side of rule) always

produces same output, regardless of “context”

Context-free grammars originated in the study of human languages

They capture recursive structures common in language (e.g., noun

phrases can be made of verb-phrases and vice-versa)

a girl with a flower likes the boy

Also, very useful for describing programming languages:

Can capture matching, nested brackets:

if x > 3 {
if y < 5 {
Do something

}
}
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How to Design CFGs for L

Designing CFGs

CFGs are inherently recursive (e.g., A ! 0A1) – need to think what

happens when we recurse

Build a string from outside in

Build from both ends at the same time (due to recursion)

This is Tricky

Designing CFGs is not natural, takes lots of practice
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Example 1

Question

Design a CFG for the language L = {0n1n | n � 0} [ {1n0n | n � 0}

Intuition: Generate each of the two, and take the union

1 Build a grammar for L1 = {0n1n | n � 0}
S1 ! 0S11 | ✏

2 Build a grammar for L2 = {1n0n | n � 0}
S2 ! 1S20 | ✏

3 Combine the two to give the grammar for the union

S ! S1 | S2
S1 ! 0S11 | ✏
S2 ! 1S20 | ✏
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Example 2

Question

Design a CFG for the language L = {ambn | m > n � 0}

Intuition: This is concatenation of a
n
b
n
and a

m�n

1 Build a grammar for L1 = {anbn | n � 0}
C ! aCb | ✏

2 Build a grammar for L2 = {am�n | m > n � 0}
A ! aA | a

3 Concatenate the two to give the grammar for L

S ! AC

C ! aCb | ✏
A ! aA | a
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Exercise

Give a CFG for L = {ambn | m 6= n,m, n � 0}
Hint: Think of this as the union of two languages
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Derivations

Derivations of a string w in CFG G is the sequence of substitutions

resulting in w

Consider Grammar G1

R = A ! 0A1 | B , B ! #

Find derivation of w = 000#111

R ) 0A1 ) 00A11 ) 000A111 ) 000B111 ) 000#111

Arkady Yerukhimovich CS 3313 – Foundations of Computing February 13, 2024 19 / 25
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Parse Trees

Parse trees are trees with nodes labeled by symbols of a CFG G

Leaves: Labeled by a terminal or ✏
These labels read left-to-right give you the string represented by this

parse tree

Interior nodes: Labeled by a variable (on left-hand side of a

production rule)

Children are labeled by right-hand side of parent’s rule

Root: Labeled by start variable

Why study parse trees?

Parse trees help us understand the “meaning” of a string

Also, how parsers can parse a string according to a grammar (e.g., of

a programming language)
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Parse Trees – An Example

Consider Grammar G1

R = A ! 0A1 | B , B ! #

Parse tree for 000#111 in grammar G1

A

A

A

A

B

#0 0 0 1 1 1
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Another Example

A Grammar G2 for Arithmetic Statements

V = {hEXPRi, hTERMi, hFACTORi}
⌃ = {a,+,⇥, (, )}
R = hEXPRi ! hEXPRi+ hTERMi | hTERMi

hTERMi ! hTERMi ⇥ hFACTORi | hFACTORi
hFACTORi ! (hEXPRi) | a

What is L(G2)?

Parse tree for a+ a⇥ a
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Ambiguity of Grammars

Definitions
1 A derivation of w in G is a leftmost derivation if at every step, the

leftmost variable is replaced

2 A string w is derived ambiguously if it has two or more di↵erent

leftmost derivations

3 Grammar G is ambiguous if it generates some string ambiguously

4 A language L is inherently ambiguous if it can only be generated by

ambiguous grammars

Is ambiguity a problem?

Ambiguous derivation may lead to di↵erent meanings for the string

Example: The girl touches the boy with the flower

Unfortunately, ambiguous languages cannot be made unambiguous
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An Example

Consider the following grammar G3

E ! E + E | E ⇥ E | (E ) | a

E

⇥a + a a

E

E E

E

E

⇥a + a a

E

E E

E

Two parse trees for the string a+ a⇥ a
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On Thursday

Equivalence between CFGs and PDAs

A pumping lemma for CFGs
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